No Need for Liveness Model Checking Algorithms?

April, 2004

Armin Biere

(joint work with Viktor Schuppan and Cyrille Artho)

Computer Systems Institute ETH Zürich

Beyond Safety International Workshop

April 25–28, 2004, Ringberg Castle, Germany

- simple **safety** properties:
 - LTL: Gp
 - CTL: AGp
- simple **liveness** properties:
 - LTL: $\mathbf{F}p$
 - CTL: AFp
 - plus fairness constraints (generalized Büchi Automata)
- full LTL can be translated to simple liveness + fairness

Beyond Safety - Intl. Workshop - Ringberg Castle, Germany - April 2004

Armin Biere – ETH Zürich

- counter examples to a **safety** property are finite traces
 - radius is the length of shortest initialized path to an arbitrary state
 - radius is a **completeness threshold** for (simple) safety properties
 - no longer potential counter example traces have to be checked
- every counter example trace to a liveness property is *lasso* shaped:

- diameter is the length of the longest shortest path between two states
- wrong: completeness threshold for liveness properties is radius + diameter

Beyond Safety – Intl. Workshop – Ringberg Castle, Germany – April 2004

Armin Biere – ETH Zürich

- radius and diameter both constant, but shortest counter example is of length *n*
- solution: use $\neg p$ predicated radius + diameter :
 - restrict Kripke structure to states in which $\neg p$ holds
 - calculate radius and diameter in restricted Kripke structure

Beyond Safety - Intl. Workshop - Ringberg Castle, Germany - April 2004

• liveness is actually bounded liveness: $\mathbf{F}p \equiv \mathbf{F}_{\leq |\mathbf{S}|} p$

$$\mathbf{F}_{\leq |\mathbf{S}|} p \equiv p \lor \mathbf{X} p \lor \ldots \lor \underbrace{\mathbf{X} \cdots \mathbf{X}}_{|\mathbf{S}|} p$$

- brute force expansion needs exponential space for symbolic model checking (via the standard Büchi-Automata translation)
- counting translation requires twice the number of state bits

Beyond Safety – Intl. Workshop – Ringberg Castle, Germany – April 2004

Counting Translation of Liveness to Safety

s = original state component

- **counter** = $\lceil \log_2 |S| \rceil$ -bit counter (|S| = number of original states)
 - **found** = boolean flag: body of liveness property is satisfied
 - **live** = boolean state bit: **found** is or was true

$$\mathbf{G} \left(\mathbf{counter} = |\mathbf{S}| \quad \rightarrow \quad \mathbf{live} \right)$$

Beyond Safety – Intl. Workshop – Ringberg Castle, Germany – April 2004

State Recording Translation of Liveness to Safety

s = original state component

- **I2s_s** = copy of original state component to save a state
- **save** = oracle (new primary input) to control when a state is saved
- **saved** = boolean flag set to true when state has been saved
- **found** = boolean flag: body of liveness property is satisfied
 - **live** = boolean state bit: **found** is or was true

$$G(s = l2s_s \rightarrow live)$$

Beyond Safety – Intl. Workshop – Ringberg Castle, Germany – April 2004

8____

 $\not\models \mathbf{F}(\mathbf{s}=3)$

```
DULE main
R
s: {0, 1, 2, 3};
SIGN
init(s) := 0;
next(s) := case
 s = 0: \{1, s\};

s = 1: \{2, s\};

s = 2: \{3, s\};
  s = 3: \{0, s\};
esac;
```

```
MODULE main
VAR
s: {0, 1, 2, 3};
ASSIGN
  init(s) := 0;
  next(s) := case
    s = 0: \{1, s\};
  s = 1; \{2, s\};
 s = 2; \{3, s\};
  s = 3: \{0, s\};
  esac;
-- loop detection part
VAR
  counter: 0..4;
ASSIGN
  init(counter) := 0;
  next(counter) := case
    counter < 4: counter + 1;
    1: counter;
  esac;
DEFINE
  looped := counter = 4;
-- property observing part
VAR live: boolean;
DEFINE found := s = 3;
ASSIGN
  init(live) := 0;
SPEC AG (looped -> live)
```

MODULE main VAR s: {0, 1, 2, 3}; ASSIGN **init**(s) := 0; next(s) := case $s = 0: \{1, s\};$ $s = 1: \{ \overline{2}, s \};$ $s = 2: \{ 3, s \};$ $s = 3: \{0, s\};$ esac; -- loop detection part VAR save: **boolean**; saved: **boolean**; l2s_s: {0, 1, 2, 3}; ASSIGN init(saved) := 0; **next**(saved) := on_loop; **init**(12s_s) := s; next(12s s) := casesave & !saved: s; 1: 12s s; esac; DEFINE looped := saved & (s = 12s_ on loop := save | saved; -- property observing part VAR live: boolean; **DEFINE** found := s = 3;ASSIGN init(live) := 0; **next**(live) := live | found; **next**(live) := live | found; **SPEC AG** (looped -> live)

```
EC AF s = 3
```

Comparison

- both translations are *complete*
- both translations double the number of state bits (in symbolic model checking)
- both translations may double the number of reachable states (really bad for explicit model checking)
- radius in counting translation may increase exponentially: (in symbolic model checking)

$$r^{\text{counting}} \geq |S|$$

• radius in state recording translation (optimizations possible):

$$r^{\text{recording}} \leq max\{r+2d+2, r_{\neg p}+d_{\neg p}+1\} = O(max\{d, d_{\neg p}\})$$

Beyond Safety - Intl. Workshop - Ringberg Castle, Germany - April 2004

Armin Biere – ETH Zürich

- counter examples found are indeed counter examples (correctness)
- conditions for completeness (modulo reachability):
 - if there is a counter example, then there is also a lasso shaped one
 - each trace visits only finite many states
- examples where it works (state variables $\in \mathbb{N}$):

 $I(s) \equiv s \in \mathbb{IN}$ $I(s,b) \equiv s = 0 \land b \in \mathbb{IN}$ $T(s,s') \equiv s \ge s' \land details(s,s')$ $I(s,b), (s',b') \equiv I(s',b') \lor$ $s \le s' \land b = b' \land details(s,s')$

Beyond Safety – Intl. Workshop – Ringberg Castle, Germany – April 2004

Conclusion

- completeness threshold is different for liveness and safety
 - predicated diameter instead of ordinary diameter as bound
- finite states: efficient translation of liveness to safety
 - through state-recording translation
 - works in practice for symbolic model checking (e.g. with interpolation)
- infinite states: state recording workds for some examples
 - combination of state recording with fairness?
 - can we always (efficiently) translate liveness to safety?