Simple Temporal Properties

No Need for Liveness Model Checking Algorithms?

April, 2004

Armin Biere

(joint work with Viktor Schuppan and Cyrille Artho)

Computer Systems Institute ETH Zürich

Beyond Safety

International Workshop

April 25-28, 2004, Ringberg Castle, Germany

g Castle, Germany – April 2004 Armin Biere – ETH Zürich

Completeness Thresholds in BMC

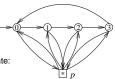
- · counter examples to a safety property are finite traces
 - radius is the length of shortest initialized path to an arbitrary state
 - radius is a completeness threshold for (simple) safety properties
 - no longer potential counter example traces have to be checked
- every counter example trace to a liveness property is lasso shaped:

-∮<u>→</u>○ …)— ->0 ... 0-

- diameter is the length of the longest shortest path between two states
- wrong: completeness threshold for liveness properties is radius + diameter

Translating Liveness to Safety for Finite State Systems 5

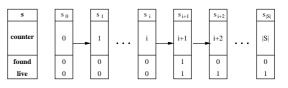
• liveness is actually bounded liveness: $\mathbf{F}p \equiv \mathbf{F}_{\leq |\mathbf{S}|} p$


$$\mathbf{F}_{\leq |\mathbf{S}|} p \equiv p \lor \mathbf{X} p \lor \ldots \lor \underbrace{\mathbf{X} \cdots \mathbf{X}}_{|\mathbf{S}|} p$$

- brute force expansion needs exponential space for symbolic model checking (via the standard Büchi-Automata translation)
- counting translation requires twice the number of state bits

• simple safety properties:

- LTL: Gp
- CTL: AGp
- simple liveness properties:
 - LTL: $\mathbf{F}p$
 - CTL: AFp
 - plus fairness constraints (generalized Büchi Automata)
- full LTL can be translated to simple liveness + fairness


Completeness Threshold for Liveness Revised ny – April 2004 Armin Biere – ETH Zürich

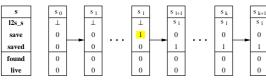
Safety – Intl. Workshop – Ringberg Castle, Germany – April 2004 Armin Biere – ETH Zürich

- modulo n (here n = 4) counter with an explicit set state:
- radius and diameter both constant, but shortest counter example is of length n
- solution: use $\neg p$ predicated radius + diameter :
 - restrict Kripke structure to states in which $\neg p$ holds
 - calculate radius and diameter in restricted Kripke structure

Counting Translation of Liveness to Safety rg Castle, Germany – April 2004 Armin Biere – ETH Zürich

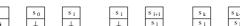
s = original state component

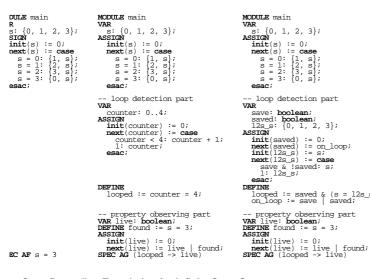
$\lceil \log_2 |S| \rceil$ -bit counter (|S| = number of original states) counter =


- found = boolean flag: body of liveness property is satisfied
 - live = boolean state bit: found is or was true

G (counter = $|S| \rightarrow live$)

Example: 2-Bit Counter with Self-Loops - Ringberg Castle, Germany – April 2004 Armin Biere – ETH Zürich


 $\not\models \mathbf{F}(\mathbf{s}=3)$


State Recording Translation of Liveness to Safety - April 2004 Armin Biere - ETH Zürich

- original state component S =
- l2s_s = copy of original state component to save a state
- = oracle (new primary input) to control when a state is saved save
- saved = boolean flag set to true when state has been saved
- found = boolean flag: body of liveness property is satisfied
 - live = boolean state bit: found is or was true

 $G (s = l2s_s \rightarrow live)$

- · counter examples found are indeed counter examples (correctness)
- conditions for completeness (modulo reachability):
 - if there is a counter example, then there is also a lasso shaped one
 - each trace visits only finite many states
- examples where it works (state variables $\in {\rm I\!N}$):

- both translations are *complete*
- both translations double the number of state bits (in symbolic model checking)

nd Safety – Intl. Workshop – Ringberg Castle, Germany – April 2004 Armin Biere – ETH Zürich 10

nd Safety – Intl. Workshop – Ringberg Castle, Germany – April 2004 Armin Biere – ETH Zürich

- both translations may double the number of reachable states (really bad for explicit model checking)
- radius in counting translation may increase exponentially: (in symbolic model checking) $r^{\rm counting} \geq |S|$

• radius in state recording translation (optimizations possible):

 $r^{\text{recording}} \leq max\{r+2d+2, r_{\neg p}+d_{\neg p}+1\} = O(max\{d, d_{\neg p}\})$

Conclusion

- · completeness threshold is different for liveness and safety
 - predicated diameter instead of ordinary diameter as bound
- finite states: efficient translation of liveness to safety
 - through state-recording translation
 - works in practice for symbolic model checking (e.g. with interpolation)
- · infinite states: state recording workds for some examples
 - combination of state recording with fairness?
 - can we always (efficiently) translate liveness to safety?