

An efficient way to learn deep
generative models

Geoffrey Hinton
Canadian Institute for Advanced Research

&
Department of Computer Science

University of Toronto

Joint work with: Ruslan Salakhutdinov,
Yee-Whye Teh, Simon Osindero, Ilya Sutskever,

Graham Taylor, Andriy Mnih

 Belief Nets

• A belief net is a directed acyclic
graph composed of stochastic
variables.

• We get to observe some of the
variables and we would like to
solve two problems:

• The inference problem: Infer
the states of the unobserved
variables.

• The learning problem: Adjust
the interactions between
variables to make the network
more likely to generate the
observed data.

stochastic
hidden
 cause

visible
effect

We will use nets
composed of stochastic
binary variables with
weighted connections

Stochastic binary neurons

• These have a state of 1
or 0.

• The probability of
turning on is determined
by the weighted input
from other neurons
(plus a bias)

0
0

1

p si=1 =
1

1exp −bi−∑
j
s jw ji 

bi∑
j

s jw ji

p si=1

 Learning Belief Nets

• It is easy to generate an
unbiased example at the
leaf nodes, so we can see
what kinds of data the
network believes in.

• It is hard to infer the
posterior distribution over
all possible configurations
of hidden causes.

• It is hard to even get a
sample from the posterior.

• So how can we learn deep
belief nets that have
millions of parameters?

stochastic
hidden
 cause

visible
effect

Explaining away (Judea Pearl)

• Even if two hidden causes are independent, they can
become dependent when we observe an effect that they can
both influence.
– If we learn that there was an earthquake it reduces the

probability that the house jumped because of a truck.

truck hits house earthquake

house jumps

20 20

-20

-10 -10

Why it is usually very hard to learn
sigmoid belief nets one layer at a time

• To learn W, we need the posterior
distribution in the first hidden layer.

• Problem 1: The posterior is typically
intractable because of “explaining
away”.

• Problem 2: The posterior depends
on the prior as well as the likelihood.
– So to learn W, we need to know

the weights in higher layers, even
if we are only approximating the
posterior. All the weights interact.

• Problem 3: We need to integrate
over all possible configurations of
the higher variables to get the prior
for first hidden layer. Yuk!

 data

hidden variables

hidden variables

hidden variables

 likelihood W

prior

Two types of generative neural network

• If we connect binary stochastic neurons in a
directed acyclic graph we get a Sigmoid Belief
Net (Radford Neal 1992).

• If we connect binary stochastic neurons using
symmetric connections we get a Boltzmann
Machine (Hinton & Sejnowski, 1983).
– If we restrict the connectivity in a special way,

it is easy to learn a Boltzmann machine.

Restricted Boltzmann Machines

• We restrict the connectivity to make
learning easier.
– Only one layer of hidden units.

• We will deal with more layers later

– No connections between hidden units.
• In an RBM, the hidden units are

conditionally independent given the
visible states.

– So we can quickly get an unbiased
sample from the posterior distribution
when given a data-vector.

– This is a big advantage over directed
belief nets

hidden

i

j

visible

Weights  Energies  Probabilities

• Each possible joint configuration of the visible
and hidden units has an energy
– The energy is determined by the weights and

biases (as in a Hopfield net).
• The energy of a joint configuration of the visible

and hidden units determines its probability:

• The probability of a configuration over the visible
units is found by summing the probabilities of all
the joint configurations that contain it.

p v ,h ∝e−E v ,h 

The Energy of a joint configuration
(ignoring terms to do with biases)

E v,h = − ∑
i , j

vih jw ij

weight between
units i and j

Energy with configuration
v on the visible units and
h on the hidden units

binary state of
visible unit i

binary state of
hidden unit j

∂E v ,h 
∂w ij

= − v ih j

A picture of the maximum likelihood learning
algorithm for an RBM

¿v ih j
0
¿

¿

¿v ih j
∞¿

¿

i

j

i

j

i

j

i

j

t = 0 t = 1 t = 2 t = infinity

∂ logpv 
∂w ij

= v ih j
0−¿v ih j

∞¿

¿

Start with a training vector on the visible units.

Then alternate between updating all the hidden units in
parallel and updating all the visible units in parallel.

a fantasy

A quick way to learn an RBM

¿v ih j
0
¿

¿

¿v ih j
1
¿

¿

i

j

i

j

t = 0 t = 1

Δw ij = ε  v ih j
0
−¿v ih j

1


Start with a training vector on the
visible units.

Update all the hidden units in
parallel

Update the all the visible units in
parallel to get a “reconstruction”.

Update the hidden units again.

This is not following the gradient of the log likelihood. But it works well.

It is approximately following the gradient of another objective function.

reconstructiondata

How to learn a set of features that are good for
reconstructing images of the digit 2

50 binary
feature
neurons

16 x 16
pixel

image

50 binary
feature
neurons

16 x 16
pixel

image

Increment weights
between an active
pixel and an active
feature

Decrement weights
between an active
pixel and an active
feature

 data
(reality)

 reconstruction
(better than reality)

The weights of the 50 feature detectors

We start with small random weights to break symmetry

The final 50 x 256 weights

Each neuron grabs a different feature.

Reconstruction
from activated
binary featuresData

Reconstruction
from activated
binary featuresData

How well can we reconstruct the digit images
from the binary feature activations?

New test images from
the digit class that the
model was trained on

Images from an
unfamiliar digit class
(the network tries to see
every image as a 2)

Training a deep network

• First train a layer of features that receive input directly
from the pixels.

• Then treat the activations of the trained features as if
they were pixels and learn features of features in a
second hidden layer.

• It can be proved that each time we add another layer of
features we get a better model of the set of training
images.
– The proof is complicated. It uses variational free

energy, a method that physicists use for analyzing
non-equilibrium systems.

– But it is based on a neat equivalence (described later)

The generative model after learning 3 layers

• To generate data:

1. Get an equilibrium sample
from the top-level RBM by
performing alternating Gibbs
sampling.

2. Perform a top-down pass to
get states for all the other
layers.

 So the lower level bottom-up
connections are not part of
the generative model. They
are just used for inference.

 h2

 data

 h1

 h3

W2

W3

W1

Why does greedy learning work?

pv =∑
h

ph  p v∣h

The weights, W, in the bottom level RBM define
p(v|h) and they also, indirectly, define p(h).

So we can express the RBM model as

If we leave p(v|h) alone and build a better model of
p(h), we will improve p(v).

We need a better model of the aggregated posterior
distribution over hidden vectors produced by
applying W to the data.

What does each RBM achieve?

• It divides the task of modeling the data into
two tasks and leaves the second task to the
next RBM
– Task 1: Learn generative weights that can

convert the posterior distribution over the
hidden units into the data.

– Task 2: Learn to model the posterior
distribution over the hidden units that is
produced by applying the transpose of the
generative weights to the data

• Task 2 is guaranteed to be easier (for the next
RBM) than modeling the original data.

 h

 v

W

A neural model of digit recognition

2000 top-level neurons

500 neurons

500 neurons

28 x 28
pixel
image

10 label

neurons

The model learns to generate
combinations of labels and images.

To perform recognition we start with a
neutral state of the label units and do
an up-pass from the image followed
by a few iterations of the top-level
associative memory.

The top two layers form an
associative memory whose
energy landscape models the low
dimensional manifolds of the
digits.

The energy valleys have names

Fine-tuning with a contrastive divergence
version of the wake-sleep algorithm

• After learning many layers of features, we can fine-tune
the features to improve generation.

• 1. Do a stochastic bottom-up pass
– Adjust the top-down weights to be good at

reconstructing the feature activities in the layer below.
• 2. Do a few iterations of sampling in the top level RBM

– Use CD learning to improve the RBM

• 3. Do a stochastic top-down pass

– Adjust the bottom-up weights to be good at
reconstructing the feature activities in the layer above.

Show the movie of the network
generating digits

 (available at www.cs.toronto/~hinton)

Samples generated by letting the associative
memory run with one label clamped. There are
1000 iterations of alternating Gibbs sampling

between samples.

What goes on in its mind if we show it an
image composed of random pixels and ask

it to fantasize from there?

mind brain

mind brain

mind brain

2000 top-level neurons

500 neurons

500 neurons

28 x 28
pixel

image

10 label

neurons

Examples of correctly recognized handwritten digits
that the neural network had never seen before

Its very
good

How well does it discriminate on MNIST test set with
no extra information about geometric distortions?

• Generative model based on RBM’s 1.25%
• Support Vector Machine (Decoste et. al.) 1.4%
• Backprop with 1000 hiddens (Platt) ~1.6%
• Backprop with 500 -->300 hiddens ~1.6%
• K-Nearest Neighbor ~ 3.3%

• Its better than backprop and much more neurally plausible
because the neurons only need to send one kind of signal,
and the teacher can be another sensory input.

The features learned in the first hidden layer

Show the faces demo
 (available at www.cs.toronto/~hinton)

Another view of why layer-by-layer
learning works

• There is an unexpected equivalence between
RBM’s and directed networks with many layers
that all use the same weights.
– This equivalence also gives insight into why

contrastive divergence learning works.

An infinite sigmoid belief net
that is equivalent to an RBM

• The distribution generated by this
infinite directed net with replicated
weights is the equilibrium distribution
for a compatible pair of conditional
distributions: p(v|h) and p(h|v) that
are both defined by W
– A top-down pass of the directed

net is exactly equivalent to letting
a Restricted Boltzmann Machine
settle to equilibrium.

– So this infinite directed net
defines the same distribution as
an RBM.

W
 v1

 h1

 v0

 h0

 v2

 h2

WT

WT

WT

W

W

etc.

• The variables in h0 are conditionally
independent given v0.
– Inference is trivial. We just

multiply v0 by W transpose.
– The model above h0 implements

a complementary prior.
– Multiplying v0 by W transpose

gives the product of the likelihood
term and the prior term.

• Inference in the directed net is
exactly equivalent to letting a
Restricted Boltzmann Machine settle
to equilibrium starting at the data.

Inference in a directed net
with replicated weights

W
 v1

 h1

 v0

 h0

 v2

 h2

WT

WT

WT

W

W

etc.

+

+

+

+

• First learn with all the weights tied
– This is exactly equivalent to

learning an RBM
– Contrastive divergence learning

is equivalent to ignoring the small
derivatives contributed by the tied
weights between deeper layers.

Learning a deep directed
network

W

W
 v1

 h1

 v0

 h0

 v2

 h2

WT

WT

WT

W

etc.

 v0

 h0

W

• Then freeze the first layer of weights
in both directions and learn the
remaining weights (still tied
together).
– This is equivalent to learning

another RBM, using the
aggregated posterior distribution
of h0 as the data.

W
 v1

 h1

 v0

 h0

 v2

 h2

WT

WT

WT

W

etc.

W frozen

 v1

 h0

W

W frozen
T

What happens when the weights in higher layers
become different from the weights in the first layer?

• The higher layers no longer implement a complementary
prior.
– So performing inference using the frozen weights in

the first layer is no longer correct.
– Using this incorrect inference procedure gives a

variational lower bound on the log probability of the
data.

• We lose by the slackness of the bound.

• The higher layers learn a prior that is closer to the
aggregated posterior distribution of the first hidden layer.
– This improves the network’s model of the data.

• Hinton, Osindero and Teh (2006) prove that this
improvement is always bigger than the loss.

Using backpropagation for fine-tuning

• Greedily learning one layer at a time scales well to really
big networks, especially if we have locality in each layer.

• We do not start backpropagation until we already have
sensible weights that already do well at the task.
– So the initial gradients are sensible and backprop only

needs to perform a local search.

• Most of the information in the final weights comes from
modeling the distribution of input vectors.
– The precious information in the labels is only used for

the final fine-tuning. It slightly modifies the features. It
does not need to discover features.

First, model the distribution of digit images

2000 units

500 units

500 units

28 x 28
pixel

image

The network learns a density model for
unlabeled digit images. When we generate
from the model we often get things that look
like real digits of all classes.

But do the hidden features really help with
digit discrimination?

Add 10 softmaxed units to the top and do
backpropagation.

The top two layers form a restricted
Boltzmann machine whose free energy
landscape should model the low
dimensional manifolds of the digits.

Results on permutation-invariant MNIST task

• Very carefully trained backprop net with 1.6%
one or two hidden layers (Platt; Hinton)

• SVM (Decoste & Schoelkopf) 1.4%

• Generative model of joint density of 1.25%
images and labels (+ generative fine-tuning)

• Generative model of unlabelled digits 1.15%
followed by gentle backpropagation

Time series models

• Inference is difficult in directed models of time
series if they are non-linear and they use
distributed representations.

• So people tend to avoid distributed
representations and use exponentially weaker
methods (HMM’s) that are based on the idea
that each visible frame of data has a single
hidden cause

– During generation from an HMM, each frame
comes from one hidden state of the HMM

A conditional RBM model (Sutskever, Taylor)

• Given the current and previous data, the
hidden units at time t are conditionally
independent.

– So online inference is very easy.

– Generation from a learned model
requires alternating Gibbs sampling
but typically converges rapidly.

• Learning can be done by using
contrastive divergence.

– Reconstruct the data at time t from
the inferred states of the hidden units.

– The temporal connections between
hiddens can be learned as if they
were additional biases

t-2 t-1 t

t

Δw ij = ε si  s j data −s j recon 

j

i

w ij

A hierarchical version

• Hierarchical versions can be
trained one layer at a time.
– This is a major advantage

of CRBM’s.
• The hierarchical versions are

directed at all but the top two
layers.

• They work well for generation
and for filtering out nasty
noise from image sequences.

An application to modeling
motion capture data

• Human motion can be captured by placing
reflective markers on the joints and then using
lots of infrared cameras to track the 3-D
positions of the markers.

• The 3-D positions of the markers can be
converted into a frame of data containing:

– all the joint angles
– 3 variables for the translation of the pelvis
– 3 variables for the orientation of the pelvis

Modeling multiple types of motion

• We can easily learn to model walking and
running in a single model.

• This means we can share a lot of knowledge.

• It also makes it much easier to learn nice
transitions between walking and running.

Show Graham Taylor’s movies

(available via www.cs.toronto/~hinton)

Summary so far

• Restricted Boltzmann Machines provide a simple way to
learn a layer of features without any supervision.

• Many layers of representation can be learned by treating
the hidden states of one RBM as the visible data for
training the next RBM (a composition of experts).

• This creates good generative models that can then be
fine-tuned.
– Backpropagation can fine-tune discrimination.
– Contrastive wake-sleep can fine-tune generation.

• The same ideas can be applied to high-dimensional
sequential data.

Deep Autoencoders
(Ruslan Salakhutdinov)

• They always looked like a really
nice way to do non-linear
dimensionality reduction:
– But it is very difficult to

optimize deep autoencoders
using backpropagation.

• We now have a much better way
to optimize them:
– First train a stack of 4 RBM’s
– Then “unroll” them.

– Then fine-tune with backprop.

 1000 neurons

500 neurons

500 neurons

250 neurons

250 neurons

30

 1000 neurons

28x28

28x28

W1
T

W2
T

W3
T

W4
T

W4

W3

W2

W1

A comparison of methods for compressing
digit images to 30 real numbers.

real
data

30-D
deep auto

30-D logistic
PCA

30-D
PCA

Do the 30-D codes found by the
autoencoder preserve the class

structure of the data?

• Take the 30-D activity patterns in the code layer
and display them in 2-D using a new form of
non-linear multi-dimensional scaling (UNI-SNE)

• Will the learning find the natural classes?

entirely
unsupervised
except for the
colors

How to compress document count vectors

• We train the
autoencoder to
reproduce its input
vector as its output

• This forces it to
compress as much
information as possible
into the 2 real numbers
in the central bottleneck.

• These 2 numbers are
then a good way to
visualize documents.

 2000 reconstructed counts

500 neurons

 2000 word counts

500 neurons

250 neurons

250 neurons

 2

Input vector uses
Poisson units

output
vector

First compress all documents to 2 numbers using a type of PCA
 Then use different colors for different
document categories

 First compress all documents to 2 numbers.
 Then use different colors for different document categories

The fastest possible way to find similar
documents

• Given a query document, how long does it take
to find a shortlist of 10,000 similar documents in
a set of one billion documents?
– Would you be happy with one millesecond?

Finding binary codes for documents

• Train an auto-encoder using 30
logistic units for the code layer.

• During the fine-tuning stage,
add noise to the inputs to the
code units.
– The “noise” vector for each

training case is fixed. So we
still get a deterministic
gradient.

– The noise forces their
activities to become bimodal
in order to resist the effects
of the noise.

– Then we simply round the
activities of the 30 code units
to 1 or 0.

 2000 reconstructed counts

500 neurons

 2000 word counts

500 neurons

250 neurons

250 neurons

30
 noise

Making address space semantic

• At each 30-bit address, put a pointer to all the
documents that have that address.

• Given the 30-bit code of a query document,
we can perform bit-operations to find all similar
binary codes.
– Then we can just look at those addresses to

get the similar documents.
– The “search” time is independent of the size

of the document set and linear in the size of
the shortlist.

• Using an autoencoder we can design a hash-
function that finds approximate matches

A hash-function for finding approximate matches

hash
function

How good is a shortlist found this way?

• We have only implemented it for a million
documents with 20-bit codes --- but what could
possibly go wrong?
– A 20-D hypercube allows us to capture enough

of the similarity structure of our document set.
• The shortlist found using binary codes actually

improves the precision-recall curves of TF-IDF.
– Locality sensitive hashing (the fastest other

method) is 50 times slower and always
performs worse than TF-IDF alone.

THE END

• After learning the first layer of weights:

• If we freeze the generative weights that define the
likelihood term and the recognition weights that define
the distribution over hidden configurations, we get:

• Maximizing the RHS is equivalent to maximizing the log
prob of “data” that occurs with probability

Why the hidden configurations should be treated
as data when learning the next layer of weights

logpv ¿−¿energy v   entropy h1∣∣v 
1=¿α 

1=¿α logp v∣h¿
logph¿entropy

¿

p h1=¿α∣v  ¿
¿

¿∑
α

¿

¿

¿

1=¿α 

logph¿
¿

const ant
ph1=¿α∣v  ¿

¿∑
α

¿

logpv ¿
¿

ph1=¿α∣v 

¿α

If we start the second level RBM at the learned weights of the first
level RBM we cannot lose.

Using energies to define probabilities

• The probability of a joint
configuration over both visible
and hidden units depends on
the energy of that joint
configuration compared with
the energy of all other joint
configurations.

• The probability of a
configuration of the visible
units is the sum of the
probabilities of all the joint
configurations that contain it.

pv ,h=
e−E v ,h 

∑
u ,g

e−E u ,g 

pv =
∑
h
e−E v ,h 

∑
u,g

e−E u,g 

partition
function

An RBM with real-valued visible units

• In a mean-field logistic unit, the total
input provides a linear energy-
gradient and the negative entropy
provides a containment function with
fixed curvature. So it is impossible
for the value 0.7 to have much lower
free energy than both 0.8 and 0.6.
This is no good for modeling real-
valued data.

• Using Gaussian visible units we can
get much sharper predictions and
alternating Gibbs sampling is still
easy, though learning is slower.

E v ,h  = ∑
i ε vis

v i−b i 
2

2σi
2

− ∑
j ε hid

b jh j − ∑
i , j

v i

σ i

h j w ij

0 output-> 1

F


energy

- entropy

The non-linearity used for reconstructing
bags of words

• Divide the counts in a bag of words vector by N, where N
is the total number of non-stop words in the document.
– The resulting probability vector gives the probability of

getting a particular word if we pick a non-stop word at
random from the document.

• At the output of the autoencoder, we use a softmax.
– The probability vector defines the desired outputs of

the softmax.
• When we train the first RBM in the stack we use the

same trick.
– We treat the word counts as probabilities, but we

make the visible to hidden weights N times bigger
than the hidden to visible because we have N
observations from the probability distribution.

Performance of the autoencoder at
document retrieval

• Train on bags of 2000 words for 400,000 training cases
of business documents.
– First train a stack of RBM’s. Then fine-tune with

backprop.
• Test on a separate 400,000 documents.

– Pick one test document as a query. Rank order all the
other test documents by using the cosine of the angle
between codes.

– Repeat this using each of the 400,000 test documents
as the query (requires 0.16 trillion comparisons).

• Plot the number of retrieved documents against the
proportion that are in the same hand-labeled class as the
query document. Compare with LSA (a version of PCA).

Proportion of retrieved documents in same class as query

Number of documents retrieved

