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 Belief Nets

• A belief net is a directed acyclic 
graph composed of stochastic 
variables.

• We get to observe some of the 
variables and we would like to 
solve two problems:

• The inference problem: Infer 
the states of the unobserved 
variables.

• The learning problem: Adjust 
the interactions between 
variables to make the network 
more likely to generate the 
observed data.
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We will use nets 
composed of stochastic 
binary variables with 
weighted connections



  

Stochastic binary neurons

• These have a state of 1 
or 0.

• The probability of 
turning on is determined 
by the weighted input 
from other neurons     
(plus a bias)
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 Learning Belief Nets

• It is easy to generate an 
unbiased example at the 
leaf nodes, so we can see 
what kinds of data the 
network believes in. 

• It is hard to infer the 
posterior distribution over 
all  possible configurations 
of hidden causes.

• It is hard to even get  a 
sample from the posterior. 

• So how can we learn deep 
belief nets that have 
millions of parameters?
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Explaining away (Judea Pearl)

• Even if two hidden causes are independent, they can 
become dependent when we observe an effect that they can 
both influence. 
– If we learn that there was an earthquake it reduces the 

probability that the house jumped because of a truck.

truck hits house earthquake

house jumps
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Why it is usually very hard to learn     
sigmoid belief nets one layer at a time

• To learn W, we need the posterior 
distribution in the first hidden layer.

• Problem 1: The posterior is typically 
intractable because of “explaining 
away”.

• Problem 2: The posterior depends 
on the prior as well as the likelihood. 
– So to learn W, we need to know 

the weights in higher layers, even 
if we are only approximating the 
posterior. All the weights interact.

• Problem 3: We need to integrate 
over all possible configurations of 
the higher variables to get the prior 
for first hidden layer. Yuk!

          data

hidden variables

hidden variables

hidden variables
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Two types of generative neural network

• If we connect binary stochastic neurons in a 
directed acyclic graph we get a Sigmoid Belief 
Net (Radford Neal 1992).

• If we connect binary stochastic neurons using 
symmetric connections we get a Boltzmann 
Machine (Hinton & Sejnowski, 1983).
– If we restrict the connectivity in a special way, 

it is easy to learn a Boltzmann machine.



  

Restricted Boltzmann Machines

• We restrict the connectivity to make 
learning easier.
– Only one layer of hidden units.

• We will deal with more layers later

– No connections between hidden units.
• In an RBM, the hidden units are 

conditionally independent given the 
visible states.  

– So we can quickly get an unbiased 
sample from the posterior distribution 
when given a data-vector.

– This is a big advantage over directed 
belief nets
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Weights  Energies  Probabilities

• Each possible joint configuration of the visible 
and hidden units has an energy
–  The energy is determined by the weights and 

biases (as in a Hopfield net).
• The energy of a joint configuration of the visible 

and hidden units determines its probability:

• The probability of a configuration over the visible 
units is found by summing the probabilities of all 
the joint configurations that contain it. 

p v ,h ∝e−E v ,h 



  

The Energy of a joint configuration
(ignoring terms to do with biases)

E v,h = − ∑
i , j

vih jw ij

weight between 
units i and j

Energy with configuration 
v on the visible units and 
h on the hidden units

binary state of 
visible unit i

binary state of 
hidden unit j

∂E v ,h 
∂w ij

= − v ih j



  

A picture of the maximum likelihood learning 
algorithm for an RBM
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Start with a training vector on the visible units.

Then alternate between updating all the hidden units in 
parallel and updating all the visible units in parallel.

a fantasy



  

A quick way to learn an RBM
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Start with a training vector on the 
visible units.

Update all the hidden units in 
parallel

Update the all the visible units in 
parallel to get a “reconstruction”.

Update the hidden units again. 

This is not following the gradient of the log likelihood. But it works well. 

It is approximately following the gradient of another objective function.

reconstructiondata



  

How to learn a set of features that are good for 
reconstructing images of the digit 2 

50 binary 
feature 
neurons 

16 x 16 
pixel     

image 

50 binary 
feature 
neurons 

16 x 16 
pixel     

image 

Increment weights 
between an active 
pixel and an active 
feature

Decrement weights 
between an active 
pixel and an active 
feature

  data 
(reality)

   reconstruction    
(better than reality)



  

The weights of the 50 feature detectors

We start with small random weights to break symmetry



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  

The final 50 x 256 weights

Each neuron grabs a different feature. 



  

Reconstruction 
from activated 
binary featuresData

Reconstruction 
from activated 
binary featuresData

How well can we reconstruct the digit images 
from the binary feature activations?

New test images from 
the digit class that the 
model was trained on

Images from an 
unfamiliar digit class 
(the network tries to see 
every image as a 2)



  

Training a deep network

• First train a layer of features that receive input directly 
from the pixels.

• Then treat the activations of the trained features as if 
they were pixels and learn features of features in a 
second hidden layer.

• It can be proved that each time we add another layer of 
features we get a better model of the set of training 
images.
– The proof is complicated. It uses variational free 

energy, a method that physicists use for analyzing 
non-equilibrium systems.

– But it is based on a neat equivalence (described later)



  

The generative model after learning 3 layers

• To generate data: 

1. Get an equilibrium sample 
from the top-level RBM by 
performing alternating Gibbs 
sampling.

2. Perform a top-down pass to 
get states for all the other 
layers.

     So the lower level bottom-up 
connections  are not part of 
the generative model. They 
are just used for inference.

         h2

      data

          h1

        h3
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W3
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Why does greedy learning work?

pv =∑
h

ph  p v∣h

The weights, W,  in the bottom level RBM define 
p(v|h) and they also, indirectly, define p(h).

So we can express the RBM model as

If we leave p(v|h) alone and build a better model of 
p(h), we will improve p(v). 

We need a better model of the aggregated posterior 
distribution over hidden vectors produced by 
applying W to the data.



  

What does each RBM achieve?

• It divides the task of modeling the data into 
two tasks and leaves the second task to the 
next RBM
– Task 1: Learn generative weights that can 

convert the posterior distribution over the 
hidden units into the data.

– Task 2: Learn to model the posterior 
distribution over the hidden units that is 
produced by applying the transpose of the 
generative weights to the data

• Task 2 is guaranteed to be easier (for the next 
RBM) than modeling the original data.

       h

    v

W



  

A neural model of digit recognition

2000 top-level neurons

500 neurons

500 neurons 

28 x 28 
pixel     
image 

10 label 

neurons 

The model learns to generate 
combinations of labels and images. 

To perform recognition we start with a 
neutral state of the label units and do 
an up-pass from the image followed 
by a few iterations of the top-level 
associative memory.

The top two layers form an 
associative memory  whose  
energy landscape models the low 
dimensional manifolds of the 
digits.

The energy valleys have names



  

Fine-tuning with a contrastive divergence 
version of the wake-sleep algorithm

• After learning many layers of features, we can fine-tune 
the features to improve generation.

• 1. Do a stochastic bottom-up pass
– Adjust the top-down weights to be good at 

reconstructing the feature activities in the layer below.
• 2. Do a few iterations of sampling in the top level RBM

– Use CD learning to improve the RBM

• 3. Do a stochastic top-down pass

– Adjust the bottom-up weights to be good at 
reconstructing the feature activities in the layer above.



  

Show the movie of the network 
generating digits

 (available at www.cs.toronto/~hinton)



  

Samples generated by letting the associative 
memory run with one label clamped. There are 
1000 iterations of alternating Gibbs sampling 

between samples.



  

What goes on in its mind if we show it an 
image composed of random pixels and ask 

it to fantasize from there?

mind             brain

mind             brain

mind             brain

2000 top-level neurons

500 neurons 

500 neurons 

28 x 28 
pixel     

image 

10 label 

neurons 



  

Examples of correctly recognized handwritten digits
that the neural network had never seen before           

Its very 
good



  

How well does it discriminate on MNIST test set with 
no extra information about geometric distortions?

• Generative model based on RBM’s                   1.25%
• Support Vector Machine  (Decoste et. al.)    1.4%   
• Backprop with 1000 hiddens (Platt)                 ~1.6%
• Backprop with 500 -->300 hiddens                  ~1.6%
• K-Nearest Neighbor                                        ~ 3.3%

• Its better than backprop and much more neurally plausible 
because the neurons only need to send one kind of signal, 
and the teacher can be another sensory input.



  

The features learned in the first hidden layer



  

Show the faces demo
 (available at www.cs.toronto/~hinton)



  

Another view of why layer-by-layer    
learning works

• There is an unexpected equivalence between 
RBM’s and directed networks with many layers 
that all use the same weights.
– This equivalence also gives insight into why 

contrastive divergence learning works.



  

An infinite sigmoid belief net 
that is equivalent to an RBM

• The distribution generated by this 
infinite directed net with replicated 
weights is the equilibrium distribution 
for a compatible pair of conditional 
distributions: p(v|h) and p(h|v) that 
are both defined by W
– A top-down pass of the directed 

net is exactly equivalent to letting 
a Restricted Boltzmann Machine 
settle to equilibrium.

– So this infinite directed net  
defines the same distribution as 
an RBM.
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• The variables in h0 are conditionally 
independent given v0.
– Inference is trivial. We just 

multiply v0 by W transpose.
– The model above h0 implements 

a complementary prior.
– Multiplying v0 by W transpose 

gives the product of the likelihood 
term and the prior term.

• Inference in the directed net is 
exactly equivalent to letting a 
Restricted Boltzmann Machine settle 
to equilibrium starting at the data.

Inference in a directed net 
with replicated weights
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            h0

    v2

         h2

WT

WT

WT

W

W

etc.

+

+

+

+



  

• First learn with all the weights tied
– This is exactly equivalent to 

learning an RBM
– Contrastive divergence learning 

is equivalent to ignoring the small 
derivatives contributed by the tied 
weights between deeper layers.

Learning a deep directed 
network

W
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• Then freeze the first layer of weights 
in both directions and learn the 
remaining weights (still tied 
together).
– This is equivalent to learning 

another RBM, using the 
aggregated posterior distribution 
of h0 as the data.
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What happens when the weights in higher layers 
become different from the weights in the first layer?

• The higher layers no longer implement a complementary 
prior.
– So performing inference using the frozen weights in 

the first layer is no longer correct. 
– Using this incorrect inference procedure gives a 

variational  lower bound on the log probability of the 
data. 

• We lose by the slackness of the bound.

• The higher layers learn a prior that is closer to the 
aggregated posterior distribution of the first hidden layer.
– This improves the network’s model of the data.

• Hinton, Osindero and Teh (2006) prove that this 
improvement is always bigger than the loss.



  

Using backpropagation for fine-tuning

• Greedily learning one layer at a time scales well to really 
big networks, especially if we have locality in each layer.

• We do not start backpropagation until we already have 
sensible weights that already do well at the task.
– So the initial gradients are sensible and backprop only 

needs to perform a local search.

• Most of the information in the final weights comes from 
modeling the distribution of input vectors. 
– The precious information in the labels is only used for 

the final fine-tuning. It slightly modifies the features. It 
does not need to discover features.



  

First, model the distribution of digit images

2000 units

500 units 

500 units 

28 x 28 
pixel     

image 

The network learns a density model for 
unlabeled digit images. When we generate 
from the model we often get things that look 
like real digits of all classes. 

But do the hidden features really help with 
digit discrimination? 

Add 10 softmaxed units to the top and do 
backpropagation.

The top two layers form a restricted 
Boltzmann machine whose free energy 
landscape should model the low 
dimensional manifolds of the digits.



  

Results on permutation-invariant MNIST task

• Very carefully trained backprop net with      1.6% 
one or two hidden layers (Platt; Hinton)

• SVM (Decoste & Schoelkopf)                       1.4%

• Generative model of joint density of             1.25% 
images and labels (+ generative fine-tuning)

• Generative model of unlabelled digits          1.15% 
followed by gentle backpropagation



  

Time series models

• Inference is difficult in directed models of time 
series if they are non-linear and they use 
distributed representations.

• So people tend to avoid distributed 
representations and use exponentially weaker 
methods (HMM’s)  that are based on the idea 
that each visible frame of data has a single 
hidden cause 

– During generation from an HMM, each frame 
comes from one hidden state of the HMM



  

A conditional RBM model (Sutskever, Taylor)

• Given the current and previous data, the 
hidden units at time t are conditionally 
independent.

– So online inference is very easy.

– Generation from a learned model 
requires alternating Gibbs sampling 
but typically converges rapidly.

• Learning can be done by using 
contrastive divergence.

– Reconstruct the data at time t from 
the inferred states of the hidden units.

– The temporal connections between 
hiddens can be learned as if they 
were additional biases

t-2       t-1        t

t

Δw ij = ε si  s j data −s j recon 

j

i

w ij



  

A hierarchical version

• Hierarchical versions can be 
trained one layer at a time.
– This is a major advantage 

of CRBM’s.
• The hierarchical versions are 

directed at all but the top two 
layers.

• They work well for generation 
and for filtering out nasty 
noise from image sequences.



  

An application to modeling 
motion capture data

• Human motion can be captured by placing 
reflective markers on the joints and then using 
lots of infrared cameras to track the 3-D 
positions of the markers.

• The 3-D positions of the markers can be 
converted into a frame of data containing:

–  all the joint angles
– 3 variables for the translation of the pelvis
– 3 variables for the orientation of the pelvis



  

Modeling multiple types of motion

• We can easily learn to model walking and 
running in a single model.

• This means we can share a lot of knowledge.

• It also makes it much easier to learn nice 
transitions between walking and running.



  

Show Graham Taylor’s movies

(available via www.cs.toronto/~hinton)



  

Summary so far

• Restricted Boltzmann Machines provide a simple way to 
learn a layer of features without any supervision.

• Many layers of representation can be learned by treating 
the hidden states of one RBM as the visible data for 
training the next RBM (a composition of experts).

• This creates good generative models that can then be 
fine-tuned.
– Backpropagation can fine-tune discrimination. 
– Contrastive wake-sleep can fine-tune generation.

• The same ideas can be applied to high-dimensional 
sequential data. 



  

Deep Autoencoders
(Ruslan Salakhutdinov)

• They always looked like a really 
nice way to do non-linear 
dimensionality reduction:
– But it is very difficult to 

optimize deep autoencoders 
using backpropagation.

• We now have a much better way 
to optimize them:
– First train a stack of 4 RBM’s
– Then “unroll” them.  

– Then fine-tune with backprop.

      1000  neurons

500 neurons

500 neurons 

250 neurons 

250 neurons 

30  

      1000  neurons

28x28

28x28

W1
T

W2
T

W3
T

W4
T

W4

W3

W2

W1



  

A comparison of methods for compressing 
digit images to 30 real numbers.

real              
data

30-D       
deep auto

30-D logistic 
PCA

30-D         
PCA



  

Do the 30-D codes found by the 
autoencoder preserve the class 

structure of the data?

• Take the 30-D activity patterns in the code layer 
and display them in 2-D using a new form of 
non-linear multi-dimensional scaling (UNI-SNE)

• Will the learning find the natural classes?



  

entirely 
unsupervised 
except for the 
colors



  

How to compress document count vectors 

• We train the 
autoencoder to 
reproduce its input 
vector as its output

• This forces it to 
compress as much 
information as possible 
into the 2 real numbers 
in the central bottleneck.

• These 2 numbers are 
then a good way to 
visualize documents.

 2000  reconstructed counts

500 neurons

     2000  word counts

500 neurons 

250 neurons 

250 neurons 

 2  

Input vector uses 
Poisson units

output 
vector



  

First compress all documents to 2 numbers using a type of PCA  
                             Then use different colors for different 
document categories



  

              First compress all documents to 2 numbers.                   
      Then use different colors for different document categories



  

The fastest possible way to find similar 
documents 

• Given a query document, how long does it take 
to find a shortlist of 10,000 similar documents in 
a set of one billion documents?
– Would you be happy with one millesecond?



  

Finding binary codes for documents

• Train an auto-encoder using 30 
logistic units for the code layer.

• During the fine-tuning stage, 
add noise to the inputs to the 
code units.
– The “noise” vector for each 

training case is fixed. So we 
still get a deterministic 
gradient. 

– The noise forces their 
activities  to become bimodal 
in order to resist the effects 
of the noise.

– Then we simply round the 
activities of the 30 code units 
to 1 or 0.

 2000  reconstructed counts

500 neurons

     2000  word counts

500 neurons 

250 neurons 

250 neurons 

30 
 noise



  

Making address space semantic

• At each 30-bit address, put a pointer to all the 
documents that have that address.

• Given the 30-bit code of a query document, 
we can perform bit-operations to find all similar 
binary codes.
– Then we can just look at those addresses to 

get the similar documents.
– The “search” time is independent of the size 

of the document set and linear in the size of 
the shortlist.

• Using an autoencoder we can design a hash-
function that finds approximate matches



  

A hash-function for finding approximate matches

hash 
function



  

How good is a shortlist found this way? 

• We have only implemented it for a million 
documents with 20-bit codes --- but what could 
possibly go wrong?
– A 20-D hypercube allows us to capture enough 

of the similarity structure of our document set. 
• The shortlist found using binary codes actually 

improves the precision-recall curves of TF-IDF.
– Locality sensitive hashing (the fastest other 

method) is 50 times slower and always 
performs worse than TF-IDF alone.



  

THE  END



  

• After learning the first layer of weights:

• If we freeze the generative weights that define the 
likelihood term and the recognition weights that define 
the distribution over hidden configurations, we get:

• Maximizing the RHS is equivalent to maximizing the log 
prob of “data”     that occurs with probability

Why the hidden configurations should be treated 
as data when learning the next layer of weights

logpv ¿−¿energy v   entropy h1∣∣v 
1=¿α 

1=¿α logp v∣h¿
logph¿entropy

¿

p h1=¿α∣v  ¿
¿

¿∑
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¿
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logph¿
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const ant
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α

¿
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¿
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If we start the second level RBM at the learned weights of the first 
level RBM we cannot lose.



  

Using energies to define probabilities

• The probability of a joint 
configuration over both visible 
and hidden units depends on 
the energy of that joint 
configuration compared with 
the energy of all other joint 
configurations.

• The probability of a 
configuration of the visible 
units is the sum of the 
probabilities of all the joint 
configurations that contain it.

pv ,h=
e−E v ,h 

∑
u ,g

e−E u ,g 

pv =
∑
h
e−E v ,h 

∑
u,g

e−E u,g 

partition 
function



  

An RBM with real-valued visible units

• In a mean-field logistic unit, the total 
input provides a linear energy-
gradient and the negative entropy 
provides a containment function with 
fixed curvature. So it is impossible 
for the value 0.7 to have much lower 
free energy than both 0.8 and 0.6. 
This is no good for modeling real-
valued data. 

• Using Gaussian visible units we can 
get much sharper predictions and 
alternating Gibbs sampling is still 
easy, though learning is slower.

E v ,h  = ∑
i ε vis

v i−b i 
2

2σi
2

− ∑
j ε hid

b jh j − ∑
i , j

v i

σ i

h j w ij

0          output->         1

F


energy

- entropy



  

The non-linearity used for reconstructing 
bags of words

• Divide the counts in a bag of words vector by N, where N 
is the total number of non-stop words in the document.
– The resulting probability vector gives the probability of 

getting a particular word if we pick a non-stop word at 
random from the document.

• At the output of the autoencoder, we use a softmax.
– The probability vector defines the desired outputs of 

the softmax. 
• When we train the first RBM in the stack we use the 

same trick. 
– We treat the word counts as probabilities, but we 

make the visible to hidden weights N times bigger 
than the hidden to visible because we have N 
observations from the probability distribution.



  

Performance of the autoencoder at 
document retrieval

• Train on bags of 2000 words for 400,000 training cases 
of business documents.
– First train a stack of RBM’s. Then fine-tune with 

backprop.
• Test on a separate 400,000 documents. 

– Pick one test document as a query. Rank order all the 
other test documents by using the cosine of the angle 
between codes. 

– Repeat this using each of the 400,000 test documents 
as the query (requires 0.16 trillion comparisons).

• Plot the number of retrieved documents against the 
proportion that are in the same hand-labeled class as the 
query document. Compare with LSA (a version of PCA).



  

Proportion of retrieved documents in same class as query

Number of documents retrieved


