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Generalization

The purpose of learning is produce a good
prediction for unseen inputs. Interpolation
Is a form of generalization.

: ﬂ"i With too many parameters, a learning ma-
g™ o) chine will learn the entire training set, but
t may perform poorly on new data.

Y. LeCun: Machine Learnina and Pattern Recoanition —



Training Error, Test Error

TE ST ERfOQ. What we arereally interested in is good
performance on unseen data. In practice,
we often partition the dataset into two sub-
sets: draining setand atest set We train
the machine on the training set, and mea-

sure its performance on the test set.

Ertol

" TRAINING ERRoR

Numnber of Frainios Samaplet

The error on the training set (the average of the loss fungi®often called the
emprical risk. The average loss on an infinite test set drawn from the samreeas
the training set is often called tlepected risk.

The number of training samples for which the training ernod gest error start
converging toward each other is called the “capacity” ofldaning machine (there
are formal definitions for this that we will study later on).
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L earning Curves
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. may not do well on the training data, but the difference
between training and test error quickly drops.
Big/Rich models: will learn the training data, but the difference betweenring and
test error can be large.
How much a model deviates from the desired mapping on avesagied themodel
bias of the family of functions. How much the output of a model earwhen different
drawings of the training set are used Is calledrti@elel variance. There is a dilemma
between bias and variance. Y LeCun: Machine L earming and Pattern Recognition —
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M odd Selection

In many situations we can construct a
sequence of models of increasing capac-
ity. The capacity of a model is related to
the size of theamily of functions repre-
sentable by the model.

degree 2

degree 3

Examples:
polynomials of degree 1, 2, 3,....
neural nets with 10, 20, 30.... units in the first layer.

linear regressors whetéV||? is less than 1, 2, 3, 4....
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Occam’s Razor

Occam’s Razardo not multiply hypotheses beyond the strict necessary.

Occam’s Razarwhen given the choice between several models that exjiain t
data equally well, choose the “simplest” one.

Occam’s Razor applied to machine learnieboose a trade off between how
well the model fits the training data and how “simple” that ralod.

Occam’s Razor In other contexts

Bonaparte to Lagrange: and what about God?
Lagrange to Bonaparte: Sre, | did not need that hypothesis.

Never ascribe to malice, that which can be explained by incompetence
(Napoleon Bonaparte)
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Optimal Over-Parameterization

oPTINA L 2
CAPARCITY 1

CAPACIEY Of THE NACHINE

The curve of training error and test error for a given traghset size, as a function of
the capacity of the machine (the richness of the class oftimmchas a minimum. The
IS the optimal size for the machine.
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Regularization: Trading-off Accuracy for Simplicity

We need a new loss function that penalizes solutions talken frich” families
of function.

Let’s pick a measure of the “complexity” of the family of fuians from which
a solutionW is drawn: H(W).

We can minimize a loss function of the form:
1 [ E o
LOW) == |) LW,y", X*) + XH(W)

1=1

whereL is the conventional loss function (e.g. squared error, etd)das a well
chosen positive constant.

The minimum of this loss function will be a trade-off betwaamimizing the
training errory_;_, L(W, 4", X*) and the “simplicity” of the family of function
from which W is drawn.

the coefficient\ controls the trade-off.
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Regularization

> LW,y X'+ XH(W)

1=1

1

LW) =3

H (W) is called aregularization term. It penalizes solutions taken from “rich”
families of function more than those taken from “leaner” fiis of functions.

How we pick this regularization term is entirely up to uBlespite many claims
to the contrary, no theory tells us how to build the regukian function.

By picking the family of function and the penalty term, we ose annductive
bias, i.e. we bias the system toward preferring certain solutawes others
(“simple” ones over “complex” ones as defined ByW).

Sometimes we do not need to add an explicit regularization beecause it is
built implicitely into the optimization algorithm (more dhis later).

Y. LeCun: Machine Learnina and Pattern Recoanition — 1



Induction Principles

Assuming our samples are drawn from a distributiéX, Y'), what we really want to
minimize with respect to our parametdr is the expected risk (or expected loss):

Lexpected (W) = / L(W,Y, X)P(X,Y)dXdY.

but we do not have accessR{ X, Y '), we only have access to a few training samples
drawn from it.

The method we will employ to replace the expected risk by lagroquantity that we
can minimize is called thenduction principle.

The simplest induction principle is call&mpirical Risk Minimization and simply
consists in minimizing the loss on the training set (tragnamror).

The alternative, which generally consists in using a raggdfion term to penalize

members of “rich” families of functions, is callestructural Risk Minimization
(SRM).
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Ridge Regression

Ridge Regression: penalizes large values of the parameters.

1 P

LOW) =5 D (4 = WX+ AW

=1
Direct solution:

P P
1 iy —1 i v
W*_[F;XX + A ;yX
Gradient descent updatedight decay):

W (1 —=ng\W +n(y' — W' XH)X!
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Examples of Regularization Terms. Lasso

L asso: penalizes all parameter values with a linear term (thisi$ein shrink small,
useless parameters to 0):

L) = —= 3" (5 — WX + A|W|

2P <
1=1
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Other Penalty Terms

What about a regularization term that simply counts the remolbfree parameters in
the machine?

It works in some cases, but not in others. For example, thetimma. sin(wax 4 b) has
only three parameters but can exactly fit as many points asame. Whis is an
example of a very high-capacity function with just a few paeters:

The problem is that we need a very high accuracy on the paeasiet go through all
the points (lots of bits).
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Minimum Description Length

A popular way of deriving regularization terms is the MinimuDescription Length
Principle.

LW) == Y LW,y X))+ H(W)

1=1

The idea is to interpret the loss function as an expressiothénumber of bits
necessary to transmit the training data.

The regularization term counts the number of bits to codéntipmthesis (e.g. the
value of the parameter vector), and the error term countadingber of bits to code the
residual error (i.e. the difference between the predictéguitand the real output.

Using efficient coding, the length of the code for a symbolgaad to the log of the
probability of that symbol.
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MDL: Learning as Compression

MDL comes from the idea that “compact” internal represaatet of a set of data are
preferable to non compact on€&his is another form of Occam’s Razaio not
multiply hypotheses beyond the strict necessary.

Example:

complete this sequence: 01010101010101010.......

now complete that one : 01100010110010001......

The second sequence looks “random”, we cannot find a compreatry” for it.
QUESTION: How do we measure randomness?

Sometimes, a simple underlying rule exists, but it is vemdHha find.
Example: 9265358979323846264338328.....

Can you guess?
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M easuring Randomness?

The Kolmogoroff/Chaitin/Solomonoff theory of complexigyes us a theoretical
framework:

The KCS complexity of a string of bitS relative to compute€’ is the length of the
shortest program that will output when run onC.

Good news. the complexity given by two different universal computdiffer at most
by a constant (the size of the program that will make one caermmulate the other).
Bad News 1. that constant can be very, very, very large. So in practiese is no
absolute measure randomness for finite strings.

Bad New 2: the KCS complexity of a string is non-computable in gengrali can’t
enumerate all the programs, because some won't halt).

Although this is a very rich and cool theoretical concept,oaa’t really use it in
practice.
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L earning Theory

A better theoretical framework for studying generalizaticegularization and
structural risk minimization is the so-called Statistitalarning Theory.
We will study that approach later in the course.
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