Nonlinear dimensionality reduction

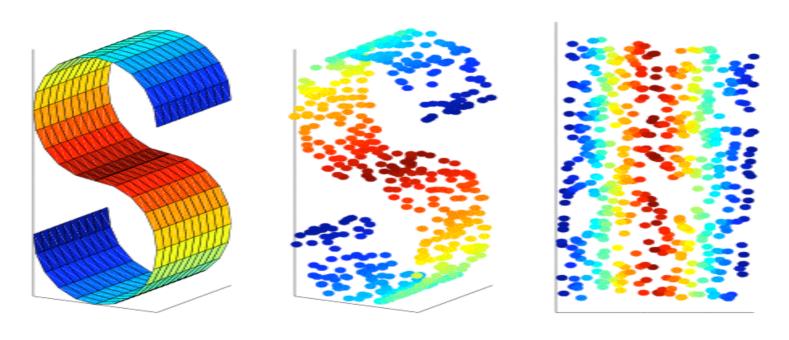
Prof. Lawrence Saul Computer and Information Science University of Pennsylvania

Outline

- Motivation
- Algorithm #1
- Algorithm #2
- Related work

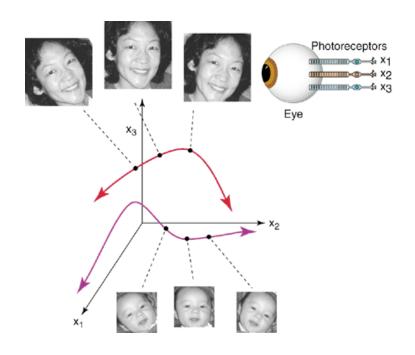
Statistics, Geometry, Computation!

Given high dimensional data sampled from a low dimensional manifold, how to compute a faithful embedding?

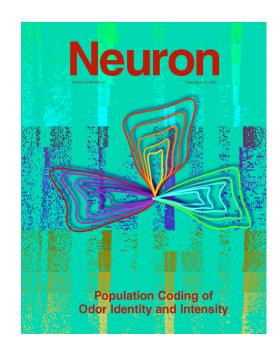


Applications

Low dimensional manifolds arise in many areas of information processing.



(Seung & Lee, 2000)



(Stopfer et al, 2003)

Unsupervised learning

Inputs (high dimensional)

$$\vec{X}_i \in \mathfrak{R}^D$$
 with $i = 1, 2, ..., N$

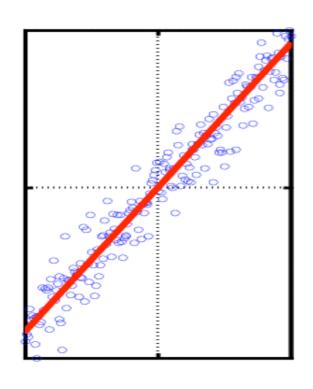
Outputs (low dimensional)

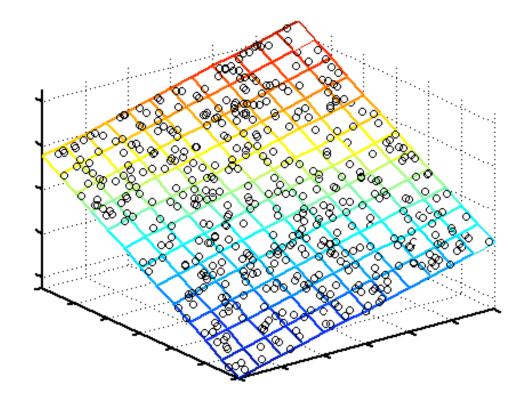
$$\vec{Y}_i \in \Re^d$$
 where $d < D$

Embedding

Nearby points remain nearby. Distant points remain distant. (Estimate *d*.)

Subspaces





$$D = 2$$
$$d = 1$$

$$D = 3$$
$$d = 2$$

Linear methods

Principal component analysis
 Project inputs into subspace of maximal variance:

$$\max(\operatorname{tr}[Y^TY])$$
 with $Y = PX$

Multidimensional scaling
 Project inputs into subspace that preserves pairwise distances:

$$\left| \vec{Y}_i - \vec{Y}_j \right|^2 \approx \left| \vec{X}_i - \vec{X}_j \right|^2$$

Matrices of PCA and MDS

Algorithm	Matrix	Size
PCA	$C = XX^T$	D x D
MDS	$G = X^T X$	NxN

Correlation matrix: $C^{\alpha\beta} \sim E[X^{\alpha}X^{\beta}]$

Gram matrix: $G_{ij} = \vec{X}_i \cdot \vec{X}_j$

These matrices have the same rank and eigenvalues.

Spectral embeddings

Eigenvectors

eigs(C) = linear projections of PCA
eigs(G) = projected outputs of MDS

Eigenvalues

Always nonnegative.

Gaps indicate latent dimensionality.

Different intuitions, but equivalent results.

Properties of PCA and MDS

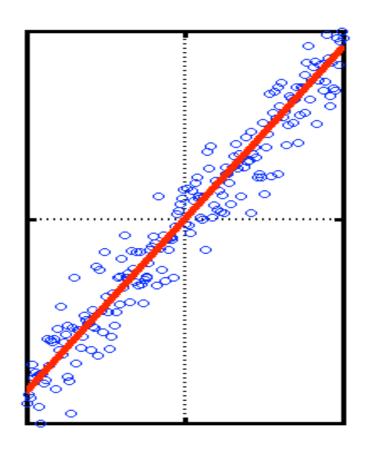
Strengths

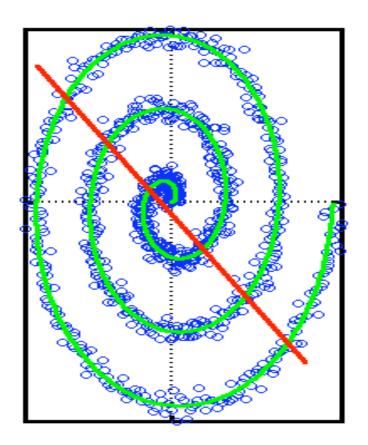
- Eigenvector methods
- -Non-iterative
- No local optima
- No "free" parameters

Weakness

PCA and MDS are linear methods.

Subspaces vs Manifolds





Linear methods are limited.

Non-eigenvector methods

Examples

- Autoencoder neural networks
- Self-organizing maps
- -Latent variable models

Issues

- Local optima
- Weaker guarantees
- Harder implementations

Questions

 Are there eigenvector methods for nonlinear dimensionality reduction?

 $(Yes)^n$ with $n \ge 8$

Equally simple as PCA and MDS?

Almost!

Eigenvector methods

Today

Locally linear embedding (LLE) Semidefinite embedding (SDE)

Others

Kernel PCA
Isomap
Laplacian eigenmaps
Local tangent space alignment
Hessian LLE
Charting

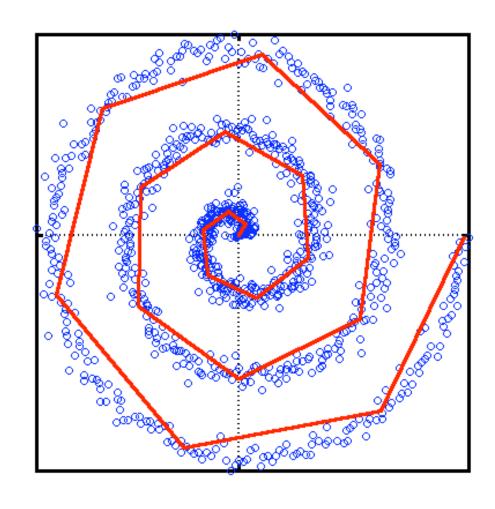
Outline

- Motivation
- Algorithm #1: LLE
 "Think globally, fit locally."
- Algorithm #2
- Related work

Local linearity

A manifold is locally linear, even if globally nonlinear.

How can we use this?



Previous work

Cluster inputs, then perform PCA:

```
k-lines,
k-planes,
local PCA,
mixture models,...
```

- Problem solved? No!
 - No global coordinates.
 - Prone to local optima.
 - Iterative optimizations.

Locally Linear Embedding (LLE)

Steps

- 1. Nearest neighbor search.
- 2. Least squares fits.
- 3. Sparse eigenvalue problem.

Properties

- Obtains highly nonlinear embeddings.
- Non-iterative, not prone to local minima.

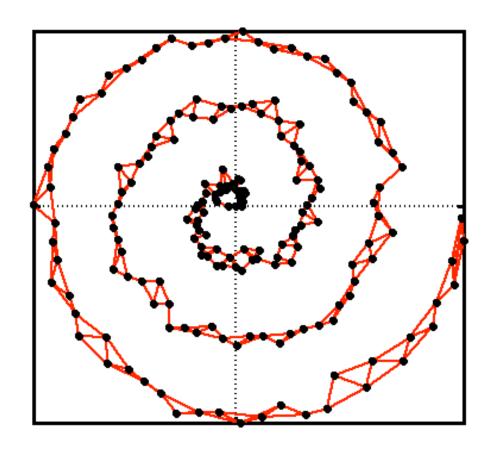
Step 1. Identify neighbors.

- Examples of neighborhoods
 - K nearest neighbors
 - Neighbors within radius r
 - Metric based on prior knowledge
- Assumptions
 - Data is sampled from a manifold.
 - Manifold is well sampled.

Nearest neighbor graph

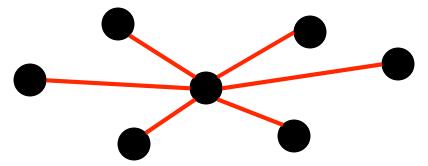
Assumptions:

- Graph is connected.
- Neighborhoods on the graph correspond to neighborhoods on the manifold.



Step 2. Compute weights.

 Characterize local geometry of each neighborhood by weights W_{ii}.



 Compute weights by reconstructing each input (linearly) from neighbors.

Linear reconstructions

Local linearity

Neighbors lie on locally linear patches of a low dimensional manifold.

Reconstruction errors

Least squared errors should be small:

$$E(W) = \sum_{i} \left| \vec{X}_{i} - \sum_{j} W_{ij} \vec{X}_{j} \right|^{2}$$

Least squares fits

Choose weights to minimize errors:

$$E(W) = \sum_{i} \left| \vec{X}_{i} - \sum_{j} W_{ij} \vec{X}_{j} \right|^{2}$$

Constraints:

Nonzero W_{ij} only for neighbors. Weights must sum to one: $\sum_{i} W_{ij} = 1$

Symmetry

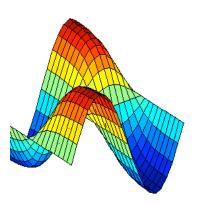
Cost per input

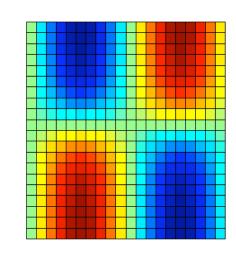
$$\mathbf{E}_{i}(W) = \left| \vec{X}_{i} - \sum_{j} W_{ij} \vec{X}_{j} \right|^{2}$$

Local invariance

Optimal weights W_{ij} are invariant to rotations, translations, and rescalings.

Manifolds





Local linearity

Each neighborhood map looks like a translation, rotation, and rescaling.

Local geometry

These transformations do not affect the weights W_{ii}: they remain valid.

Step 3. Compute the embedding.

- Embedding Map inputs to outputs: $\vec{X}_i \in \Re^D$ to $\vec{Y}_i \in \Re^d$
- Minimize reconstruction errors. Optimize outputs Y_i for fixed weights W_{ij} : $\Phi(Y) = \sum_{i} \left| \vec{Y}_i - \sum_{i} W_{ij} \vec{Y}_j \right|^2$

$$\Phi(Y) = \sum_{i} \left| \vec{Y}_{i} - \sum_{j} W_{ij} \vec{Y}_{j} \right|^{2}$$

Constraints

Center outputs on origin: $\sum \vec{Y}_i = \vec{0}$. Impose unit covariance matrix: $\frac{1}{N}\sum_{i}\vec{Y}_{i}\vec{Y}_{i}^{T} = I_{d}$.

Sparse eigenvalue problem

Quadratic form

$$\Phi(Y) = \sum_{ij} A_{ij} (\vec{Y}_i \quad \vec{Y}_j) \text{ with } A = (I - W^T)(I - W)$$

Rayleigh-Ritz theorem

Optimal embedding given by bottom d+1 eigenvectors.

Solution

Discard bottom eigenvector [1 1 ... 1]. Other eigenvectors satisfy constraints.

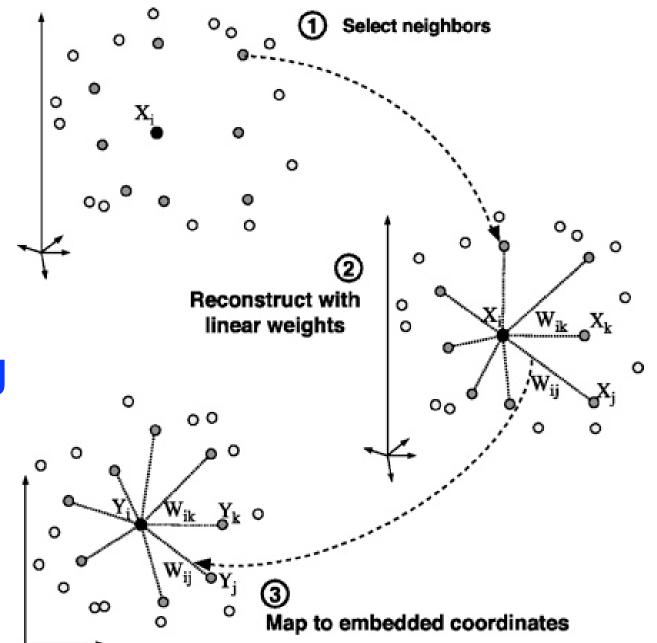
Summary of LLE

- Three steps
 - 1. Compute K nearest neighbors.
 - 2. Compute weights W_{ii}.
 - 3. Compute outputs Y_i.
- Optimizations

$$E(W) = \sum_{i} \left| \vec{X}_{i} - \sum_{j} W_{ij} \vec{X}_{j} \right|^{2}$$

$$\Phi(Y) = \sum_{i} \left| \vec{Y}_{i} - \sum_{j} W_{ij} \vec{Y}_{j} \right|^{2}$$

Locally
Linear
Embedding

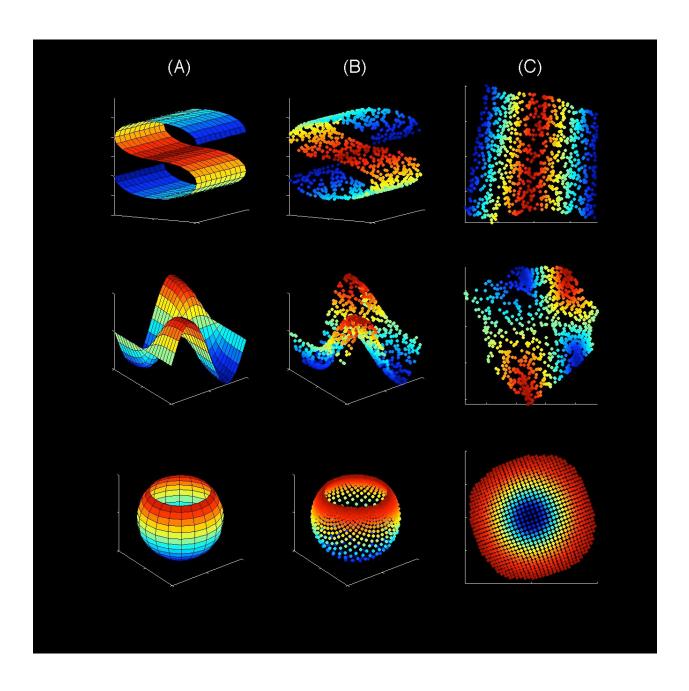


Surfaces

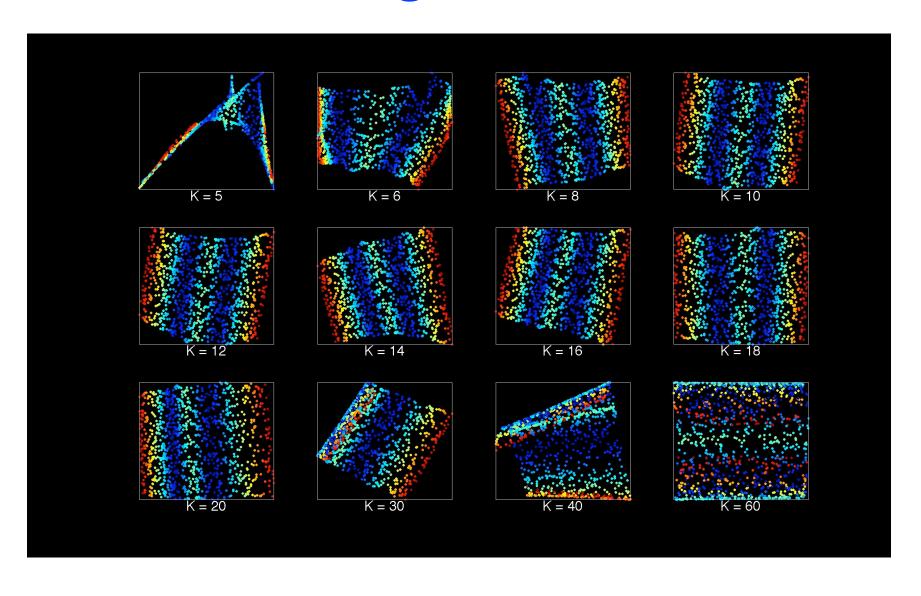
N=1000 inputs

K=8 neighbors

D=3 d=2

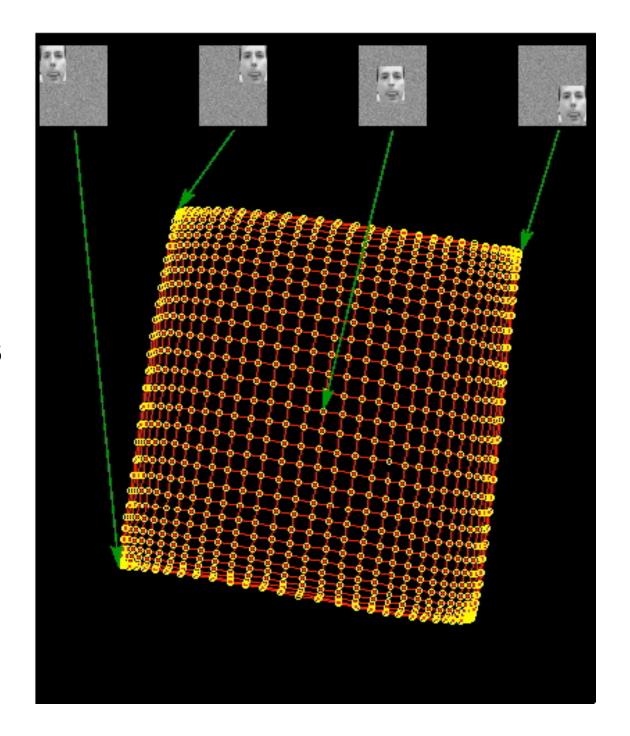


Effect of neighborhood size



Translated faces

N=961 images
K=4 neighbors
D=3009 pixels
d=2 manifold



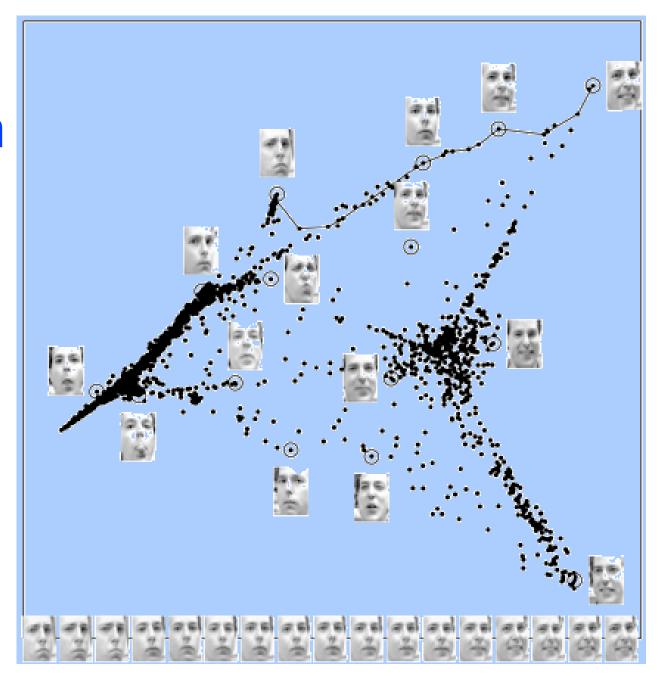
Pose and expression

N=1965 images

K=12 neighbors

D=560 pixels

d=2 (shown)



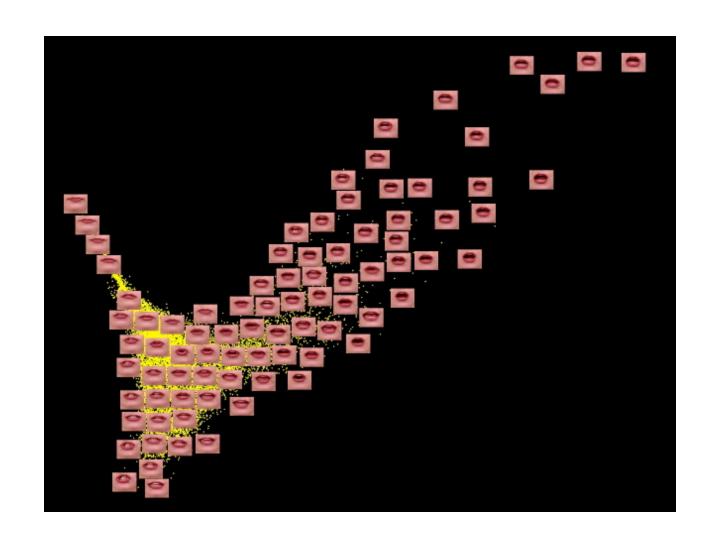
Lips

N=15960 images

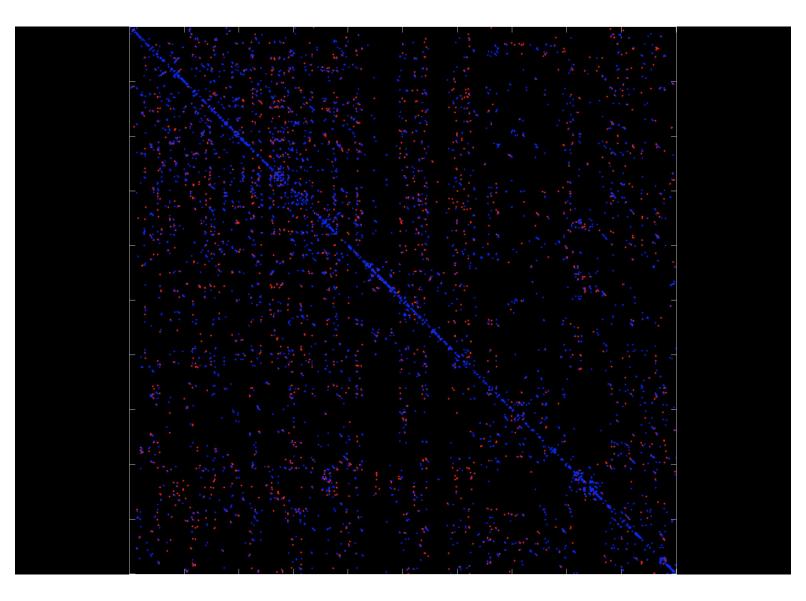
K=24 neighbors

D=65664 pixels

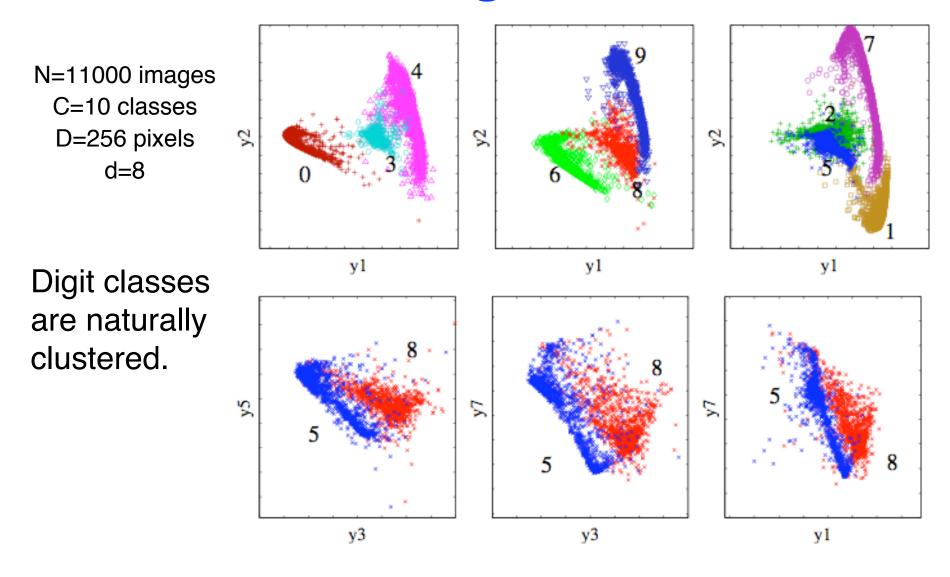
d=2 (shown)



Sparseness of the weight matrix



Handwritten digits



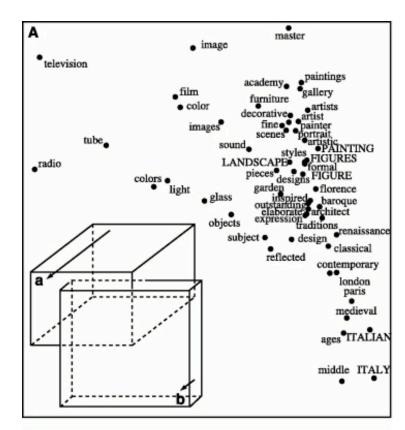
Word document counts

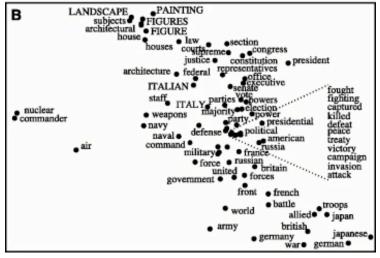
N=5000 words

K=20 neighbors

D=31000 documents

d=3,4,5 (shown)

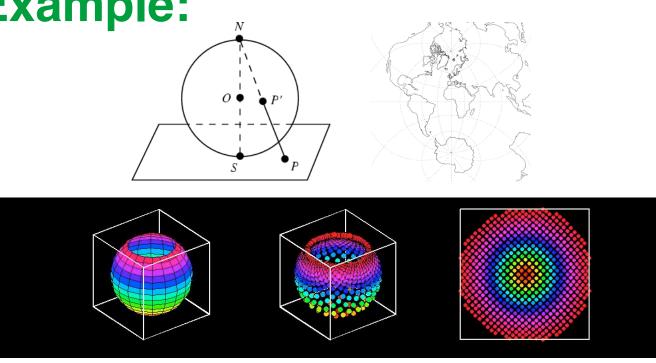




Symmetries of LLE

- Conformal transformations
 - Angle-preserving mappings.
 - -Local scaling, rotation, and translation.

Example:



Summary of LLE

- Three steps:
 - 1. K nearest neighbors of inputs X_i.
 - 2. Least squares fits for weights W_{ii}.
 - 3. Sparse eigensystem for outputs Y_i.
- Local symmetries:
 - translation
 - rotation
 - rescaling

"Think globally, fit locally"

Outline

- Motivation
- Algorithm #1: LLE
- Algorithm #2: SDE
 How to unfold a manifold...
- Related work

Beyond linearity...

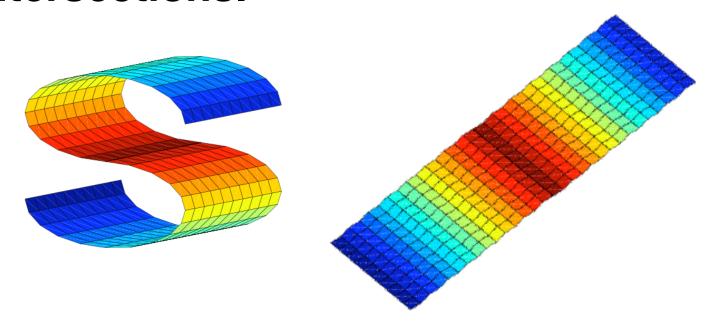
What larger class of mappings:

- -Includes rotations and translations as a special case?
- –Unravels manifolds into subsets of Euclidean space?

Isometry

Intuitively

Whatever you can do to a sheet of paper without holes, tears, or self-intersections.



Isometry (con't)

Informally

A smooth, invertible mapping that preserves distances and looks *locally* like a rotation plus translation.

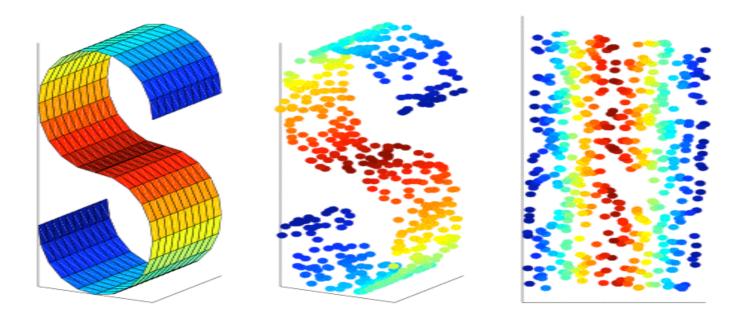
Formally

Two Riemannian manifolds are isometric if there is a diffeomorphism that pulls back the metric on one to the other.

Data on manifolds

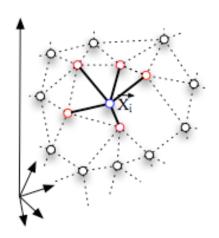
From the continuous to the discrete:

Isometry is defined between manifolds. Can we extend the relation to data sets?



Discretely sampled manifolds

Neighborhood graph
 Connect each point to its k nearest neighbors.



Locally isometric

Consider an embedding *Y* of *X* locally isometric if:

$$\left(\vec{Y}_i - \vec{Y}_j\right) \quad \left(\vec{Y}_i - \vec{Y}_k\right) = \left(\vec{X}_i - \vec{X}_j\right) \quad \left(\vec{X}_i - \vec{X}_k\right)$$

for all \vec{X}_i with neighbors \vec{X}_j and \vec{X}_k .

Dot product constraints

Gram matrices

$$G_{ij} = \vec{X}_i \quad \vec{X}_j$$
 (inputs)
 $K_{ij} = \vec{Y}_i \quad \vec{Y}_j$ (outputs)

Locally isometric

Consider an embedding *Y* of *X* locally isometric if:

$$K_{ii} - K_{ij} - K_{ik} + K_{jk} = G_{ii} - G_{ij} - G_{ik} + G_{jk}$$

for all \vec{X}_i with neighbors \vec{X}_i and \vec{X}_k .

Manifold learning

Input

Vectors \vec{X}_i and Gram matrix $G_{ij} = \vec{X}_i \cdot \vec{X}_j$; latter determines former up to rotation.

Problem

Given $G_{ij} = \overrightarrow{X}_i \cdot \overrightarrow{X}_j$, how to construct $K_{ij} = \overrightarrow{Y}_i \cdot \overrightarrow{Y}_j$ such that Y "unfolds" the manifold of X?

Algorithm

What to optimize? What to constrain?

Constraints on K_{ij}

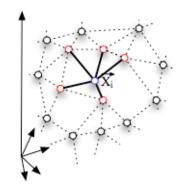
Centered

Constrain outputs to have zero mean:

$$\sum_{i} \vec{Y}_{i} = \vec{0} \text{ implies } \left| \sum_{i} \vec{Y}_{i} \right|^{2} = \sum_{ij} \vec{Y}_{i} \quad \vec{Y}_{j} = \sum_{ij} K_{ij} = 0$$

Locally isometric

Preserve local angles and distances:

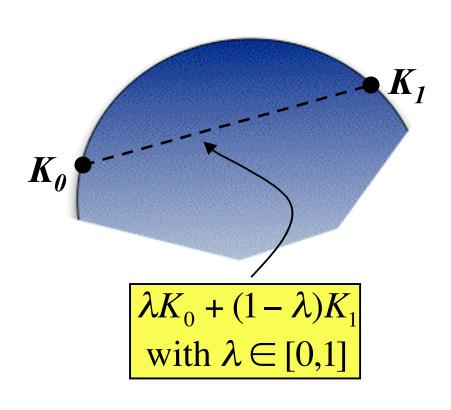


$$K_{ii} - K_{ij} - K_{ik} + K_{jk} = G_{ii} - G_{ij} - G_{ik} + G_{jk}$$

Constraints (con't)

Semidefinite

Eigenvalues of *K* must be nonnegative.

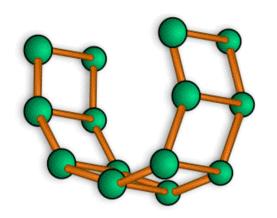


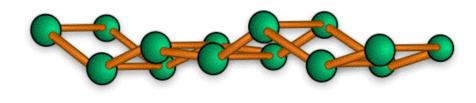
Semidefinite and linear constraints are convex.

 $O(Nk^2)$ constraints $O(N^2)$ variables

Unfolding a manifold

What function of the Gram matrix is being optimized below?





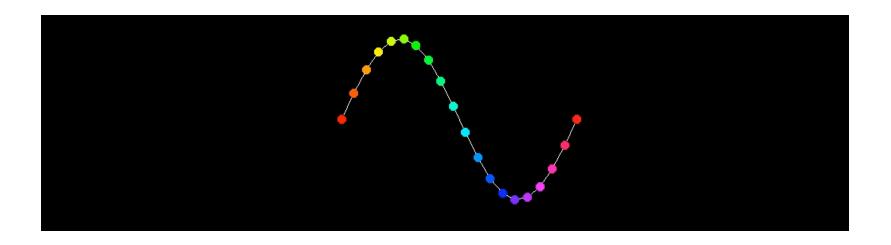
Before

$$G_{ij} = \overrightarrow{X}_i \cdot \overrightarrow{X}_j$$

After

$$K_{ij} = \overrightarrow{Y}_i \cdot \overrightarrow{Y}_j$$

What is increasing?



Multiple choice:

- (a) Pairwise distances
- (b) Number of zero eigenvalues
- (c) Trace of Gram matrix
- (d) All of the above

Optimization

Pull points apart

Maximize sum of pairwise distances, same as var(Y) or trace(K):

$$\frac{1}{2N}\sum_{ij}\left|\vec{Y}_i-\vec{Y}_j\right|^2 = \sum_i\left|\vec{Y}_i\right|^2 = \sum_iK_{ii}$$
 (Similar intuition as PCA.)

Boundedness

Follows from triangle inequality and connectedness of neighborhood graph.

Semidefinite programming

Maximize trace(*K*) subject to:

(i)
$$K \ge 0$$
,

(i)
$$K \ge 0$$
,
(ii) $\sum_{ij} K_{ij} = 0$,

(iii) for all neighborhoods (ijk),

$$K_{ii} - K_{ij} - K_{ik} + K_{jk}$$

$$= G_{ii} - G_{ij} - G_{ik} + G_{jk}$$

Convex optimization

Solution

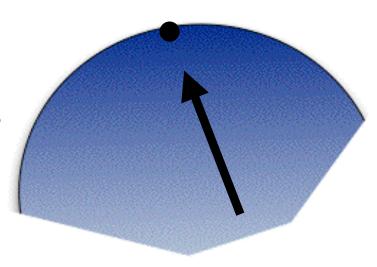
Feasible region is convex.

Never empty (includes *G*).

Objective is linear and bounded.

Efficient algorithms exist.

Caveat
 Generic solvers scale poorly.



Algorithm

1) K nearest neighbors

Compute nearest neighbors, distances and angles.

2) Semidefinite programming

Maximize trace of centered, locally isometric Gram matrices.

3) Matrix diagonalization

Estimate *d* from eigenvalues. Top eigenvectors give embedding.

Name of algorithm?

Locally Isometric Kernel Matrix Embedding

Name of algorithm?

Locally Isometric Kernel Matrix Embedding

LICKME

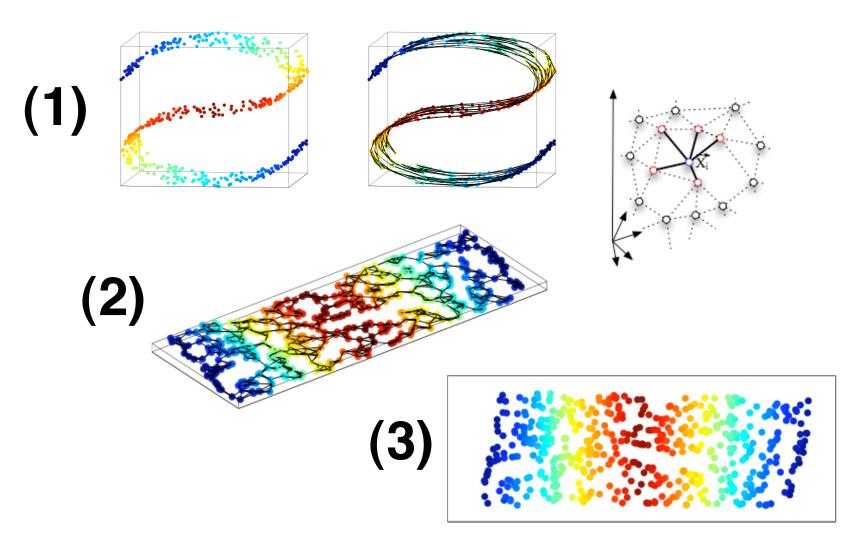
Technically accurate, but....

Name of algorithm?

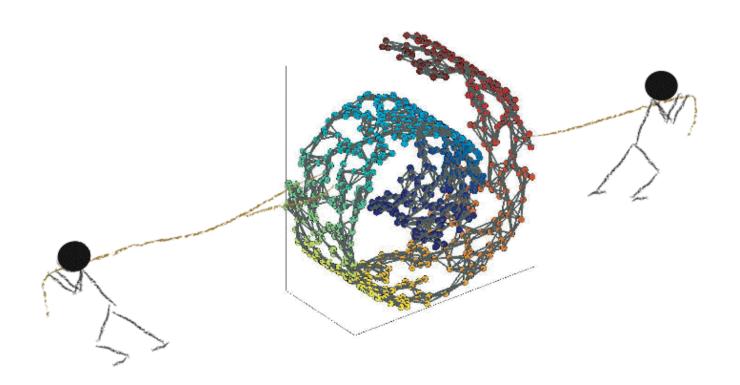
Semidefinite Embedding

SDE

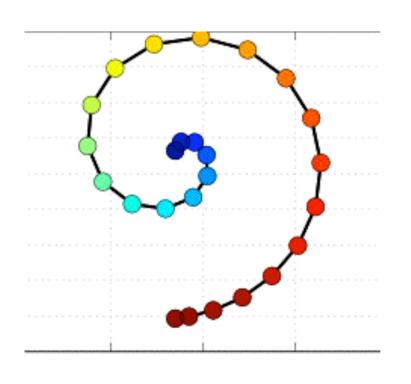
Semidefinite Embedding



Experimental Results



Spiral



$$N = 25$$

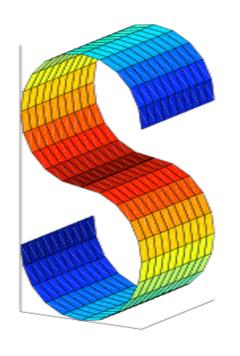
$$k = 2$$

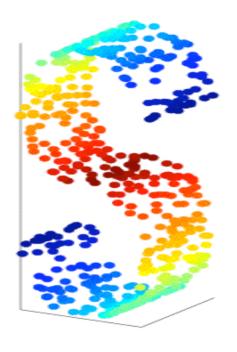
$$D = 2$$

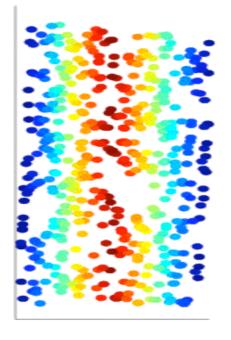
$$d = 1$$

$$\frac{\lambda_1}{\lambda_2} > 10^3$$

S Manifold







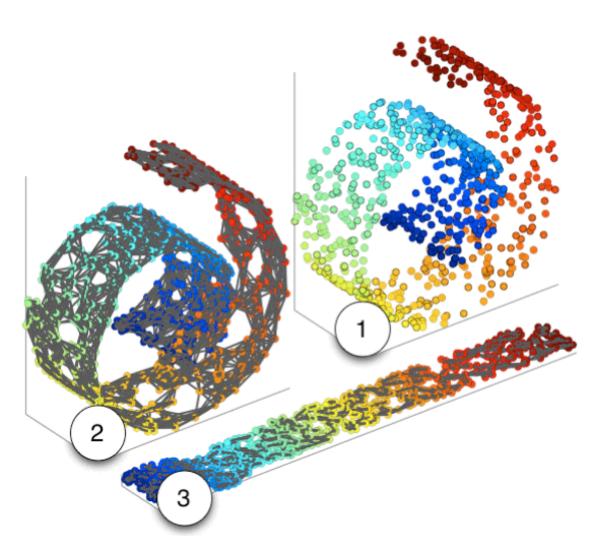
$$N = 500$$

$$k = 4$$

$$D = 3$$

$$\frac{d=2}{\frac{\lambda_1}{\lambda_3}} \approx 45$$

Swiss Roll



$$N = 800$$

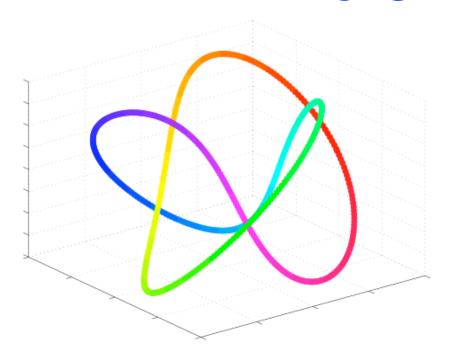
$$k = 6$$

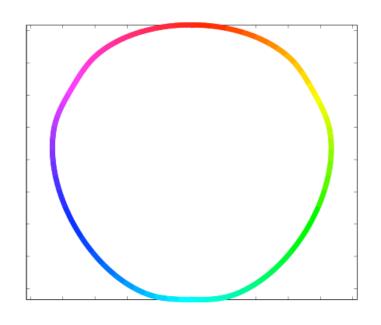
$$D = 8$$

$$k = 6$$

$$D = 8$$

Trefoil knot





$$N = 539$$

$$k = 4$$

$$D = 3$$

Teapot (half rotation)

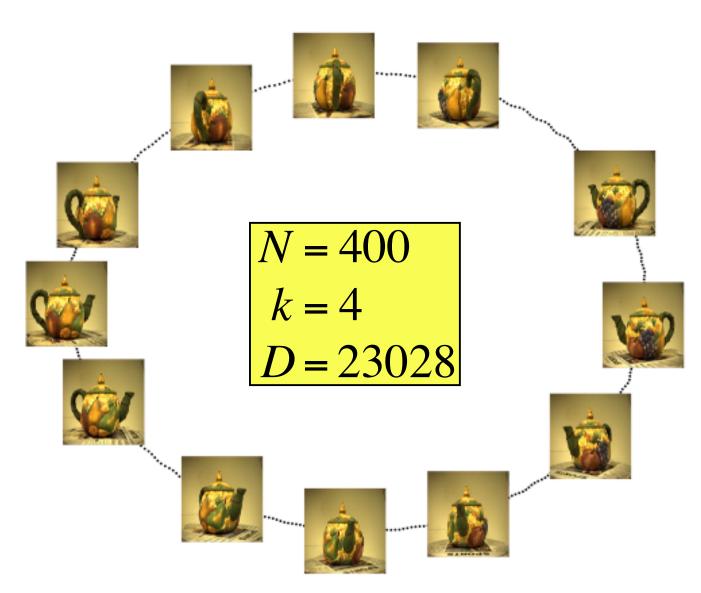
Images ordered by one dimensional embedding

$$N = 200$$

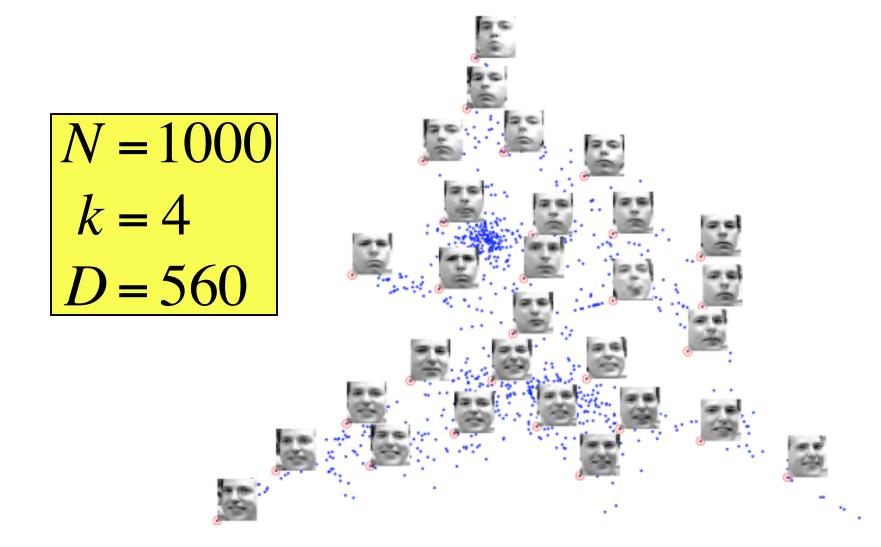
$$k = 4$$

$$D = 23028$$

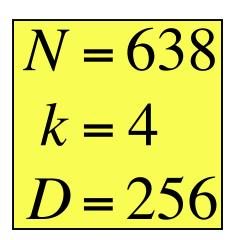
Teapot (full rotation)

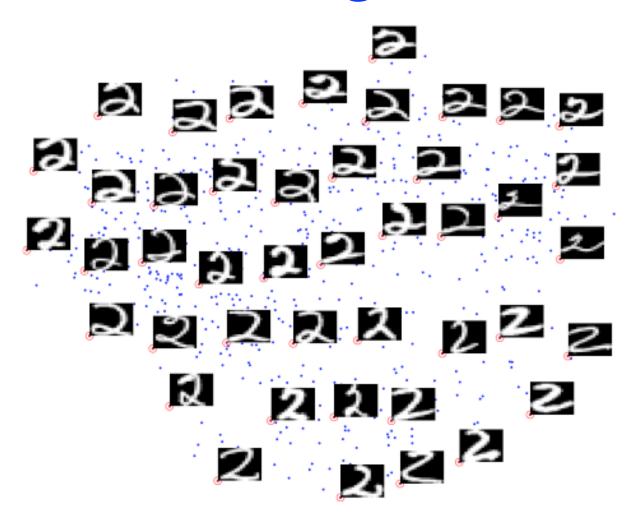


Images of faces

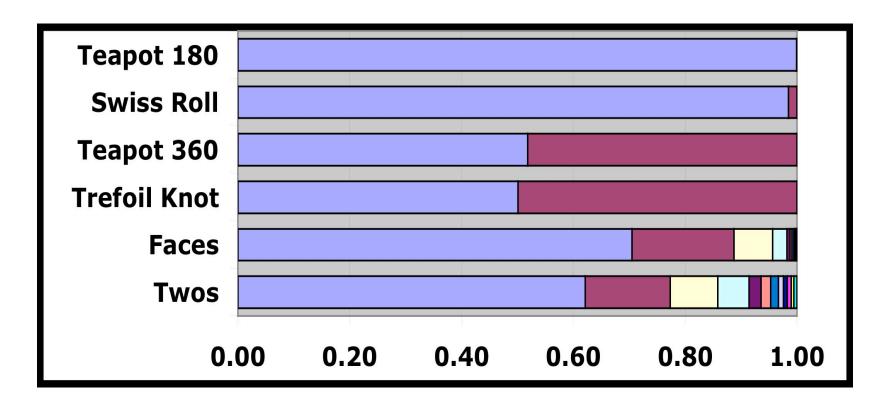


Handwritten digits





Eigenvalues



(normalized by trace)

Evaluating SDE

Pros

- Eigenvalues reveal dimensionality.
- Constraints ensure local isometry.
- Algorithm tolerates small data sets.

Cons

- Computation intensive.
- -Currently limited to $N \le 2000$, $k \le 6$.

Outline

- Motivation
- Algorithm #1: LLE
- Algorithm #2: SDE
- Comparisons and related work

LLE vs SDE

Sparse vs dense

LLE constructs a sparse matrix. SDE constructs a dense matrix.

Bottom vs top

LLE computes bottom eigenvectors. SDE computes top eigenvectors.

- Angle vs distance-preserving LLE motivated by conformal maps. SDE motivated by isometric maps.
- Estimating the dimensionality

LLE eigenvalues do not reveal *d.* SDE eigenvalues do reveal *d.*

Other methods

Kernel PCA

Map inputs nonlinearly to a new space, then perform PCA.

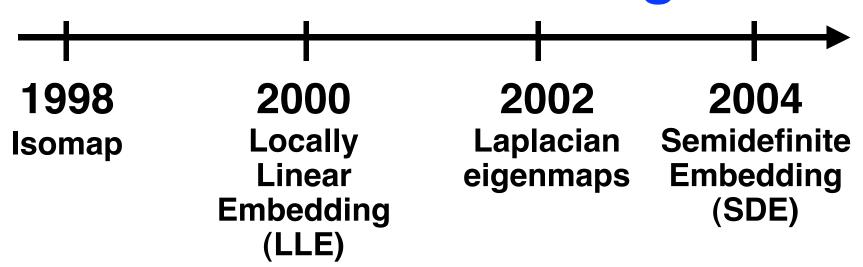
Isomap

Measure pairwise distances along manifold, then apply MDS.

Laplacian eigenmaps

Preserve nearness relations as encoded by graph Laplacian.

Manifold learning



Common framework:

- 1) Compute nearest neighbors.
- 2) Construct an N x N matrix.
- 3) Compute eigenvectors.

Comparison

Algorithm	Mapping	Signature	Matrix
Isomap	isometric	geodesics	dense
SDE	isometric	local distances	dense
hLLE	isometric	hessians	dense
LLE	conformal	tangents	sparse
Laplacian eigenmaps	proximity- preserving	Laplacian	sparse

Conclusion

- Big ideas
 - Manifolds are everywhere.
 - -Spectral methods can learn them.
- Ongoing work
 - -Scaling up to larger data sets
 - -Theoretical guarantees
 - Alternative topologies
 - Extrapolation and functional maps