
MACHINE LEARNING AND

PATTERN RECOGNITION

Spring 2004, Lecture 7:

Model Selection, Cross-Validation,

Bootstrap/Bagging, and Boosting.

Yann LeCun
The Courant Institute,
New York University
http://yann.lecun.com

Y. LeCun: Machine Learning and Pattern Recognition – p. 1/21

Model Selection

Say we train a model M1 (e.g. degree 2
polynomials) on a training set and we get a
training error E1

train

Say we train a second model M 2 (e.g.
degre 9 polynomials) on the same training
set, and we get a training error E2

train

Presumably, E2
train will be smaller than

E1
train because the family of functions in

M2 contains the set of functions in M 1.

How do we decide which model is best?

This is the model selection problem.

Y. LeCun: Machine Learning and Pattern Recognition – p. 2/21

Test Set

The most natural idea is to divide the set of samples into a training set and a test
set.

Train both models on the training set, and pick the one that performs best on the
test set.

PROBLEM 1: The result depends on the particular test set we chose. Another
drawing of the test set might have given slightly different results.

PROBLEM 2: This forces us to sacrifice some data that could be otherwise used
for training

PROBLEM 3: If we use the “test set” to select models, then it’s not a test set
anymore, because we allow ourselves to look at it to select a model.

Y. LeCun: Machine Learning and Pattern Recognition – p. 3/21

Using a Validation Set

We further split the training set into a reduced training set and a validation set.
We train on the reduced training set, and select our model on the basis of the
result on the validation set.

Once the model is select, we test it on the test set.

PROBLEM: This takes away even more training samples, when we should use
all the samples we have to train a machine.

SOLUTION: K-Fold Validation and Leave-one-out.

Y. LeCun: Machine Learning and Pattern Recognition – p. 4/21

K-Fold Validation

To prevent the effect of picking a particular validation set, we make many
partitions into reduced training set and validation set, and average the results.

We split the training set in K equally sized subsets.

We train on K − 1 subsets, and test (validate) on the remaining subset.

We repeat the process for all possible choices of the validation subset and
average the error rates thereby obtained.

We pick the model with the lowest average error.

This process is called K-fold cross-validation. Y. LeCun: Machine Learning and Pattern Recognition – p. 5/21

Leave-One-Out

The Leave-One-Out method is the limit case of K-fold cross-validation for
K = P : Each validation set has a single sample, and the reduced training set
has P − 1 samples.

Bounds/Estimates of the leave-one-out error can be computed analytically for
some classes of models (e.g. linear models).

PROBLEM: this method is quite expensive computationally, and therefore is
only practical for fairly small problems.

Y. LeCun: Machine Learning and Pattern Recognition – p. 6/21

Procedure for Model Selection

A conceptually simple, but computationally expensive method for model
selection:

choose/design a set of models of various capacities (e.g. neural nets with more
and more hidden units, polynomials of higher and higher degree, etc...)

Train all the available models and make an estimate of the “test” error for each
of them without touching the actual test.

pick the model with the best estimated “test” error.

test it on the (yet untouched) test set.

PROBLEM: How can we estimate the expected risk (a.k.a. the test error, a.k.a.
the generalization error) without touching the test set?

Y. LeCun: Machine Learning and Pattern Recognition – p. 7/21

Estimating the Expected Risk

Use cross validation (but it throws away training data)

Use a formula from Learning Theory (but they are inaccurate).

Most formulae for the expected risk are of the form:

Eexpected = Etrain + c
h

Pα

Where c is a constant, P is the number of training samples, alpha is a constant
between 0.5 and 1.0, and h is a measure of capacity of the family of functions
implemented by the model.

Y. LeCun: Machine Learning and Pattern Recognition – p. 8/21

Estimating the Expected Risk

PROBLEM 1: In fact, many formulae are probabilistic upper bounds rather than
equalities: “with probability 1 − δ”:

Eexpected < Etrain + c(δ)
h

Pα

PROBLEM 2: The bound formulae derived from general learning theories are
generally extremely loose, so you can’t just plug in numbers and hope that the
formula will give you useful information. That is because general formulae
cannot take into account the peculiarities of the problem at hand.

PROBLEM 3: The “capacity” term h is generally impossible to know for a
complex model family. Intuitively, h is akin to some sort of effective number of
free parameters (which may or may not reflect the actual number of free
parameters).

Y. LeCun: Machine Learning and Pattern Recognition – p. 9/21

Bayesian Formula for Model Selection

Bayesian Information Criterion (BIC):

Eexpected = Etrain +
log(P)

2

h

P

can be derived from a Bayesian inference formula with a so-called “Laplace”
approximation (2nd order taylor expansion of the log likelihood around the
MLE estimate).

Y. LeCun: Machine Learning and Pattern Recognition – p. 10/21

Structural Risk Minimization

Structural Risk Minimization: these are very general bounds derived from first
principles. The bad news is that they are distribution free, and therefore very
loose.

SRM bound for classification: with probability 1 − δ:

Eexpected ≤ Etrain +
ε

2

(

1 +

√

1 +
4Etrain

ε

)

with ε = a1
h[log(a2P/h)+1]−log(δ/4)

P , where a1, a2 are constant not furnished by
the theory, and h is the Vapnik-Chervonenkis Dimension of the family of
function.

SRM bound for regression

Eexpected ≤
Etrain

(1 − c
√

(ε))+

with the same ε as above.
Y. LeCun: Machine Learning and Pattern Recognition – p. 11/21

An Example of How to get a Bound

The hypothesis space of our model is the family of all possible functions
indexed by our parameter W :

H : {F (Y, X, W), ∀W}

That set may have an infinite (possibly uncountable) cardinality.

One view of learning: each training example eliminates elements of the
hypothesis space that disagree with it.

Y. LeCun: Machine Learning and Pattern Recognition – p. 12/21

An Example of How to get a Bound

Let’s assume that the number of hypotheses is finite and equal to k:
W1, W2, ...Wk.

Let’s assume the loss is binary: 0 if correct, 1 if error.

Let’s define the expected error for a particular hypothesis Eexp(Wi), the error
that Wi over an infinite training set.

Let’s define the empirical error for P examples: EP
emp(Wi), the error that Wi

over a particular training set of size P .

The Hoeffding/Chernoff bound tells us:

P (|Eexp(Wi) − EP
emp(Wi)| > ε) < 2 exp(−2ε2P)

The Hoeffding/Chernoff bound is a wonderful formula that tells us how fast the
average of a variable computed over a finite set of sample converges to the true
expectation (average over an inifinte number of samples) as we increase the
number of samples.

Y. LeCun: Machine Learning and Pattern Recognition – p. 13/21

Bound on the Expected Error

Since the probability of the union of a set of events is bounded above by the sum of the
individual event probabilities, we can write:

P (∃Wi, |Eexp(Wi) − EP
emp(Wi)| > ε) ≤

k
∑

i=1

2 exp(−2ε2P) = 2k exp(−2ε2P)

this can be rewritten as

P (∀Wi, |Eexp(Wi) − EP
emp(Wi)| ≤ ε) > 1 − 2k exp(−2ε2P)

This is a uniform convergence bound, because it holds for all hypotheses.

Y. LeCun: Machine Learning and Pattern Recognition – p. 14/21

Bound on the Expected Error

Let’s define δ = 2k exp(−2ε2P). Suppose we hold P and δ, and solve for ε, we get
with probability 1 − δ:

Eexp(W) ≤ EP
emp(W) +

√

1

2P
log

2k

δ

In particular, the previous inequality is true for the hypothesis Wtrain that minimizes
the training set error:

Eexp(Wtrain) ≤ EP
emp(Wtrain) +

√

1

2P
log

2k

δ

Y. LeCun: Machine Learning and Pattern Recognition – p. 15/21

VC-dimension

The previous bound assumed the space of hypotheses was finite (with k
hypotheses).

The Vapnik-Chervonenkis approach derives similar results for infinite
hypotheses spaces.

key idea: as far as we are concerned, two hypotheses are identical if they
produce the same classification on our dataset: identical hypotheses are put into
equivalence classes.

The formulae we obtain are the SRM formulae shown a few slides back where h
is the VC-dimension of the family of functions

The VC-dim is defined as the largest number of points (in any position) that our
family of function could classify in every possible ways.

EXAMPLE: The VC-dim of linear classifier with N inputs is N + 1: in
dimension 2, there is a set of 3 points on which all 23 dichotomies are linearly
separable. There is no such set with 4 points.

Y. LeCun: Machine Learning and Pattern Recognition – p. 16/21

VC-dimension, continued

The VC-dim and the SRM formulae are very interesting conceptually, because
they are derived with a minimal set of assumptions.

The VC theory allows us to “derive” and quantify the intuitive notion of
Occam’s Razor from first principles.

Occam’s Razor is the idea that simple models are preferable to complex one.

Until the VC theory, Occam’s Razor was assumed to be a good idea, or was
derived from rather contrived sets of assumptions.

Y. LeCun: Machine Learning and Pattern Recognition – p. 17/21

How Can we get the Constants?

Recall that a good general form for the generalization error is:

Eexpected = Etrain + c
h

Pα

The constants c depends on the task and the learning algorithm used, h depends on the
model, and 0.5 ≤ α ≤ 1 depends on the type of task (e.g. regression versus
classification).
We can measure the constants c and α for a particular task by running a learning
machine with a known h on the task (e.g. a linear classifier for which h = N + 1) with
various size of the training set.
Then, if we assume c is constant from model to model, we can measure h for unknown
learning machine by running on several size of training set and fitting the curve.
This process is rather long and expensive, and rarely worth it.

Y. LeCun: Machine Learning and Pattern Recognition – p. 18/21

Conclusion on Model Selection

It’s really hard to beat validation or cross-validation.

When the size/capacity of the family of functions is controled by a continuous
parameter (e.g. the coefficient λ of a regularization term) we can use more
efficient techniques than exhaustive search.

Some learning architectures/algorithms come with bounds that are pretty
accurate: e.g. Support Vector Machines, Adaboost.... That’s because they are
essentially linear machines.

Y. LeCun: Machine Learning and Pattern Recognition – p. 19/21

Ensemble Methods

It is sometimes useful to train many instances of a learning machine (in slightly
different ways) and combine their outputs.

Example: Bayesian learning. The outputs produced by replicas of the machine
for each possible value of the parameter vector are added with weights that
reflect the conditional probaility of the parameter vector given the training
dataset.

The key idea of ensemble methods: find a way to make each replica of the
learning machine different from the others, yet useful.

Y. LeCun: Machine Learning and Pattern Recognition – p. 20/21

Bootstrap/Bagging

A simple idea: use different subsets of the training set.

The Bootstrap method consists in generating multiple training set by drawing
samples from the original training set with replacement.

The Bagging method consists simply in averaging of the outputs produced by
each of the instances.

Y. LeCun: Machine Learning and Pattern Recognition – p. 21/21

	Model Selection
	Test Set
	Using a Validation Set
	K-Fold Validation
	Leave-One-Out
	Procedure for Model Selection
	Estimating the Expected Risk
	Estimating the Expected Risk
	Bayesian Formula for Model Selection
	Structural Risk Minimization
	An Example of How to get a Bound
	An Example of How to get a Bound
	Bound on the Expected Error
	Bound on the Expected Error
	VC-dimension
	VC-dimension, continued
	How Can we get the Constants?
	Conclusion on Model Selection
	Ensemble Methods
	Bootstrap/Bagging

