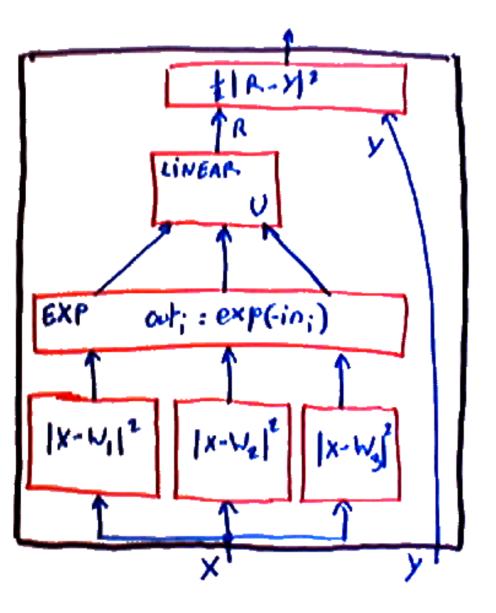
MACHINE LEARNING AND PATTERN RECOGNITION Spring 2004, Lecture 6: Gradient-Based Learning III: Architectures

> Yann LeCun The Courant Institute, New York University http://yann.lecun.com

Radial Basis Function Network (RBF Net)



- Linearly combined Gaussian bumps.
- $F(X, W, U) = \sum_{i} u_i \exp(-k_i (X W_i)^2)$
- The centers of the bumps can be initialized with the K-means algorithm (see below), and subsequently adjusted with gradient descent.
- This is a good architecture for regression and function approximation.

MAP/MLE Loss and Cross-Entropy

classification (y is scalar and discrete). Let's denote E(y, X, W) = E_y(X, W)
MAP/MLE Loss Function:

$$L(W) = \frac{1}{P} \sum_{i=1}^{P} \left[E_{y^{i}}(X^{i}, W) + \frac{1}{\beta} \log \sum_{k} \exp(-\beta E_{k}(X^{i}, W)) \right]$$

This loss can be written as

$$L(W) = \frac{1}{P} \sum_{i=1}^{P} -\frac{1}{\beta} \log \frac{\exp(-\beta E_{y^{i}}(X^{i}, W))}{\sum_{k} \exp(-\beta E_{k}(X^{i}, W))}$$

Cross-Entropy and KL-Divergence

let's denote
$$P(j|X^i, W) = \frac{\exp(-\beta E_j(X^i, W))}{\sum_k \exp(-\beta E_k(X^i, W))}$$
, then

$$L(W) = \frac{1}{P} \sum_{i=1}^{P} \frac{1}{\beta} \log \frac{1}{P(y^{i}|X^{i}, W)}$$

$$L(W) = \frac{1}{P} \sum_{i=1}^{P} \frac{1}{\beta} \sum_{k} D_{k}(y^{i}) \log \frac{D_{k}(y^{i})}{P(k|X^{i}, W)}$$

with $D_k(y^i) = 1$ iff $k = y^i$, and 0 otherwise.

- example1: D = (0, 0, 1, 0) and $P(.|X_i, W) = (0.1, 0.1, 0.7, 0.1)$. with $\beta = 1$, $L^i(W) = \log(1/0.7) = 0.3567$
- example2: D = (0, 0, 1, 0) and $P(.|X_i, W) = (0, 0, 1, 0)$. with $\beta = 1$, $L^i(W) = \log(1/1) = 0$

Cross-Entropy and KL-Divergence

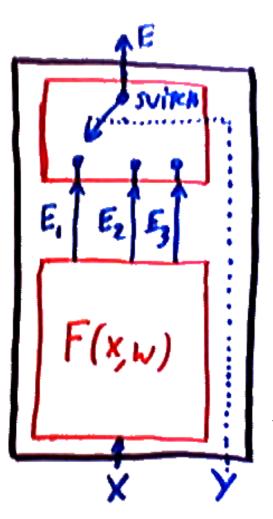
$$L(W) = \frac{1}{P} \sum_{i=1}^{P} \frac{1}{\beta} \sum_{k} D_{k}(y^{i}) \log \frac{D_{k}(y^{i})}{P(k|X^{i}, W)}$$

- L(W) is proportional to the *cross-entropy* between the conditional distribution of y given by the machine $P(k|X^i, W)$ and the *desired* distribution over classes for sample i, $D_k(y^i)$ (equal to 1 for the desired class, and 0 for the other classes).
- The cross-entropy also called *Kullback-Leibler divergence* between two distributions Q(k) and P(k) is defined as:

$$\sum_{k} Q(k) \log \frac{Q(k)}{P(k)}$$

- It measures a sort of dissimilarity between two distributions.
- the KL-divergence is not a distance, because it is not symmetric, and it does not satisfy the triangular inequality.

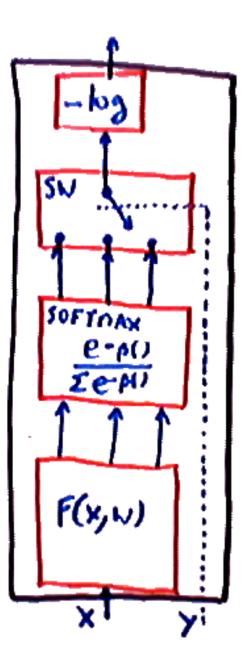
Multiclass Classification and KL-Divergence



- Assume that our discriminant module F(X, W)produces a vector of energies, with one energy $E_k(X, W)$ for each class.
- A switch module selects the smallest E_k to perform the classification.
- As shown above, the MAP/MLE loss below be seen as a KL-divergence between the desired distribution for y, and the distribution produced by the machine.

$$L(W) = \frac{1}{P} \sum_{i=1}^{P} \left[E_{y^{i}}(X^{i}, W) + \frac{1}{\beta} \log \sum_{k} \exp(-\beta E_{k}(X^{i}, W)) \right]$$

Multiclass Classification and Softmax



- The previous machine: discriminant function with one output per class + switch, with MAP/MLE loss
- It is equivalent to the following machine: discriminant function with one output per class + softmax + switch + log loss

$$L(W) = \frac{1}{P} \sum_{i=1}^{P} \frac{1}{\beta} - \log P(y^{i}|X, W)$$

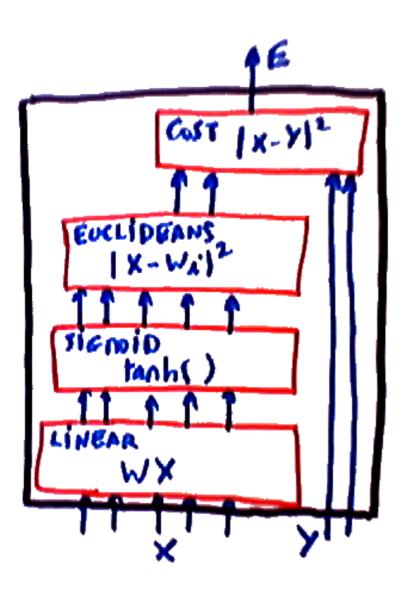
with $P(j|X^i, W) = \frac{\exp(-\beta E_j(X^i, W))}{\sum_k \exp(-\beta E_k(X^i, W))}$ (softmax of the $-E_j$'s).

Machines can be transformed into various equivalent forms to factorize the computation in advantageous ways.

Multiclass Classification with a Junk Category

- Sometimes, one of the categories is "none of the above", how can we handle that?
- We add an extra energy wire E_0 for the "junk" category which does not depend on the input. E_0 can be a hand-chosen constant or can be equal to a trainable parameter (let's call it w_0).
- everything else is the same.

NN-RBF Hybrids

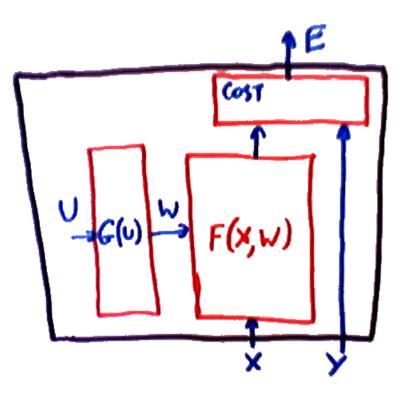


- sigmoid units are generally more appropriate for low-level feature extraction.
- Euclidean/RBF units are generally more appropriate for final classifications, particularly if there are many classes.
- Hybrid architecture for multiclass classification: sigmoids below, RBFs on top + softmax + log loss.

Parameter-Space Transforms

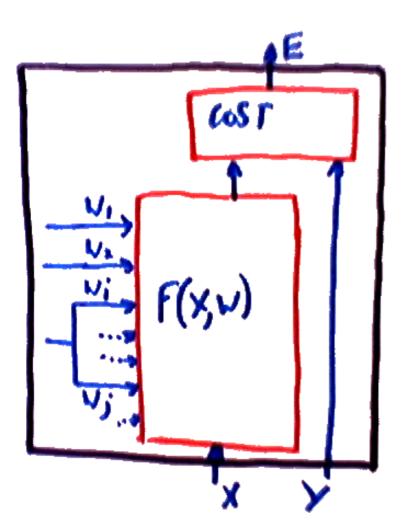
Reparameterizing the function by transforming the space

 $E(Y, X, W) \to E(Y, X, G(U))$



gradient descent in U space: U ← U − η ∂G/∂U ∂E(Y,X,W)' equivalent to the following algorithm in W space: W ← W − η ∂G/∂U ∂G' ∂E(Y,X,W)' dimensions: [N_w × N_u][N_u × N_w][N_w]

Parameter-Space Transforms: Weight Sharing

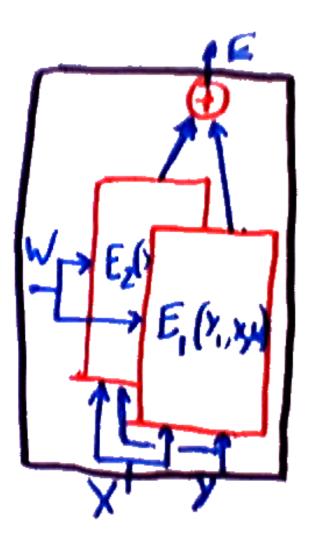


- A single parameter is replicated multiple times in a machine
- $E(Y, X, w_1, \dots, w_i, \dots, w_j, \dots) \to$ $E(Y, X, w_1, \dots, u_k, \dots, u_k, \dots)$

gradient:
$$\frac{\partial E()}{\partial u_k} = \frac{\partial E()}{\partial w_i} + \frac{\partial E()}{\partial w_j}$$

 w_i and w_j are tied, or equivalently, u_k is shared between two locations.

Parameter Sharing between Replicas

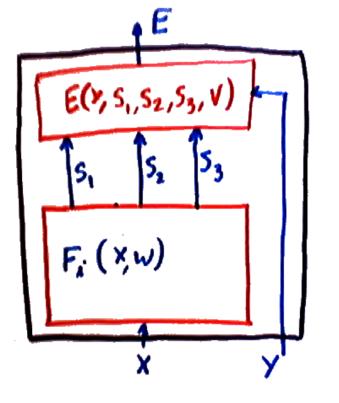


We have seen this before: a parameter controls several replicas of a machine.

 $E(Y_1, Y_2, X, W) = E_1(Y_1, X, W) + E_1(Y_2, X, W)$

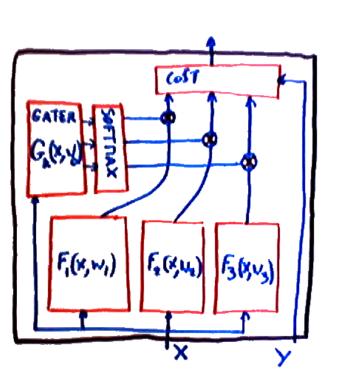
- gradient: $\frac{\partial E(Y_1, Y_2, X, W)}{\partial W} = \frac{\partial E_1(Y_1, X, W)}{\partial W} + \frac{\partial E_1(Y_2, X, W)}{\partial W}$
- W is shared between two (or more) instances of the machine: just sum up the gradient contributions from each instance.

One variable influences the output through several others



Mixtures of Experts

Sometimes, the function to be learned is consistent in restricted domains of the input space, but globally inconsistent. Example: piecewise linearly separable function.



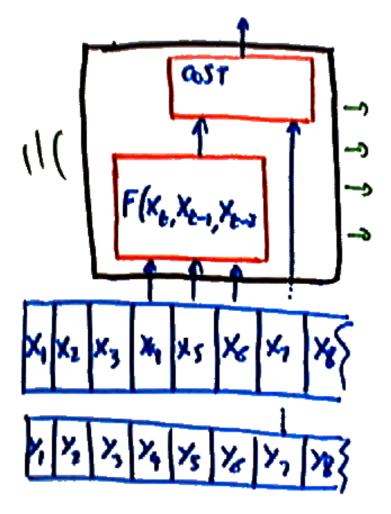
- Solution: a machine composed of several "experts" that are specialized on subdomains of the input space.
- The output is a weighted combination of the outputs of each expert. The weights are produced by a "gater" network that identifies which subdomain the input vector is in.

$$F(X, W) = \sum_{k} u_k F^k(X, W^k) \text{ with}$$
$$u_k = \frac{\exp(-\beta G_k(X, W^0))}{\sum_{k} \exp(-\beta G_k(X, W^0))}$$

- the expert weights u_k are obtained by softmax-ing the outputs of the gater.
- example: the two experts are linear regressors, the gater is a logistic regressor.

Sequence Processing: Time-Delayed Inputs

The input is a sequence of vectors X_t .

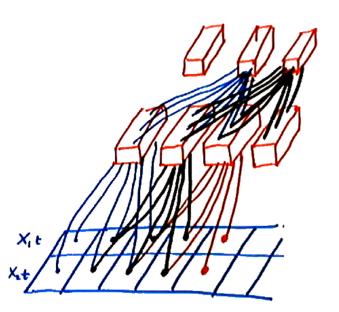


simple idea: the machine takes a time window as input

$$R = F(X_t, X_{t-1}, X_{t-2}, W)$$

- Examples of use:
 - predict the next sample in a time series (e.g. stock market, water consumption)
 - predict the next character or word in a text
 - classify an intron/exon transition in a DNA sequence

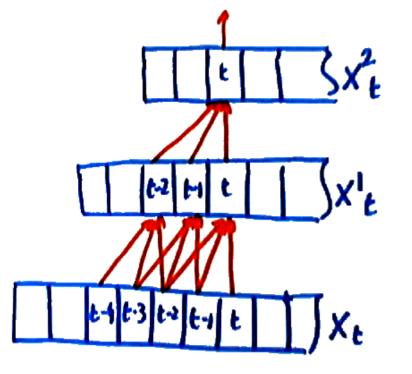
One layer produces a sequence for the next layer: stacked time-delayed layers.



- layer1 $X_t^1 = F^1(X_t, X_{t-1}, X_{t-2}, W^1)$ layer2 $X_t^2 = F^1(X_t^1, X_{t-1}^1, X_{t-2}^1, W^2)$ cost $E_t = C(X_t^1, Y_t)$
- Examples:
 - predict the next sample in a time series with long-term memory (e.g. stock market, water consumption)
 - recognize spoken words
 - recognize gestures and handwritten characters on a pen computer.
- How do we train?

Training a TDNN

Idea: isolate the minimal network that influences the energy at one particular time step t.



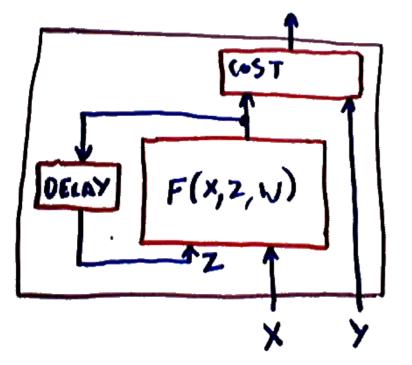
- in our example, this is influenced by 5 time steps on the input.
- train this network in isolation, taking those5 time steps as the input.
- Surprise: we have three identical replicas of the first layer units that share the same weights.
- We know how to deal with that.
- do the regular backprop, and add up the contributions to the gradient from the 3 replicas

Convolutional Module

If the first layer is a set of linear units with sigmoids, we can view it as performing a sort of *multiple discrete convolutions* of the input sequence.

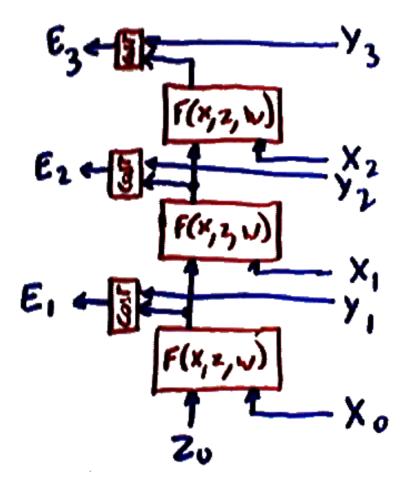
Simple Recurrent Machines

The output of a machine is fed back to some of its inputs Z. $Z_{t+1} = F(X_t, Z_t, W)$, where t is a time index. The input X is not just a vector but a sequence of vectors X_t .



- This machine is a *dynamical system* with an internal state Z_t .
- Hidden Markov Models are a special case of recurrent machines where *F* is linear.

Unfolded Recurrent Nets and Backprop through time



- To train a recurrent net: "unfold" it in time and turn it into a feed-forward net with as many layers as there are time steps in the input sequence.
- An unfolded recurrent net is a very "deep" machine where all the layers are identical and share the same weights.

$$\frac{\partial E}{\partial W} = \sum_{t} \frac{\partial E}{\partial Z_t} \frac{\partial F(X_t, Z_t, W)}{\partial W}$$

- This method is called *back-propagation through time*.
- examples of use: process control (steel mill, chemical plant, pollution control....), robot control, dynamical system modelling...