
MACHINE LEARNING AND

PATTERN RECOGNITION

Spring 2004, Lecture 4:

Intro to Gradient-Based Learning I:

Beyond Linear Classifiers

Yann LeCun
The Courant Institute,
New York University
http://yann.lecun.com

Y. LeCun: Machine Learning and Pattern Recognition – p. 1/21

Energy-Based Feed-Forward Supervised Learning

L(W) =
∑

i

[E(Y i, Xi, W) +
1

β
log

∫

exp(−βE(Y, X i, W))dY] + H(W)

Learning comes down to finding the W that
minimizes an objective function averaged over a
training set.

A feed-forward supervised system parameterizes
E as follows:

E(Y, X, W) = D(Y, F (X, W))

where F (X, W) is a suitably chosen discriminant
function parameterized by W , and D is an
approrpiately chosen dissimilarity measure.

A popular example would be

E(Y, X, W) = ||Y − F (X, W)||2
Y. LeCun: Machine Learning and Pattern Recognition – p. 2/21

Linear Machines

The learning algorithms we have seen so far
(perceptron, linear regression, logistic regression)
are of that form, with the assumption that
F (X, W) only depends on the dot product of W
and X .

In other words, The E function of linear
classifiers can be written as:

E(Y, X, W) = D(Y, f(W ′X))

where f is a monotonically increasing function.

in the following, we assume Y = −1 for class 1,
and Y = +1 for class 2.

Y. LeCun: Machine Learning and Pattern Recognition – p. 3/21

Linear Regression

L(W) =
∑

i[E(Y i, Xi, W) + log
∫

exp(−E(Y, X i, W))dY]

R = W ′X

E(Y, X, W) = D(Y, R) = 1
2 ||Y −R||2

L(W) =
∑

i D(Y i, W ′Xi)− Constant

∂L
∂W

=
∑

i
∂D(Y i,R)

∂R
∂R
∂W

∂L
∂W

=
∑

i
∂D(Y i,R)

∂R

∂(W ′Xi)
∂W

=
∑

i(R− Y i)Xi

descent: W ←W + η(Y i −R)Xi

Y. LeCun: Machine Learning and Pattern Recognition – p. 4/21

Perceptron

L(W) =
∑

i E(Y i, Xi, W)−minY E(Y, Xi, W)

R = W ′X

E(Y, X, W) = D(Y, R) = −Y R

Y ∈ {−1, +1}, hence minY −Y R = −sign(R)R
where sign(R) = 1 iff R > 0, and −1 otherwise.

L(W) =
∑

i−(Y i − sign(R))R

∂L
∂W

=
∑

i
∂−(Y i

−sign(R))R
∂R

∂R
∂W

∂L
∂W

=
∑

i−(Y i − sign(W ′Xi))Xi

descent: W ←W + η(Y i − sign(W ′Xi))Xi

Y. LeCun: Machine Learning and Pattern Recognition – p. 5/21

Logistic Regression

L(W) =
∑

i[E(Y i, Xi, W) + log(exp(E(−1, X i, W)) + exp(E(+1, X i, W)))]

R = 1
2W ′X

E(Y, X, W) = D(Y, R) = − 1
2Y R = − 1

2Y W ′X

L(W) =
∑

i log(1 + exp(−Y iW ′Xi))

∂L
∂W

=
∑

i
∂D(Y i,R)

∂R
∂S
∂W

∂L
∂W

=
∑

i−
(

Y i+1
2 − 1

1+exp(−W ′Xi)

)

Xi

descent: W ←W +η
(

Y i+1
2 − 1

1+exp(−W ′Xi)

)

Xi

Y. LeCun: Machine Learning and Pattern Recognition – p. 6/21

Limitations of Linear Machines

The Linearly separable dichotomies are the partitions
that are realizable by a linear classifier (the boundary be-
tween the classes is a hyperplane).

Y. LeCun: Machine Learning and Pattern Recognition – p. 7/21

Number of Linearly Separable Dichotomies

The probability that P samples of dimension N are linearly separable goes to zero
very quickly as P grows larger than N (Cover’s theorem, 1966).

Problem: there are 2P possible
dichotomies of P points.

Only about N are linearly separable.

If P is larger than N , the probability that
a random dichotomy is linearly separable is
very, very small.

Y. LeCun: Machine Learning and Pattern Recognition – p. 8/21

Example of Non-Linearly Separable Dichotomies

Some seemingly simple dichotomies are
not linearly separable

Question: How do we make a given prob-
lem linearly separable?

Y. LeCun: Machine Learning and Pattern Recognition – p. 9/21

Making N Larger: Preprocessing

Answer 1: we make N larger by
augmenting the input variables with new
“features”.

we map/project X from its original
N -dimensional space into a higher
dimensional space where things are more
likely to be linearly separable, using a
vector function Φ(X).

E(Y, X, W) = D(Y, R)

R = f(W ′V)

V = Φ(X)

Y. LeCun: Machine Learning and Pattern Recognition – p. 10/21

Adding Cross-Product Terms

Polynomial Expansion.

If our original input variables are
(1, x1, x2), we construct a new feature
vector with the following components:

Φ(1, x1, x2) = (1, x1, x2, x
2
1, x

2
2, x1x2)

i.e. we add all the cross-products of the
original variables.

we map/project X from its original N -
dimensional space into a higher dimen-
sional space with N(N +1)/2 dimensions.

Y. LeCun: Machine Learning and Pattern Recognition – p. 11/21

Polynomial Mapping

o

Many new functions are now separable with the
new architecture.

With cross-product features, the family of class
boundaries in the original space is the conic
sections (ellipse, parabola, hyperbola).

to each possible boundary in the original space
corresponds a linear boundary in the transformed
space.

Because this is essentially a linear classifier with
a preprocessing, we can use standard linear learn-
ing algorithms (perceptron, linear regression, logis-
tic regression...).

Y. LeCun: Machine Learning and Pattern Recognition – p. 12/21

Problems with Polynomial Mapping

We can generalize this idea to higher degree polynomials, adding cross-product
terms with 3, 4 or more variables.

Unfortunately, the number of terms is the number of combinations d choose N ,
which grows like Nd, where d is the degree, and N the number of original
variables.

In particular, the number of free parameters that must be learned is also of order
Nd.

This is impractical for large N and for d > 2.

Example: handwritten digit recognition (16x16 pixel images). Number of
variables: 256. Degree 2: 32,896 variables. Degree 3: 2,796,160. Degre 4:
247,460,160.....

Y. LeCun: Machine Learning and Pattern Recognition – p. 13/21

Next Idea: Tile the Space

place a number of equally-spaced “bumps” that cover the entire input space.
For classification, the bumps can be
Gaussians

For regression, the basis functions can be
wavelets, sine/cosine, splines (pieces of
polynomials)....

problem: this does not work with more
than a few dimensions.

The number of bumps necessary to cover an
N dimensional space grows exponentially
with N .

Y. LeCun: Machine Learning and Pattern Recognition – p. 14/21

Sample-Centered Basis Functions (Kernels)

Place the center of a basis function around each training sample. That way, we only
spend resources on regions of the space where we actually have training samples.

Discriminant function:

f(X, W) =

k=P
∑

k=1

WkK(X, Xk)

K(X, X ′) often takes the form of a radial
basis function:
K(X, X ′) = exp(b||X −X ′||2) or a
polynomial K(X, X ′) = (X.X ′ + 1)m

This is a very common architecture, which can
be used with a number of energy functions.

In particular, this is the architecture of the so-
called Support Vector Machine (SVM), but the
energy function of the SVM is a bit special. We
will study it later in the course.

Y. LeCun: Machine Learning and Pattern Recognition – p. 15/21

The Kernel Trick

If the kernel function K(X, X ′) verifies
the Mercer conditions, then there exist a
mapping Φ, such that
Φ(X).Φ(X ′) = K(X, X ′).

The Mercer conditions are that K must be
symmetric, and must be positive definite
(i.e K(X, X) must be positive for all X).

In other words, if we want to map our X
into a high-dimensional space (so as to
make them linearly separable), and all we
have to do in that space is compute dot
products, we can take a shortcut and
simply compute K(X1, X2) without going
through the high-dimensional space.

This is called the “kernel trick”. It is used in
many so-called Kernel-based methods, in-
cluding Support Vector Machines.

Y. LeCun: Machine Learning and Pattern Recognition – p. 16/21

Examples of Kernels

Quadratic kernel: Φ(X) = (1,
√

2x1,
√

2x2,
√

2x1x2, x2
1, x

2
2) then

K(X, X ′) = Φ(X).Φ(X ′) = (X.X ′ + 1)2

Polynomial kernel: this generalizes to any degree d. The kernel that corresponds
to Φ(X) bieng a polynomial of degree d is
K(X, X ′) = Φ(X).Φ(X ′) = (X.X ′ + 1)d.

Gaussian Kernel:
K(X, X ′) = exp(−b||X −X ′||2)

This kernel, sometimes called the Gaussian Radial Basis Function, is very
commonly used.

Y. LeCun: Machine Learning and Pattern Recognition – p. 17/21

Sparse Basis Functions

Place the center of a basis function around
areas containing training samples.

Idea 1: use an unsupervised clustering
algorithm (such as K-means or mixture of
Gaussians) to place the centers of the basis
functions in areas of high sample density.

Idea 2: adjust the basis function centers
through gradient descent in the objective
function.

The discriminant function F is:

F (X, W, U1, . . . , UK) =
k=K
∑

k=1

WkK(X, Uk)

Y. LeCun: Machine Learning and Pattern Recognition – p. 18/21

Supervised Adjustment of the RBF Centers

To adjust the U ’s we must compute the
partial derivatives of L with respect to the
U ’s.

by posing and Vk = K(X, Uk), and

R =
∑k=K

k=1 WkVk we can write:

∂L(W)

∂U j
=

∂L(W)

∂R

∂R

∂Vj

∂Vj

∂Uj

Which comes down to:

∂L(W)

∂U j
=

∂L(W)

∂R
Wj

∂K(X, Uj)

∂Uj

Now, there is a very general method for dealing with those multiple applications of
chain rule. We will see that next time.

Y. LeCun: Machine Learning and Pattern Recognition – p. 19/21

Other Idea: Random Directions

Partition the space in lots of little domains by
randomly placing lits of hyperplanes.

Use many variables of the type q(W kX), where q
is the threshold function (or some other squashing
function) and Wk is a randomly picked vector.

This is the original Perceptron.

Without the non-linearity, the whole system
would be linear (product of linear operations), and
therefore would be no more powerful than a linear
classifier.

problem: a bit of a wishful thinking, but it works
occasionally.

Y. LeCun: Machine Learning and Pattern Recognition – p. 20/21

Neural Net with a Single Hidden Layer

A particularly interesting type of basis function is the sigmoid unit: Vk = tanh(U ′kX)

a network using these basis functions,

whose output is R =
∑k=K

k=1 WkVk is
called a single hidden-layer neural
network.

Similarly to the RBF network, we can
compute the gradient of the obejctive
function with respect to the Uk:

∂L(W)

∂U j
=

∂L(W)

∂R
Wj

∂tanh(U ′

jX)

∂Uj

=
∂L(W)

∂R
Wjtanh′(U ′

jX)X ′

Any well-behaved function can be approximated as close as we wish by such networks
(but K might be very large).

Y. LeCun: Machine Learning and Pattern Recognition – p. 21/21

	Energy-Based Feed-Forward Supervised Learning
	Linear Machines
	Linear Regression
	Perceptron
	Logistic Regression
	Limitations of Linear Machines
	Number of Linearly Separable Dichotomies
	Example of Non-Linearly Separable Dichotomies
	Making N Larger: Preprocessing
	Adding Cross-Product Terms
	Polynomial Mapping
	Problems with Polynomial Mapping
	Next Idea: Tile the Space
	Sample-Centered Basis Functions (Kernels)
	The Kernel Trick
	Examples of Kernels
	Sparse Basis Functions
	Supervised Adjustment of the RBF Centers
	Other Idea: Random Directions
	Neural Net with a Single Hidden Layer

