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Energy-Based Feed-Forward Supervised Learning

L) =SB XL W) + %log / exp(—BE(Y. X*, W))dY] + H(W)

Learning comes down to finding the W that
minimizes an objective function averaged over a
training set.

A feed-forward supervised system parameterizes
E as follows:

E(Y,X,W) = D(Y,F(X,W))

where F'(X, W) is a suitably chosen discriminant
function parameterized by W, and D is an
approrpiately chosen dissimilarity measure.

A popular example would be

E(Y7X7 W) — ||Y_F(X7 W)H2
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Linear Machines

The learning algorithms we have seen so far
(perceptron, linear regression, logistic regression)
are of that form, with the assumption that
F(X,W) only depends on the dot product of W
and X.

In other words, The E function of linear
classifiers can be written as:

EY,X,W)=D(, f(W'X))

where f is a monotonically increasing function.

In the following, we assume Y = —1 for class 1,
and Y = +1 for class 2.
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Linear Regression

W R=WX
= E(Y,X,W)=D(Y,R)=3|lY - R||?
mL(W)=>.DY", W X")— Constant

oL OD(Y',R) OR
"o = D OR oW

OD(Y* R) O(W'X? i\ Yi
.g_v%/:Zi (8R ) (8W ):Zi(R_Y)X

W descent: W «— W +n(Y* — R) X"
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Per ceptron

S CE(YL XL W)

— miny E(Y, X', W)

mR=W'X
W EY,X,W)=D(Y,R) = —-YR

WY e{-1,+1}, hence miny —Y R = —sign(R)R
where sign(R) = 1 iff R > 0, and —1 otherwise.

WLW) =3, —(Y" —sign(R))R

m oL =y, 0— (YZ—Slgn(R))R OR

ow ow
WAL =N (Y- sugn(W’Xi))Xi

W descent: W «— W + n(Y" — sign(W' X*)) X"
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L ogistic Regression

mR=1IWX
®EY,X,W)=D({Y,R)=—-1YR=—1YW'X
mL(W) =73 log(l+ exp(—Y'W’'X"))

m L ¥ OD(Y',R) 88

ow 7 OR ow
OL __ _(Y'41 1 i
- oW — L ( 2 1+exp(—W’X’5)) X

W descent: W «— W+n (% — 1—|—exp(iW’Xi)) X
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Limitations of Linear M achines

The Linearly separable dichotomies are the partitions
that are realizable by a linear classifier (the boundary be-
tween the classes is a hyperplane).
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Number of Linearly Separable Dichotomies

The probability that P samples of dimension NV are linearly separable goes to zero
very quickly as P grows larger than V (Cover’s theorem, 1966).

frob {'l:!urll’ kf‘lfﬂlzolc)
;- Problem: there are 2% possible

dichotomies of P points.

Only about NV are linearly separable.

If P is larger than NV, the probability that
a random dichotomy is linearly separable is
very, very small.
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Example of Non-Linearly Separable Dichotomies

Some seemingly simple dichotomies are
not linearly separable

Question: How do we make a given prob-
lem linearly separable?
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Making /N Larger: Preprocessing

- Answer 1: we make NV larger by
augmenting the input variables with new
“features”.

we map/project X from its original
N-dimensional space into a higher
dimensional space where things are more
likely to be linearly separable, using a

vector function ®(X).
E(Y,X,W)=D(Y,R)
R=f(W'V)

V =o(X)
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Adding Cross-Product Terms

Polynomial Expansion.

If our original input variables are
(1,z1,x2), we construct a new feature
vector with the following components:

®(1,z1,22) = (1,21, T2, ], T35, T122)

I.e. we add all the cross-products of the
original variables.

we map/project X from its original N-
dimensional space into a higher dimen-
sional space with N (NN + 1)/2 dimensions.
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Polynomial M apping

Many new functions are now separable with the
new architecture.

With cross-product features, the family of class
boundaries in the original space is the conic
sections (ellipse, parabola, hyperbola).

to each possible boundary in the original space
corresponds a linear boundary in the transformed
space.

Because this is essentially a linear classifier with
a preprocessing, we can use standard linear learn-
Ing algorithms (perceptron, linear regression, logis-
tic regression...).
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Problemswith Polynomial M apping

We can generalize this idea to higher degree polynomials, adding cross-product
terms with 3, 4 or more variables.

Unfortunately, the number of terms is the number of combinations d choose IV,

which grows like N¢, where d is the degree, and N the number of original
variables.

In particular, the number of free parameters that must be learned is also of order
N¢,
This is impractical for large /N and for d > 2.

Example: handwritten digit recognition (16x16 pixel images). Number of
variables: 256. Degree 2: 32,896 variables. Degree 3: 2,796,160. Degre 4.
247,460,160.....
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Next |dea: Tilethe Space

place a number of equally-spaced “bumps” that cover the entire input space.
For classification, the bumps can be

Gaussians

fP. (p,_ (1)3 4)" For regression, the basis functions can be

wavelets, sine/cosine, splines (pieces of
polynomials)....

problem: this does not work with more
than a few dimensions.

The number of bumps necessary to cover an
’( N dimensional space grows exponentially
with V.
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Sample-Centered Basis Functions (Kernels)

Place the center of a basis function around each training sample. That way, we only
spend resources on regions of the space where we actually have training samples.
Discriminant function:

£

k=P
FX, W) =) WpK(X,X")
k=1

K (X, X") often takes the form of a radial
basis function:

K(X,X'") =exp(b]|X — X'||?) ora
polynomial K (X, X') = (X. X'+ 1)™

This is a very common architecture, which can
be used with a number of energy functions.

In particular, this is the architecture of the so-
called Support Vector Machine (SVM), but the
energy function of the SVM is a bit special. We
will study it later in the course.
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TheKernd Trick

If the kernel function K (X, X') verifies
' the Mercer conditions, then there exist a
ﬁ ¢'(I ') mapping ®, such that
O(X).o(X') = K(X,X').
The Mercer conditions are that K must be
x"- symmetric, and must be positive definite
tf)(i‘) (i.e K (X, X) must be positive for all X).

In other words, if we want to map our X
HI ,_' Into a high-dimensional space (so as to
5 make them linearly separable), and all we

@ Dian have to do in that space is compute dot

products, we can take a shortcut and
simply compute K (X!, X?2) without going

xl P through the high-dimensional space.
K(K; This is called the “kernel trick”. Iti1s used in

' : many so-called Kernel-based methods, in-
cluding Support Vector Machines.
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Examples of Kernels

Quadratic kernel: ®(X) = (1,v2x1,v2x9, V22122, 22, 22) then
KX, X)=®X).®X') = (X.X"+1)

Polynomial kernel: this generalizes to any degree d. The kernel that corresponds
to ®(X) bieng a polynomial of degree d is
KX, XN =®(X).o(X') = (X.X"+1)4
Gaussian Kernel:
K(X,X') = exp(-0[| X — X'[|*)

This kernel, sometimes called the Gaussian Radial Basis Function, is very
commonly used.
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Spar se Basis Functions

Place the center of a basis function around
areas containing training samples.

Idea 1: use an unsupervised clustering
algorithm (such as K-means or mixture of
Gaussians) to place the centers of the basis
functions in areas of high sample density.

Idea 2: adjust the basis function centers
through gradient descent in the objective
function.

The discriminant function F' Is:

F(X,W,U%,.. Z WeK(X,U")
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Supervised Adjustment of the RBF Centers

To adjust the U’s we must compute the
partial derivatives of L with respect to the
U’s.

by posing and V;, = K(X,U*), and

R = Z’,jj{ W Vi we can write:

OL(W)  OL(W) R V;
Ui~ OR 0V, U,

Which comes down to:

OL(W)  OL(W) o 0K (X,Uj)

ousi  OR 7 oU;
Now, there is a very general method for dealing with those multiple applications of
chain rule. We will see that next time.
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Other ldea: Random Directions

Partition the space in lots of little domains by
randomly placing lits of hyperplanes.

Use many variables of the type ¢(W* X)), where ¢
Is the threshold function (or some other squashing
function) and W is a randomly picked vector.

This is the original Perceptron.

Without the non-linearity, the whole system
would be linear (product of linear operations), and
therefore would be no more powerful than a linear
classifier.

problem: a bit of a wishful thinking, but it works
occasionally.
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Neural Net with a Single Hidden Layer

A particularly interesting type of basis function is the sigmoid unit: V;, = tanh(U’*X)
a network using these basis functions,
whose output is R = 37 =1 W}, Vj is
called a single hidden-layer neural

network.

Similarly to the RBF network, we can
compute the gradient of the obejctive

function with respect to the U*:

OL(W) _ (9L(W)W'8tanh(U;X)
ouJ OR 7 oU;

OL(W
= 8(R )thcmh’(U]’-X)X’

Any well-behaved function can be approximated as close as we wish by such networks
(but K might be very large).
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