## MACHINE LEARNING AND PATTERN RECOGNITION

Spring 2004, Lecture 4 :
Intro to Gradient-Based Learning I:
Beyond Linear Classifiers
Yann LeCun
The Courant Institute, New York University http://yann.lecun.com

## Energy-Based Feed-Forward Supervised Learning

$$
L(W)=\sum_{i}\left[E\left(Y^{i}, X^{i}, W\right)+\frac{1}{\beta} \log \int \exp \left(-\beta E\left(Y, X^{i}, W\right)\right) d Y\right]+H(W)
$$



- Learning comes down to finding the $W$ that minimizes an objective function averaged over a training set.
- A feed-forward supervised system parameterizes $E$ as follows:

$$
E(Y, X, W)=D(Y, F(X, W))
$$

where $F(X, W)$ is a suitably chosen discriminant function parameterized by $W$, and $D$ is an approrpiately chosen dissimilarity measure.

- A popular example would be

$$
E(Y, X, W)=\| \underset{X}{ } \mid
$$

## Linear Machines



- The learning algorithms we have seen so far (perceptron, linear regression, logistic regression) are of that form, with the assumption that $F(X, W)$ only depends on the dot product of $W$ and $X$.
In other words, The $E$ function of linear classifiers can be written as:

$$
E(Y, X, W)=D\left(Y, f\left(W^{\prime} X\right)\right)
$$

where $f$ is a monotonically increasing function.
$\square$ in the following, we assume $Y=-1$ for class 1 , and $Y=+1$ for class 2 .

## Linear Regression

$$
L(W)=\sum_{i}\left[E\left(Y^{i}, X^{i}, W\right)+\log \int \exp \left(-E\left(Y, X^{i}, W\right)\right) d Y\right]
$$



- $R=W^{\prime} X$

■ $E(Y, X, W)=D(Y, R)=\frac{1}{2}\|Y-R\|^{2}$
$\square(W)=\sum_{i} D\left(Y^{i}, W^{\prime} X^{i}\right)-$ Constant
$\square \frac{\partial L}{\partial W}=\sum_{i} \frac{\partial D\left(Y^{i}, R\right)}{\partial R} \frac{\partial R}{\partial W}$
$\square \frac{\partial L}{\partial W}=\sum_{i} \frac{\partial D\left(Y^{i}, R\right)}{\partial R} \frac{\partial\left(W^{\prime} X^{i}\right)}{\partial W}=\sum_{i}\left(R-Y^{i}\right) X^{i}$
$\square$ descent: $W \leftarrow W+\eta\left(Y^{i}-R\right) X^{i}$

## Perceptron

$$
L(W)=\sum_{i} E\left(Y^{i}, X^{i}, W\right)-\min _{Y} E\left(Y, X^{i}, W\right)
$$



- $R=W^{\prime} X$

■ $E(Y, X, W)=D(Y, R)=-Y R$
■ $Y \in\{-1,+1\}$, hence $\min _{Y}-Y R=-\operatorname{sign}(R) R$ where $\operatorname{sign}(R)=1$ iff $R>0$, and -1 otherwise.
$\square L(W)=\sum_{i}-\left(Y^{i}-\operatorname{sign}(R)\right) R$
$\square \frac{\partial L}{\partial W}=\sum_{i} \frac{\partial-\left(Y^{i}-\operatorname{sign}(R)\right) R}{\partial R} \frac{\partial R}{\partial W}$
$\square \frac{\partial L}{\partial W}=\sum_{i}-\left(Y^{i}-\operatorname{sign}\left(W^{\prime} X^{i}\right)\right) X^{i}$
descent: $W \leftarrow W+\eta\left(Y^{i}-\operatorname{sign}\left(W^{\prime} X^{i}\right)\right) X^{i}$

## Logistic Regression

$$
L(W)=\sum_{i}\left[E\left(Y^{i}, X^{i}, W\right)+\log \left(\exp \left(E\left(-1, X^{i}, W\right)\right)+\exp \left(E\left(+1, X^{i}, W\right)\right)\right)\right]
$$



■ $R=\frac{1}{2} W^{\prime} X$
$E(Y, X, W)=D(Y, R)=-\frac{1}{2} Y R=-\frac{1}{2} Y W^{\prime} X$
$L(W)=\sum_{i} \log \left(1+\exp \left(-Y^{i} W^{\prime} X^{i}\right)\right)$

- $\frac{\partial L}{\partial W}=\sum_{i} \frac{\partial D\left(Y^{i}, R\right)}{\partial R} \frac{\partial S}{\partial W}$
$\square \frac{\partial L}{\partial W}=\sum_{i}-\left(\frac{Y^{i}+1}{2}-\frac{1}{1+\exp \left(-W^{\prime} X^{i}\right)}\right) X^{i}$
$\square$ descent: $W \leftarrow W+\eta\left(\frac{Y^{i}+1}{2}-\frac{1}{1+\exp \left(-W^{\prime} X^{i}\right)}\right) X^{i}$


## Limitations of Linear Machines



The Linearly separable dichotomies are the partitions that are realizable by a linear classifier (the boundary between the classes is a hyperplane).

## Number of Linearly Separable Dichotomies

The probability that $P$ samples of dimension $N$ are linearly separable goes to zero very quickly as $P$ grows larger than $N$ (Cover's theorem, 1966).

$\square$ Problem: there are $2^{P}$ possible dichotomies of $P$ points.

- Only about $N$ are linearly separable.
- If $P$ is larger than $N$, the probability that a random dichotomy is linearly separable is very, very small.


## Example of Non-Linearly Separable Dichotomies



- Some seemingly simple dichotomies are not linearly separable
$\square$ Question: How do we make a given problem linearly separable?


## Making $N$ Larger: Preprocessing



- Answer 1: we make $N$ larger by augmenting the input variables with new "features".
- we map/project $X$ from its original $N$-dimensional space into a higher dimensional space where things are more likely to be linearly separable, using a vector function $\Phi(X)$.
$E(Y, X, W)=D(Y, R)$
■ $\quad$ =f( $\left.W^{\prime} V\right)$
$\square V=\Phi(X)$


## Adding Cross-Product Terms



- Polynomial Expansion.
- If our original input variables are
$\left(1, x_{1}, x_{2}\right)$, we construct a new feature vector with the following components:

$$
\Phi\left(1, x_{1}, x_{2}\right)=\left(1, x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}\right)
$$

i.e. we add all the cross-products of the original variables.
$\square$ we map/project $X$ from its original $N$ dimensional space into a higher dimensional space with $N(N+1) / 2$ dimensions.

## Polynomial Mapping



- Many new functions are now separable with the new architecture.
- With cross-product features, the family of class boundaries in the original space is the conic sections (ellipse, parabola, hyperbola).
$\square$ to each possible boundary in the original space corresponds a linear boundary in the transformed space.
- Because this is essentially a linear classifier with a preprocessing, we can use standard linear learning algorithms (perceptron, linear regression, logistic regression...).


## Problems with Polynomial Mapping

We can generalize this idea to higher degree polynomials, adding cross-product terms with 3,4 or more variables.

- Unfortunately, the number of terms is the number of combinations $d$ choose $N$, which grows like $N^{d}$, where $d$ is the degree, and $N$ the number of original variables.

In particular, the number of free parameters that must be learned is also of order $N^{d}$.
$\square$ This is impractical for large $N$ and for $d>2$.
$\square$ Example: handwritten digit recognition (16x16 pixel images). Number of variables: 256. Degree 2: 32,896 variables. Degree 3: 2,796,160. Degre 4: 247,460,160.....

## Next Idea: Tile the Space

place a number of equally-spaced "bumps" that cover the entire input space.
For classification, the bumps can be Gaussians
For regression, the basis functions can be wavelets, sine/cosine, splines (pieces of polynomials)....
$\square$ problem: this does not work with more than a few dimensions.

- The number of bumps necessary to cover an $N$ dimensional space grows exponentially with $N$.


## Sample-Centered Basis Functions (Kernels)

Place the center of a basis function around each training sample. That way, we only spend resources on regions of the space where we actually have training samples.

Discriminant function:


$$
f(X, W)=\sum_{k=1}^{k=P} W_{k} K\left(X, X^{k}\right)
$$

■ $K\left(X, X^{\prime}\right)$ often takes the form of a radial basis function:
$K\left(X, X^{\prime}\right)=\exp \left(b\left\|X-X^{\prime}\right\|^{2}\right)$ or a polynomial $K\left(X, X^{\prime}\right)=\left(X . X^{\prime}+1\right)^{m}$
$\square$ This is a very common architecture, which can be used with a number of energy functions.
$\square$ In particular, this is the architecture of the socalled Support Vector Machine (SVM), but the energy function of the SVM is a bit special. We will study it later in the course.

## The Kernel Trick



- If the kernel function $K\left(X, X^{\prime}\right)$ verifies the Mercer conditions, then there exist a mapping $\Phi$, such that
$\Phi(X) . \Phi\left(X^{\prime}\right)=K\left(X, X^{\prime}\right)$.
$\square$ The Mercer conditions are that $K$ must be symmetric, and must be positive definite (i.e $K(X, X)$ must be positive for all $X$ ).
$\square$ In other words, if we want to map our $X$ into a high-dimensional space (so as to make them linearly separable), and all we have to do in that space is compute dot products, we can take a shortcut and simply compute $K\left(X^{1}, X^{2}\right)$ without going through the high-dimensional space.
- This is called the "kernel trick". It is used in many so-called Kernel-based methods, including Support Vector Machines.


## Examples of Kernels

$\square$ Quadratic kernel: $\Phi(X)=\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, \sqrt{2} x_{1} x 2, x_{1}^{2}, x_{2}^{2}\right)$ then

$$
K\left(X, X^{\prime}\right)=\Phi(X) \cdot \Phi\left(X^{\prime}\right)=\left(X \cdot X^{\prime}+1\right)^{2}
$$

- Polynomial kernel: this generalizes to any degree $d$. The kernel that corresponds to $\Phi(X)$ bieng a polynomial of degree $d$ is
$K\left(X, X^{\prime}\right)=\Phi(X) . \Phi\left(X^{\prime}\right)=\left(X . X^{\prime}+1\right)^{d}$.
- Gaussian Kernel:

$$
K\left(X, X^{\prime}\right)=\exp \left(-b\left\|X-X^{\prime}\right\|^{2}\right)
$$

This kernel, sometimes called the Gaussian Radial Basis Function, is very commonly used.

## Sparse Basis Functions



- Place the center of a basis function around areas containing training samples.
$\square$ Idea 1: use an unsupervised clustering algorithm (such as K-means or mixture of Gaussians) to place the centers of the basis functions in areas of high sample density.
$\square$ Idea 2: adjust the basis function centers through gradient descent in the objective function.

The discriminant function $F$ is:

$$
F\left(X, W, U^{1}, \ldots, U^{K}\right)=\sum_{k=1}^{k=K} W_{k} K\left(X, U^{k}\right)
$$

## Supervised Adjustment of the RBF Centers



- To adjust the $U$ 's we must compute the partial derivatives of $L$ with respect to the U's.
$\square$ by posing and $V_{k}=K\left(X, U^{k}\right)$, and $R=\sum_{k=1}^{k=K} W_{k} V_{k}$ we can write:

$$
\frac{\partial L(W)}{\partial U^{j}}=\frac{\partial L(W)}{\partial R} \frac{\partial R}{\partial V_{j}} \frac{\partial V_{j}}{\partial U_{j}}
$$

$\square$ Which comes down to:

$$
\frac{\partial L(W)}{\partial U^{j}}=\frac{\partial L(W)}{\partial R} W_{j} \frac{\partial K\left(X, U_{j}\right)}{\partial U_{j}}
$$

Now, there is a very general method for dealing with those multiple applications of chain rule. We will see that next time.

## Other Idea: Random Directions



- Partition the space in lots of little domains by randomly placing lits of hyperplanes.
- Use many variables of the type $q\left(W^{k} X\right)$, where $q$ is the threshold function (or some other squashing function) and $W_{k}$ is a randomly picked vector.
- This is the original Perceptron.
- Without the non-linearity, the whole system would be linear (product of linear operations), and therefore would be no more powerful than a linear classifier.
problem: a bit of a wishful thinking, but it works occasionally.


## Neural Net with a Single Hidden Layer

A particularly interesting type of basis function is the sigmoid unit: $V_{k}=\tanh \left(U^{\prime k} X\right)$

$\square$ a network using these basis functions, whose output is $R=\sum_{k=1}^{k=K} W_{k} V_{k}$ is called a single hidden-layer neural network.

- Similarly to the RBF network, we can compute the gradient of the obejctive function with respect to the $U^{k}$ :

$$
\begin{gathered}
\frac{\partial L(W)}{\partial U^{j}}=\frac{\partial L(W)}{\partial R} W_{j} \frac{\partial \tanh \left(U_{j}^{\prime} X\right)}{\partial U_{j}} \\
=\frac{\partial L(W)}{\partial R} W_{j} \tanh ^{\prime}\left(U_{j}^{\prime} X\right) X^{\prime}
\end{gathered}
$$

Any well-behaved function can be approximated as close as we wish by such networks (but $K$ might be very large).

