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Review of Probability and Statistics: Definitions

Random Variable X: a variable that represents a particular measurement/state of
the world.

The probability that X has value x (the result of a drawing, a sampling, or the
result of a measurement) is denoted P (x), or sometimes P (X = x).

The space of outcomes x, can be discrete, or continuous, possibly
multidimensional.

A discrete distribution associates a number 0 ≤ P (x) ≤ 1 to each possible
outcome x, such that

∑
x P (x) = 1.

A probability Density Function (PDF) associates a positive number P (x) to
each point in the space of outcomes (can be larger than 1) such that∫

P (x)dx = 1.

The probability that X belongs to a set S is equal to
Prob(X ∈ S) =

∫
x∈S

P (x)dx.
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Expectations

Expected value of a function f of a random variable X (a.k.a. the "average
value"):

E(f) =
∑

x

f(x)P (x)

in the continuous case:

E(f) =

∫
f(x)P (x)dx

Example 1, the mean of X: E(X) =
∑

x xP (x)

Example 2, the variance of X:
V ar(X) = E [(X − E(X))2] =

∑
x(x− E(X))2P (x)

Example 3, the covariance of a multidimensional random variable (dimension
N ): Cov(X) = E(X.X ′) =

∑
x x.x′P (x) x.x′ is the outer product of x by

itself: [x.x′]ij = xixj , a symmetric N ×N matrix.
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Joint Probability

Two random variables X and Y (e.g. X = percentage of alcohol in the blood of
a person today (continuous), Y = 1 if the person is in a car crash, 0 otherwise).

The joint probability is the function that maps an (x, y) pair to the probability
that X = x and Y = y for a person.

Dependency: Y is more likely to be 1 if X is large, and X is more likely to be
large if Y is 1.

Marginal probabilities:

P (x) =
∑

y

P (x, y)

P (y) =

∫
P (x, y)dx
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Conditional Probability

Probability that someone was in a car crash knowing that the person was drunk
= of all the persons who were drunk, what proportion had a car crash:

P (y|x) = p(x, y)/p(x)

P (y|x) is read "Probability of y given x.

Normalization:
∑

y P (y|x) = 1
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Conditional Independence

Independence: X and Y are independent iff P (x, y) = P (x)P (y), in other words
P (x|y) = P (x) and P (y|x) = P (y).
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Special Distributions: Exponential Family

A very general family of parameterized distributions.

P (x|ω) = h(x) exp(ω′T (x)−A(ω)) = 1
Z(ω)h(x) exp(ω′T (x))

ω the “natural” parameter

Z(ω) = exp(A(ω)) is the partition function

T (x) a sufficient statistic: all you need to know about x to compute its
distribution with a linear combination.
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Special Distributions: Gaussian

For a continuous random variable: P (x|m, v) = 1√
2πv

exp(− 1
2v (x−m)2)

m is the mean, v is the variance.

exponential family with
w = [m/v,−1/2v]

T (x) = [x, x2]

Z(w) =
√

v exp(m/2v)

h(x) = 1/
√

2π
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Special Distributions: Multivariate Gaussian

For a continuous random variable (X , and M are N -dimensional vectors, V is
an N ×N matrix):
P (X|M, V ) = |2πV |−1/2 exp(−1/2(X −M)′V −1(X −M))

|2πV | is the determinant of 2πV .

exponential family with

w = [V −1M,−1/2V −1]

T (x) = [X, XX ′]

Z(w) = |V |/2 exp(1/2M ′V −1M)

h(x) = (2π)−N/2

Important facts: marginals of Gaussians are Gaussians, products of Gaussians
are Gaussians, conditionals of Gaussians are Gaussians.
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Bayes’ Rules

From the definition of conditional probabilities P (x, y) = P (x|y)P (y).

Therefore P (x, y) = P (x|y)P (y) = P (y|x)P (x).

Hence

P (x|y) =
P (y|x)P (x)

P (y)

Or equivalently:

P (x|y) =
P (y|x)P (x)∑
x′ P (y|x′)P (x′)

This is a convenient way of reversing conditional probabilities.
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More General Forms of Bayes’ Rules

Chain rule (any ordering works):

P (x, y, z) = P (x|y, z)P (y|z)P (z) = P (z|y, x)P (y|x)P (x) = ...

In general: P (x1...xn) =
∏

i P (xi|x1...xi−1) for any ordering 1..n.

Conditional Bayes inversion:

P (x|y, z) =
P (y|x, z)P (x, z)

P (y, z)

Chain rule and maginalization in one fell swoop (feels like a matrix-vector or
matrix-matrix product):

P (y) =

∫
x

P (y|x)P (x)

P (y|z) =

∫
x

P (y|x)P (x|z)
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Probabilistic Models: Bayes Decision Theory

A common (but according to some, flawed) way of building a classifier is to estimate
the density function for each class P (X|C1) and P (X|C2). When a new input comes
in, compute the posterior probability of the class conditioned on the input using
Bayes rule:

P (C1|X) =
P (X|C1)P (C1)

P (X)

This can be rewritten as:

P (C1|X) =
P (X|C1)P (C1)∑

C P (X|C)P (C)

The same can be done for class C2. Then, pick the class that has the largest posterior
probability for the given X .
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Minimum Bayes Error Rate

The area of the intersection between the two curves (assuming those curves are the real
ones, not just estimates) is the Minimum Bayes Error Rate. Inputs that fall into that
region are always classified wrong by the Bayes decision rule.
CAUTION: in practice we never know the “real” distributions, so we can never really
compute the Bayes error rate, except in datasets that we cook up artificially by
sampling from known distributions.
In real life there is no such thing as “the distribution from which the data is sampled”,
we are just given a finite number of samples, period.
Assuming that our samples are drawn independently from some distribution is a
convenient (sometimes necessary) hypothesis, but we must keep in mind that it’s
wrong.
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Generative Classifiers, Flawed?

A common criticism of Bayesian classifiers and other generative models is that they
require us to solve a much more complicated problem than we have to. We are asked
to solve several density estimation problems over the whole space just to come up with
a decision boundary.
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Discriminative Classifiers

Discriminative classifiers (such as the Perceptron) do not attempt to estimate the class
densities, but simply try to find an suitable boundary (or simpy try to estimate the class
posterior probabilities without going through the class densities).
This is a considerably easier problem than estimating densities over the whole space.
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Naive Bayes Classifier

The Naive Bayes classifiers is a very simple (but way suboptimal) linear
classifier. It assumes independence of the input variables.

Simple setting: two class classification problem

Probability that X belong to class C1:

P (C1|X) = P (X|C1)P (C1)/P (X)

Where P (X) is simply P (X|C1)P (C1) + P (X|C2)P (C2).

Let’s assume that the input variables xi are independent, we can factorize
P (X|C1) as a product

∏
i P (xi|C1):

P (C1|X) =

∏
i P (xi|C1)P (C1)

P (X)

Y. LeCun: Machine Learning and Pattern Recognition – p. 16/23



Naive Bayes Classifier

Estimating the terms P (xi|C1) = P (xi, C1)/P (C1) is simply performed by
counting of how many times the i-th input variable takes the value xi when the
sample category is C1, and dividing by the number of samples of class C1.

To classify, we can drop the constant term P (X) (which does not change from
class to class). Taking logs we can write:

logP (C1|X) = logP (C1) +
∑

i

log[P (xi|C1)]

If the variables xi are binary (1 or 0) we can write this as

logP (C1|X) = logP (C1)+
∑

i

(1−xi) log[P (xi = 0|C1)]+xi log[P (xi = 1|C1)]
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Naive Bayes Classifier

regrouping the terms:

logP (C1|X) = logP (C1) +
∑

i

log[P (xi = 0|C1)]+

∑
i

(log[P (xi = 1|C1)]− log[P (xi = 0|C1)])xi

This is just like a linear classifier of the form W0 + W ′X with funny weights
and biases. Naive Bayes classifiers rarely work well compared to discriminative
linear classifiers.
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Estimating Probabilities

Estimating probabilities cannot be performed without a model, a set of
independence hypotheses, and a well defined set of measurements.

Since those choices are somewhat arbitrary, there is no such thing as “The
Probability” of a real event, there are only estimates conditioned upon arbitrary
assumptions.

Example: I toss a fair coin, here is the result:
110111001110111101000000110100...

Now, predict the next toss.

Method 0 [charming na iveté]: you told me it was a fair coin, so 0 and 1 are
equiprobable.

Method 1 [independent draws]: I assume that the draws are independent (the
next bit does not directly depend upon the previous bits). I Just compute the
empirical ratio of 1 and 0 and predict accordingly.
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Estimating Probabilities

110111001110111101000000110100...

Method 2 [extra measurements]: If I use my secret super-duper measurement
device, I can get a glimpse of the state of the universe within cubic kilometer
around you (including your brain). With that, I can predict which side the coin
will fall on with quasi-certainty (except for quantum interactions with the rest of
the universe). Each bit now depends on 10100 known bits (and an even larger
number of unknown but largely irrelevant bit) through a horribly complicated
function.

Method 3 [internal structure/dependencies]: I know you cooked up this
example. Those bits would not have something to do with the decimals of π by
any chance?

Depending on your hypotheses and assumptions, your probability estimate may be
very different from mine.
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Probabilistic Linear Classification: Logistic Regression

We want to classify vectors into two classes C1 and C2.

We assume that the quantity log P (C1|X,W )
P (C2|X,W ) is parameterized as a linear

combination of the inputs (W is the parameter vector):

log
P (C1|X, W )

P (C2|X, W )
= W ′X

since we only have two classes, we can write P (C2|X, W ) = 1− P (C1|W, X)

hence
P (C1|X, W )

1− P (C1|X, W )
= exp(W ′X)

solving for P (C1|X, W ), we get:

P (C1|X, W ) = σ(−W ′X) =
1

1 + exp(−W ′X)

σ is called the logistic function.
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Estimating a Logistic Regression

How do we compute the W that best approximates the desired distribution of
P (C|X)?

We measure the “distance” between the desired distribution (which is given by
the samples) and the proposed distribution.

A good dissimilarity measure between two discrete distributions P and Q is the
Kullback-Leibler Divergence:

KL(Q, P ) = −
∑

x

Q(x) log(P (x)/Q(x))

in our case:

L(W ) = −
∑

i

yi log(P (C1|Xi)) + (1− yi) log(1− P (C1|X i))

where yi is 1 if sampl X i is of class 1, and 0 if it is of class 2.
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Estimating a Logistic Regression

Logistic regression objective function:

L(W ) = −
∑

i

yi log(P (C1|Xi)) + (1− yi) log(1− P (C1|X i))

where yi is 1 if sampl X i is of class 1, and 0 if it is of class 2.

We can minimize L(W ) by gradient descent:

W ←W − η
∂L(W )

∂W

with
∂L(W )

∂W
=

∑
i

(yi − σ(W ′Xi))Xi

This looks a lot like the Perceptron learning rule
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