
MACHINE LEARNING AND

PATTERN RECOGNITION

Spring 2004, Lecture 1:

Introduction and Basic Concepts

Yann LeCun
The Courant Institute,
New York University
http://yann.lecun.com

Y. LeCun: Machine Learning and Pattern Recognition – p. 1/33

Before we get started...

Course web site: http://www.cs.nyu.edu/ yann

Evaluation: Assignements (mostly small programming projects) [50%] + larger
final project [50%].

Course mailing list:
http://www.cs.nyu.edu/mailman/listinfo/g22_3033_014_sp04

Text Books: mainly “Element of Statistical Learning” by Hastie, Tibshirani and
Friedman, but a number of other books can be used reference material: “Neural
Networks for Pattern Recognition” by Bishop, and “Pattern Classification” by
Duda, Hart, and Stork....

... but we will mostly use resarch papers and tutorials.

Prerequisites: linear algebra, probability theory. You might want to brush up on
multivariate calculus (partial derivatives ...), optimization (least square
method...), and the method of Lagrange multipliers for constrained optimization.

Programming projects: can be done in any language, but I STRONGLY
recommend to use Lush (http://lush.sf.net).

Y. LeCun: Machine Learning and Pattern Recognition – p. 2/33

What is Learning?

Learning is improving performance through experience

Pretty much all animals with a central nervous system are capable of learning
(even the simplest ones).

What does it mean for a computer to learn? Why would we want them to learn?
How do we get them to learn?

We want computers to learn when it is too difficult or too expensive to program
them directly to perform a task.

Get the computer to program itself by showing examples of inputs and outputs.

In reality: write a “parameterized” program, and let the learning algorithm find
the set of parameters that best approximates the desired function or behavior.

Y. LeCun: Machine Learning and Pattern Recognition – p. 3/33

Different Types of Learning

Supervised Learning: given training examples of inputs and corresponding
outputs, produce the “correct” outputs for new inputs. Example: character
recognition.

Reinforcement Learning (similar to animal learning): an agent takes inputs from
the environment, and takes actions that affect the environment. Occasionally,
the agent gets a scalar reward or punishment. The goal is to learn to produce
action sequences that maximize the expected reward (e.g. driving a robot
without bumping into obstacles). I won’t talk much about that in this course.

Unsupervised Learning: given only inputs as training, find structure in the
world: discover clusters, manifolds, characterize the areas of the space to which
the observed inputs belong (e.g.: clustering, probability density estimation,
novelty detection, compression, embedding).

Y. LeCun: Machine Learning and Pattern Recognition – p. 4/33

Related Fields

Statistical Estimation: statistical estimation attempts to solve the same problem
as machine learning. Most learning techniques are statistical in nature.

Pattern Recognition: pattern recognition is when the output of the learning
machine is a set of discrete categories.

Neural Networks: neural nets are now one many techniques for statistical
machine learning.

Data Mining: data mining is a large application area for machine learning.

Adaptive Optimal Control: non-linear adaptive control techniques are very
similar to machine learning methods.

Machine Learning methods are an essential ingredient in many fields:
bio-informatics, natural language processing, web search and text classification,
speech and handwriting recognition, fraud detection, financial time-series
prediction, industrial process control, database marketing....

Y. LeCun: Machine Learning and Pattern Recognition – p. 5/33

Applications

handwriting recognition, OCR: reading checks and zipcodes, handwriting
recognition for tablet PCs.

speech recognition, speaker recognition/verification

security: face detection and recognition, event detection in videos.

text classification: indexing, web search.

computer vision: object detection and recognition.

diagnosis: medical diagnosis (e.g. pap smears processing)

adaptive control: locomotion control for legged robots, navigation for mobile
robots, minimizing pollutant emissions for chemical plants, predicting
consumption for utilites...

fraud detection: e.g. detection of “unusual” usage patterns for credit cards or
calling cards.

database marketing: predicting who is more likely to respond to an ad campaign.

(...and the antidote) spam filtering.

games (e.g. backgammon).

Financial prediction (many people on Wall Street use machine learning).
Y. LeCun: Machine Learning and Pattern Recognition – p. 6/33

Demos / Concrete Examples

Handwritten Digit Recognition: supervised learning for classification

Handwritten Word Recognition: weakly supervised learning for classification
with many classes

Face detection: supervised learning for detection (faces against everything else
in the world).

Object Recognition: supervised learning for detection and recognition with
highly complex variabilities

Robot Navigation: supervised learning and reinforcement learning for control.

Y. LeCun: Machine Learning and Pattern Recognition – p. 7/33

Two Kinds of Supervised Learning

Regression: also known as “curve fitting”
or “function approximation”. Learn a
continuous input-output mapping from a
limited number of examples (possibly
noisy).

Classification: outputs are discrete vari-
ables (category labels). Learn a decision
boundary that separates one class the the
other. Generally, a “confidence” is also de-
sired (how sure are we that the input be-
longs to the chosen category).

Y. LeCun: Machine Learning and Pattern Recognition – p. 8/33

Unsupervised Learning

Unsupervised learning comes down to this: if the input looks like the training samples,
output a small number, if it doesn’t, output a large number.

This is a horrendously ill-posed problem in high
dimension. To do it right, we must guess/discover
the hidden structure of the inputs. Methods differ
by their assumptions about the nature of the data.

A Special Case: Density Estimation. Find a
function f such f(X) approximates the
probability density of X , p(X), as well as
possible.

Clustering: discover “clumps” of points

Embedding: discover low-dimensional manifold
or surface near which the data lives.

Compression/Quantization: discover a function
that for each input computes a compact “code”
from which the input can be reconstructed.

Y. LeCun: Machine Learning and Pattern Recognition – p. 9/33

Learning is NOT Memorization

rote learning is easy: just memorize all the training examples and their
corresponding outputs.

when a new input comes in, compare it to all the memorized samples, and
produce the output associated with the matching sample.

PROBLEM: in general, new inputs are different from training samples.

The ability to produce correct outputs or behavior on previously unseen inputs is
called GENERALIZATION.

rote learning is memorization without generalization.

The big question of Learning Theory (and practice): how to get good
generalization with a limited number of examples.

Y. LeCun: Machine Learning and Pattern Recognition – p. 10/33

A Simple Trick: Nearest Neighbor Matching

Instead of insisting that the input be exactly
identical to one of the training samples, let’s
compute the “distances” between the input and all
the memorized samples (aka the prototypes).

1-Nearest Neighbor Rule: pick the class of the
nearest prototype.

K-Nearest Neighbor Rule: pick the class that has
the majority among the K nearest prototypes.

PROBLEM: What is the right distance measure?

PROBLEM: This is horrendously expensive if the
number of prototypes is large.

PROBLEM: do we have any guarantee that we get
the best possible performance as the number of
training samples increases?

Y. LeCun: Machine Learning and Pattern Recognition – p. 11/33

How Biology Does It

The first attempts at machine learning in the 50’s,
and the development of artificial neural networks
in the 80’s and 90’s were inspired by biology.

Nervous Systems are networks of neurons
interconnected through synapses

Learning and memory are changes in the
“efficacy” of the synapses

HUGE SIMPLIFICATION: a neuron computes a
weighted sum of its inputs (where the weights are
the synaptic efficacies) and fires when that sum
exceeds a threshold.

Hebbian learning (from Hebb, 1947): synaptic
weights change as a function of the pre- and
post-synaptic activities.

orders of magnitude: each neuron has 103 to 105

synapses. Brain sizes (number of neurons): house
fly: 105; mouse: 5.106, human: 1010.

Y. LeCun: Machine Learning and Pattern Recognition – p. 12/33

The Linear Classifier

Historically, the Linear Classifier was designed as a highly simplified model of the
neuron (McCulloch and Pitts 1943, Rosenblatt 1957):

y = f(

i=N
∑

i=0

wixi)

With f is the threshold function: f(z) = 1 iff
z > 0, f(z) = −1 otherwise. x0 is assumed
to be constant equal to 1, and w0 is interpreted
as a bias.
In vector form: W = (w0, w1....wn), X =
(1, x1...xn):

y = f(W ′X)

The hyperplane W ′X = 0 partitions the space
in two categories. W is orthogonal to the hy-
perplane.

Y. LeCun: Machine Learning and Pattern Recognition – p. 13/33

Vector Inputs

With vector-based classifiers such as the linear classifier, we must represent objects in
the world as vectors.
Each component is a measurement or a feature of the the object to be classified.
For example, the grayscale values of all the pixels in an image can be seen as a (very
high-dimensional) vector.

Y. LeCun: Machine Learning and Pattern Recognition – p. 14/33

A Simple Idea for Learning: Error Correction

We have a training set consisting of P input-output
pairs: (X1, d1), (X2, d2),(XP , dP).
A very simple algorithm:
- show each sample in sequence repetitively
- if the output is correct: do nothing
- if the output is -1 and the desired output +1: increase
the weights whose inputs are positive, decrease the
weights whose inputs are negative.
- if the output is +1 and the desired output -1: de-
crease the weights whose inputs are positive, increase
the weights whose inputs are negative.
More formally, for sample p:

wi(t + 1) = wi(t) + (dp
i − f(W ′Xp))xp

i

This simple algorithm is called the Perceptron learn-
ing procedure (Rosenblatt 1957).

Y. LeCun: Machine Learning and Pattern Recognition – p. 15/33

The Perceptron Learning Procedure

Theorem: If the classes are linearly separable (i.e. separable by a hyperplane), then
the Perceptron procedure will converge to a solution in a finite number of steps.
Proof: Let’s denote by W ∗ a normalized vector in the direction of a solution. Suppose
all X are within a ball of radius R. Without loss of generality, we replace all Xp

whose dp is -1 by −Xp, and set all dp to 1. Let us now define the margin
M = minpW

∗Xp. Each time there is an error, W.W ∗ increases by at least
X.W ∗ ≥ M . This means Wfinal.W

∗ ≥ NM where N is the total number of weight
updates (total number of errors). But, the change in square magnitude of W is
bounded by the square magnitude of the current sample Xp, which is itself bounded
by R2. Therefore, |Wfinal|2 ≤ NR2. combining the two inequalities

Wfinal.W
∗ ≥ NM and |Wfinal| ≤

√
NR, we have

Wfinal.W
∗/|Wfinal| ≥

√

(N)M/R

. Since the left hand side is upper bounded by 1, we deduce

N ≤ R2/M2

Y. LeCun: Machine Learning and Pattern Recognition – p. 16/33

Good News, Bad News

The perceptron learning procedure can learn a linear decision surface, if such a
surface exists that separates the two classes. If no perfect solution exists, the
perceptron procedure will keep wobbling around.
What class of problems is Linearly Separable, and learnable by a Perceptron?
There are many interesting applications where the data can be represented in a way
that makes the classes (nearly) linearly separable: e.g. text classification using “bag of
words” representations (e.g. for spam filtering).
Unfortunately, the really interesting applications are generally not linearly separable.
This is why most people abandonned the field between the late 60’s and the early 80’s.
We will come back to the linear separability problem later.

Y. LeCun: Machine Learning and Pattern Recognition – p. 17/33

Regression, Mean Squared Error

Regression or function approximation is finding a
function that approximates a set of samples as well
as possible.
Classic example: linear regression. We are given a
set of pairs (X1, y1), (X2, y2)....(XP , yP), and we
must find the parameters of a linear function that best
approximates the samples in the least square sense,
i.e. that minimizes the energy function E(W):

W ∗ = argminW E(W) = argminW

1

2P

P
∑

i=1

(yi − W ′Xi)2

The solution is characterized by:

∂E(W)

∂W
= 0 ⇔ 1

P

P
∑

i=1

(yi − W ′Xi)Xi′ = 0

Y. LeCun: Machine Learning and Pattern Recognition – p. 18/33

Regression, Solution

P
∑

i=1

yiXi − [

P
∑

i=1

XiXi′]W = 0

This is a linear system that can be solved with a num-
ber of traditional numerical methods (although it may
be ill-conditioned or singular).

If the covariance matrix [
∑P

i=1
XiXi′] is non sin-

gular, the solution is:

W∗ = [

P
∑

i=1

XiXi′]−1

P
∑

i=1

yiXi

Y. LeCun: Machine Learning and Pattern Recognition – p. 19/33

Regression, Iterative Solution

Gradient descent minimization:

wk(t + 1) = wk(t) − η
∂

∑P

i=1
(di − W (t)′Xi)2

∂wk(t)

Batch gradient descent:

wk(t + 1) = wk(t) − η

P
∑

i=1

(di − W (t)′Xi)xi
k

Converges for small values of η (more on this later).

Y. LeCun: Machine Learning and Pattern Recognition – p. 20/33

Regression, Online/Stochastic Gradient

Online gradient descent, aka Stochastic Gradient:

wk(t + 1) = wk(t) − η(t)(di − W (t)′Xi)xi
k

No sum! The average gradient is replaced by its instantaneous value. The convergence
analysis of this is very tricky. One condition for convergence is that η(t) is decreased
according to a schedule such that
∑

t η(t)2 converges while
∑

t η(t) diverges.
One possible such sequence is η(t) = η0/t.
In many practical situation stochastic gradient is enormously faster than batch
gradient.
We can also use second-order methods, but we will keep that for later.

Y. LeCun: Machine Learning and Pattern Recognition – p. 21/33

MSE for Classification

We can use the Mean Squared Error criterion with a linear regressor to perform
classification (although this is clearly suboptimal).

Simply perform linear regression with binary targets: +1 for class 1, -1 for class
2.

This is called the Adaline algorithm (Widrow-Hoff 1960).

Y. LeCun: Machine Learning and Pattern Recognition – p. 22/33

A Richer Class of Functions

What if we know that our data is not linear? We
can use a richer family of functions, e.g. polyno-
mials, sum of trigonometric functions....
PROBLEM: if the family of functions is too rich,
we run the risk of overfitting the data. If the fam-
ily is too restrictive we run the risk of not being
able to approximate the training data very well.
QUESTIONS: How can we choose the richness
of the family of functions? Can we predict the per-
formance on new data as a function of the training
error and the richness of the family of functions?
Simply minimizing the training error may not give
us a solution that will do well on new data.

Y. LeCun: Machine Learning and Pattern Recognition – p. 23/33

Training Error, Test Error

What we are really interested in is good performance on unseen data. In practice, we
often partition the dataset into two subsets: a training set and a test set. We train the
machine on the training set, and measure its performance on the test set.
The error on the training set (the average of the energy function) is often called the
emprical risk. The average energy on an infinite test set drawn from the same
distribution as the training set is often called the expected risk.
The number of training samples at which the training error leaves zero is called the
“capacity” of the learning machine. Y. LeCun: Machine Learning and Pattern Recognition – p. 24/33

Learning Curves

Simple models: may not do well on the training data, but the difference between
training and test error quickly drops.
Rich models: will learn the training data, but the difference between training and test
error can be large.
How much a model deviates from the desired mapping on average is called the bias of
the family of functions. How much the output of a model varies when different
drawings of the training set are used is called the variance. There is a dilemma
between bias and variance. Y. LeCun: Machine Learning and Pattern Recognition – p. 25/33

Optimal Over-Parameterization

The curve of training error and test error for a given training set size, as a function of
the capacity of the machine (the richness of the class of function) has a minimum. The
is the optimal size for the machine.

Y. LeCun: Machine Learning and Pattern Recognition – p. 26/33

A Penalty Term

What we need to minimize is an energy function of the form:

L(W) =
P

∑

i=1

E(W, Xi, di) + H(W)

where E is the conventional energy function (e.g. squared error) and H(W) is a
regularization term that penalizes solutions taken from “rich” families of function
more than those taken from “leaner” families of functions.

How we pick this penalty term is entirely up to us! No theory will tell us how to
build the penalty function.

By picking the family of function and the penalty term, we choose an inductive
bias, i.e. we privilege certain solutions over others.

Sometimes we do not need to add an explicit penalty term because it is built
implicitely into the optimization algorithm (more on this later).

Y. LeCun: Machine Learning and Pattern Recognition – p. 27/33

Induction Principles

Assuming our samples are drawn from a distribution P (X, Y), what we really want to
minimize with respect to our paramter W is the expected risk:

Eexpected =

∫

E(W, X, Y)P (X, Y)dXdY.

but we do not have access to P (X, Y), we only have access to a few training samples
drawn from it.
The method we will employ to replace the expected risk by another quantity that we
can minimize is called the induction principle.
The simplest induction principle is called Empirical Risk Minimization and simply
consists in minimizing the training error.
The alternative, which is to include a penalty term to penalize members of “rich”
families of functions is called Structural Risk Minimization.

Y. LeCun: Machine Learning and Pattern Recognition – p. 28/33

Examples of Penalty Terms

What about a regularization term that simply counts the number of free parameters in
the machine?
It works in some cases, but not in others. For example, the function a. sin(wx + b) has
only three parameters but can exactly fit as many points as we want. This is an
example of a very high-capacity function with just a few parameters:

Y. LeCun: Machine Learning and Pattern Recognition – p. 29/33

Examples of Penalty Terms

Ridge Regression: penalizes large values of the parameters.

L(W) =
1

2P

P
∑

i=1

(di − W ′Xi)2 + λ|W |2

Direct solution:

W∗ = [
1

P

P
∑

i=1

XiXi′ + λI]−1

P
∑

i=1

yiXi

Lasso: penalize all parameter values with a linear term (this tends to shrink small,
useless parameters to 0):

L(W) =
1

2P

P
∑

i=1

(di − W ′Xi)2 + λ|W |

Y. LeCun: Machine Learning and Pattern Recognition – p. 30/33

Minimum Description Length

A popular way of deriving penalty terms is the Minimum Description Length
Principle.

L(W) =

P
∑

i=1

E(W, Xi, di) + H(W)

The idea is to view the objective function as the number of bits necessary to transmit
the training data. The penalty term counts the number of bits to code the hypothesis
(e.g. the value of the parameter vector), and the error term counts the number of bits to
code the residual error (i.e. the difference between the predicted output and the real
output. Using efficient coding, the length of the code for a symbol is equal to the log
of the probability of that symbol.

Y. LeCun: Machine Learning and Pattern Recognition – p. 31/33

MDL: Learning as Compression

MDL comes from the idea that “compact” internal representations of a set of data are
preferable to non compact ones This principle is know as Occam’s Razor: do not
multiply hypotheses beyond the strict necessary.
Example:
complete this sequence: 01010101010101010.......
now complete that one : 01100010110010001......
The second sequence looks “random”, we cannot find a compact “theory” for it.
QUESTION: How do we measure randomness?
Sometimes, a simple rule exists but is very hard to find.
Example: 9265358979323846264338328.....
Can you guess?

Y. LeCun: Machine Learning and Pattern Recognition – p. 32/33

Measuring Randomness?

The Kolmogoroff/Chaitin/Solomonoff theory of complexity gives us a theoretical
framework:
The KCS complexity of a string of bits S relative to computer C is the length of the
shortest program that will output S when run on C.
Good news: the complexity given by two different universal computers differ at most
by a constant (the size of the program that will make one computer emulate the other).
Bad News 1: that constant can be very, very, very large. So in practice, there is no
absolute measure randomness for finite strings.
Bad New 2: the KCS complexity of a string is non-computable in general (you can’t
enumerate all the programs, because some won’t halt).
Although this is a very rich and cool theoretical concept, we can’t really use it in
practice.

Y. LeCun: Machine Learning and Pattern Recognition – p. 33/33

	Before we get started...
	What is Learning?
	Different Types of Learning
	Related Fields
	Applications
	Demos / Concrete Examples
	Two Kinds of Supervised Learning
	Unsupervised Learning
	Learning is NOT Memorization
	A Simple Trick: Nearest Neighbor Matching
	How Biology Does It
	The Linear Classifier
	Vector Inputs
	A Simple Idea for Learning: Error Correction
	The Perceptron Learning Procedure
	Good News, Bad News
	Regression, Mean Squared Error
	Regression, Solution
	Regression, Iterative Solution
	Regression, Online/Stochastic Gradient
	MSE for Classification
	A Richer Class of Functions
	Training Error, Test Error
	Learning Curves
	Optimal Over-Parameterization
	A Penalty Term
	Induction Principles
	Examples of Penalty Terms
	Examples of Penalty Terms
	Minimum Description Length
	MDL: Learning as Compression
	Measuring Randomness?

