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The Main Setup

• Three main steps:

1. Pre-processing (compiling) the graphical model to prepare for
inference: building the clique junction tree.

2. Conditioning on the evidence.

3. Marginalizing out the non-query nodes efficiently.
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Adjusting Clique Potentials

• The goal of the junction tree algorithm is to adjust the clique
potentials ψc given some evidence x̄E so that they are
unnormalized marginals:

ψC(xC) = p(xC, x̄E)

• Normally clique potentials do not correspond to marginals; some of
them must be conditionals.

• Example: ψAB = p(xA,xB) ; ψBC = p(xC|xB)
A B C

• We can always adjust the potentials to make them marginals (e.g.
above we could multiply by p(xB)) but then the product of
potentials will not be proportional to the joint probability.

• What can we do? Extend the representation!

Separator Potentials

• On each edge of the clique tree, we place a potential φS over the
variables in the intersection of the two adjacent cliques it joins.

• These intersections are called separator sets and are themselves
cliques (fully connected in the underlying graph) although of course
they are no longer maximal.

• Now our representation of the joint probability is defined as:

p(X) =

∏
C ψC(xC)

∏
S φS(xS)

where the normalizer is absorbed into a special separator φ�.
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Extended Representation

• Now we can have clique potentials proportional to marginals and a
representation of the joint distribution at the same time.

• e.g. p(xA,xB,xC) =
p(xA,xB)p(xB,xC)

p(xB)
A B C

• Furthermore, this extended representation still obeys the
Hammersly-Clifford theorem, i.e. it still represents exactly the same
family of distributions with the correct conditional independencies.

• Initialization? Set all separator potentials to be unity.

• What about division by zero? It will turn out that a separators is
only zero if both clique potentials it is connected to are also zero.
In this case we define the ratio to be zero.

Local Consistency

• Since cliques overlap, some variables appear in more than one
clique. If we sum out non-intersection variables, any pair of cliques
must give same marginals for nodes they have in common.

• Let us focus on local consistency: how to make two adjacent clique
agree on marginals over separator variables.

• Consider the following updates:

φ∗S =
∑

V \S

ψV ψ∗W =
φ∗S
φS
ψW ψ∗V = ψV

φ∗∗S =
∑

W\S

ψ∗W ψ∗∗W = ψ∗W ψ∗∗V =
φ∗∗S
φ∗S

ψ∗V

V S W

ΨV ΦS
ΨW

Update Effects

• After performing the updates on the previous slide, we are
guaranteed that ψ∗∗V and ψ∗∗W are consistent with respect to S:

∑

V \S

ψ∗∗V =
∑

V \S

φ∗∗S
φ∗S

ψ∗V =
φ∗∗S
φ∗S

∑

V \S

ψ∗V =
φ∗∗S
φ∗S

φ∗S = φ∗∗S =
∑

W\S

ψ∗∗W

• But the updates leave the joint distribution p(xW ,xV ) unchanged:
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Example
A B C

With no evidence.
initially: ψab = p(a, b) ψbc = p(c|b) φb = 1
updates:

φ∗b =
∑

a
p(a, b) = p(b)

ψ∗bc =
p(b)

1
p(c|b) = p(b, c)

With evidence a = 1.
initially: ψ̄ab = p(ā = 1, b) ψbc = p(c|b) φb = 1
updates:

φ∗b = p(ā = 1, b)

ψ∗bc = p(ā = 1, b)p(c|b) = p(ā = 1, b, c)



Clique Tree Propagation

• What happens when we have a tree of cliques instead of just a
pair? How can we achieve global consistency so that all cliques
containing a variable xi agree on its marginal p(xi)?

• Two things:

1. Arrange the cliques into a junction tree so that local consistency

implies global consistency.
We don’t need to consider all pairs of cliques that share variables.

2. Order updates to ensure that updates between V and W do not
ruin consistency between V and U previously achieved.
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When can one node safely pass a message to another?

Message-Passing-Protocol

A clique can send a message to a neighbour only when it has received

messages from all its other neighbours.

• This protocol maintains consistency.1

• Protocol is also realizable: designate one node of junction tree as
root. Pass messages inward to root and then back out to leaves.

Formally:
CollectEvidence(root);

DistributeEvidence(root);

CollectEvidence(node):
foreach child(node) {

Update(node,CollectEvidence(child)) };
return node;

DistributeEvidence(node):
foreach child(node) {

Update(child,node); DistributeEvidence(child)) };

(a) (b)

1Consider a message W → V . If V has already sent its message to W , then it must have received all its other messages. The current message W → V will achieve consistency and no

more messages will be exchanged. If V has not sent to W yet, it will wait until it has received all other messages and then send a final message to achieve consistency.

Junction Tree Correctness

• The key property of the junction tree is that local consistency

implies global consistency.

• In other words, conside a variable xi which appears in two cliques.
In a junction tree, it will also appear in every clique on the path
between those two and nowhere else.

• If the cliques along that path are pariwise consistent with respect to
xi then they will also be jointly consistent with respect to xi.

• Thus, running the pairwise message passing on a junction tree of
cliques will achieve local and global consistency. We can get the
same answer for xi by consulting any clique node containing xi.

• Futhermore, this answer will be exactly the correct marginal.

The Hugin Algorithm

• Compilation.

Moralization: For directed graphs, join parents and drop directions of links.
Triangulation: Many possible algorithms. Hard step.

Identification of maximal cliques: easy in triangulated graphs.
Construction of Junction Tree: maximal spanning tree over cliques using intersection size as weights.

• Introduction of evidence.

At every node where we have observed some data, take appropriate slice of potential.

• Initialization.

Each potential of original graph (possibly sliced) is multiplied onto exactly one clique of junction tree.
Separators are initialized to unity.

• Propagation of probabilities.

Pass messages according to MPP: designate root of clique tree and call CollectEvidence and
DistributeEvidence from root. For a message from V →W :

φ∗S =

∑

V \S

ψV ψ∗
W =

φ∗
S

φS

ψW

At termination, clique potentials and separator potentials are proportional to marginal probabilities of
cliques/separator sets given evidence. Further marginalization can be performed for singletons or subsets.



Shafer-Shenoy Algorithm

• It is possible to develop an alternate (but equivalent) algorithm in
which we don’t explicitly store the separator potentials φ.

• Instead, we work out what the multiplicative update to a clique
potential ψ would have been (by expressing separator potentials in
terms of clique potentials), and perform that update explicitly.

• The updates are expressed as “messages” from clique i to j:

µij =
∑

Ci\Cj

ψCi

∏

k 6=i

µki

• Once a clique has received messages from all its neighbours, we can
compute its marginal as the product of messages and evidence:

p(Ci) ∝ ψCi

∏

k 6=i

µki

Together, these two equations are the Shafer-Shenoy Algorithm.

Link between Shafer-Shenoy & Hugin

• Shafer-Shenoy looks a lot like belief propagation (sum-product).

• But we can relate it to the Hugin algorithm as follows:
Consider cliques V and W .
What is µvw were the “update factor” in the direction from
v → w?

• At the end of Shafer-Shenoy, the marginal would be the product of
the original potential, multiplied by all the update factors – just like
in the Hugin algorithm.

• So we just need to check that µvw defined as in SS:

µvw =
∑

Cv\Cw

ψCv

∏

k 6=v

µkv

are really equal to the update factors from Hugin.

Correctness of Shafer-Shenoy Messages

• Two cases:
-If the first update on the link vw was from v to w, then we want
µvw = φ∗/φ. If all the other messages coming into i are correct,
then using φ∗ =

∑
V \S ψV and the fact that the initial separator

potential is unity, we can see that µvw will be correct.
–Otherwise, we want µvw = φ∗∗/φ∗. Using the fact that

φ∗∗S =
∑
W\S

φ∗S
φS
ψW we can see again that the message will be

correct.

Remaining Issues (see book)

• Generalized Viterbi: replace sum with max in ψ, phi updates

• Computational Complexity

• Proofs:

– MPP on junction tree gives correct marginals.

– Many async. updates without MPP still achieve consistency.

– Extended representation obeys Hammersley-Clifford.

– Separator potentials are zero only when both cliques are.

– Decomposable ⇔ Triagulated ⇔ ∃Junction tree.

– Elimination performs triagulation.

– Maximal spanning tree with w = |S| is junction tree.


