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Junction Tree Algorithms

• We want to be able to condition on some “evidence” xE (observed
nodes) and compute the posterior probabilities of some “query”
nodes xF while marginalizing out “nuisance” nodes xR.

• We will focus on sets of nodes corresponding to maximal cliques of
the original undirected or moralized graphical model.

• Q: Why maximal cliques?
A: Because they are the sufficient statistics for learning with EM

if the joint distribution factors according to our
graphical model semantics.

• Junction tree algorithms are “tree-like” data structures and
message passing systems to do efficient inference even when the
underlying graph is not a tree.

The Main Setup

• Three main steps:

1. Pre-processing (compiling) the original graphical model to
prepare for inference: building the clique junction tree.

2. Conditioning on the evidence.

3. Marginalizing out the non-query nodes efficiently.
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Pre-Processing

The pre-processing step has several parts:

1. If the original graph is directed, moralize it. (easy)

2. Add edges until the graph is triangulated. (hard to do optimally)

3. Identify the maximal cliques. (easy if triangulated).

4. Arrange the cliques into a valid junction tree. (today)

5. Associate a potential function with each clique in this hypergraph,
and define the joint probability as the product of these potentials:

p(X) =
1

Z

∏

cliques c

ψc(xc) Z =
∑

X

∏
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ψc(xc)

very similar to setup for undirected models, except that the cliques
here are maximal, whereas in undirected graphs they might not be.

6. Initialize the clique potentials based on the parameters of the
underlying (directed or undirected) graphical model.



Reminder: Junction Tree Property

• Maximal cliques (post triangulation) are arranged into a clique tree.
Q: Which tree should we pick for correct calculations?
A: One in which local information transfer is sufficient to update all
necessary quantities consistently.

• KEY IDEA: not all clique trees are equal! If, for every variable, all
occurances of the variable appear in a connected subtree, then the
clique tree has the junction tree property, and this is very desirable.

• Formally: for every pair of cliques V,W all cliques on the unique
path b/w V and W contain V ∩W .
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e.g. this clique tree does not have the j-tree property (x3)

Not All Graphs Have Junction Trees

• Junction-tree inference algorithms will be based on maintaining
local pariwise consistency between cliques in the clique tree.
If the same variables appear in disconnected cliques their
representations will not be guaranteed to be correct.

• Consider the graph below, with 4 maximal cliques.

• No clique tree on these cliques has the junction tree-property.

• The elimination algorithm, with any ordering, would have created
at least one extra link.
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Triagulated ⇔ (∃ Junction Tree)

• Which graphs have junction trees?

• It turns out that having a junction tree is equivalent to another,
well know graph property: triangulation.

• Triangulated ≡ no undirected cycles of length > 3 containing only
edges between successor nodes.

• Examples:
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Constructing the Junction Tree: MWST

• Even for triangulated graphs, not every clique tree has the
junction tree property.
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• A junction tree is a maximum weight spanning tree where the
weights are the number of variables shared by two cliques.

• We can construct a junction tree using Kruskal’s or Prim’s
algorithms: at each step add an edge that has the most number of
variables in common, unless this would create a cycle.



Example: Trees with Hidden Nodes

• No moralization or triagulation necessary.

• Cliques are pairs of nodes.

• Potentials ψC initialized to parent-conditionals.

• Evidence will flow from leaves to root and then marginals will be
corrected on the way back down.

Manipulations on Clique Potentials

• Initialization: the clique potentials must be initialized so that they
represent the correct joint distribution.
We use the potentials or conditionals from the underlying graph,
assigning ambiguous potentials to one and only one clique.

• Conditioning on evidence: we must modify the initial potentials to
indicate the values for quantites have been observed.

• Marginalizing: efficiently sum (integrate) over non-evidence and
non-query nodes to return a conditional marginal over query nodes
given observed evidence. We will do this by passing messages on
the clique tree. Messages will have form of potentials.

• After conditioning and marginalization, the potential remaining on
any clique node C will be equal to the marginal probability
p(xC, xE), which can be converted to the “answer”
p(xC|xE) via local normalization.

Conditioning (introducing evidence)

• Conditioning is like “generalized indexing” or “slicing”.

• Product of potentials after conditioning must be ∝ p(xF |xE).

• “Evidence potential” approach: initialize any cliques containing
evidence nodes using ψC(xC) = ψC(xC)δ(xEC, x̄EC).

• This is correct, but gives us lots of zeros in our clique potentials
and thus wastes storage and computation (when we sum).

• Another approach: keep only cliques and potentials that reference
non-evidence nodes, using the correct “slice” of the original
potentials to initialize them:

p(xF ,xR|xE) ∝
∏

C∈F,R

ψC(xC∩F,R, x̄C∩E)

• This works, except that the product over these reduced potentials
will no longer be normalized.

Reduced Potential Set Method

• Assume xF empty for now: evidence xE; non-evidnce xR.

• For every clique potential, consider the subset of its variables on
which we are conditioning and take a “slice” of the potential
function by fixing those variables to their observed values.

• Thus, each clique becomes a function of the variables in the
intersection of its original variables and the non-evidence variables.

• Now take the product of these “reduced” clique potentials and we
get an unnormalized quantity proportional to p(xR, x̄E):

p(xR, x̄E) =
1

Z

∏

C∈R

ψC(xC∩R, x̄C∩E)

• The normalizer Z̄ for just these sliced potentials is now the
evidence probability p(x̄E). The conditional we want is
p(xR|x̄E) = p(xR, x̄E)/p(x̄E) = p(xR, x̄E)/Z̄



Example: two node binary model
A B A B

p(A,B) = p(A)p(B|A)

p(A = 1) = 0.8

p(B = 1|A = 1) = 0.7

p(B = 1|A = 0) = 0.4

ψ(A,B) =

[

.12 .08

.24 .56

]

Z = 1

Now, if we observe B = 1:

ψ̄(A) = [.08; .56]

Z̄ = .64 = p(B = 1)

p(A|B = 1) =
1

Z̄
ψ̄(A) = [.125; .875]

Next time: marginalization

• Now we know how to initialze potentials and condition on evidence
so that the product of potentials is always equal to the joint
probability or the conditional probability given evidence.

• Next step: efficiently sum over xR to get conditional marginal
p(xF |xE). Done by passing messages on the clique tree that
modify the potentials at each node until they are correct.

• After conditioning and marginalization, the potential remaining on
any clique node C will be equal to the marginal probability
p(xC, xE), which can be converted to the “answer”
p(xC|xE) via local normalization.

• Generally we will only compute single clique marginals on the clique
tree since these “single nodes” (cliques) are sufficient statistics for
learning. But it is possible to have multiple cliques as query and
compute pairwise (or higher) clique marginals.


