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Motivation

B Time series prediction:
® stock values.
® economic variables.
e weather: e.g., local and global temperature.
* sensors: Internet-of-Things.
* earthquakes.
* energy demand.
* signal processing.

* sales forecasting.
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Challenges

B Standard Supervised Learning:
e |[ID assumption.
e Same distribution for training and test data.
e Distributions fixed over time (stationarity).

—Pp none of these assumptions holds
for time series!
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Outline

B |ntroduction to time series analysis.
B |earning theory for forecasting non-stationary time series.
B Algorithms for forecasting non-stationary time series.

B Time series prediction and on-line learning.
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Introduction to Time
Series Analysis



Classical Framework

B Postulate a particular form of a parametric model that is
assumed to generate data.

B Use given sample to estimate unknown parameters of the
model.

B Use estimated model to make predictions.
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Autoregressive (AR) Models

B Definition: AR(p) model is a linear generative model based
on the pth order Markov assumption:

p
Vt, Y = Z a;Yi—; + €
i=1

where

® ¢S arezero mean uncorrelated random variables with
variance o.

® ai,...,a, are autoregressive coefficients.

e Y, is observed stochastic process.
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Moving Averages (MA)

B Definition: MA(g) model is a linear generative model for
the noise term based on the qth order Markov assumption:

q
\V/t, Y;g — €¢ -+ Z bjet—j
71=1

where

® b1,...,b, are moving average coefficients.
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ARMA mode]

(Whittle, 1951; Box & Jenkins, 1971)

B Definition: ARMA(p,q) model is a generative linear model
that combines AR(p) and MA(q) models:

p

q
Vt,Y: = Z a;Yi—i + € + Z bj€t—j.

i=1 j=1
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ARMA




Stationarity

®m Definition: a sequence of random variables Z = {Z,} T is
stationary if its distribution is invariant to shifting in time.

same distribution

VRN £\,

(Zt7 R Zt—l—m) (Zt—l—ka SRR Zt—l—m—|—k)
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Weak Stationarity

®m Definition: a sequence of random variables Z = {Z,} T is
weakly stationary if its first and second moments are
invariant to shifting in time, that s,

e [E[Z:]is independent of .
o E[Z,Z,_;] = f(j)for some function f.
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Lag Operator

B |agoperator ¢ is defined by £Y; = Y;_1.

® ARMA model in terms of the lag operator:
p . q .
(1 — Zaiﬂ) th — (1 + Z bj£]> €¢

i=1 j=1

® (Characteristic polynomial
p
P(z)=1- Zaizi
1=1

can be used to study properties of this stochastic process.
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Weak Stationarity of ARMA

B Theorem: an ARMA(p, q) process is weakly stationary if the
roots of the characteristic polynomial P(z) are outside the
unit circle.
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Proof

B |f roots of the characteristic polynomial are outside the unit
circle then:

P(z) = 1—Zaizi =c(y1 —2)--- (Y, — 2)
=c(1=91'2) (1 =9, 2)

where |¢;| > 1forall i =1,...,p and ¢, ¢ are constants.
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Proof

B Therefore, the ARMA(p,q) process

(1220:@@2@) <1+Zb £9>

1=1
admits MA(oo) representation:

-1 —1 q
Y; = (1 — zp;ls) - (1 — ¢p1£> (1 + Z bjsj)et
j=1

where

—Wﬁ) e > (—vi'e)
k=0

is well-defined since |, | < 1.
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Proof

B Therefore, it suffices to show that

Is weakly stationary.
B The mean is constant
= ¢;Ele—j] =0
=0

B Covariance function E[Y;Y;_;] only depends on the lag I:

EYYid = 305 oudsBlerserioil = 3 6550
j=0

k=0 7=0
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ARIMA

B Non-stationary processes can be modeled using processes
whose characteristic polynomial has unit roots.

B Characteristic polynomial with unit roots can be factored:
P(z) = R(2)(1 — 2)”
where R(z) has no unit roots.

m Definition: ARIMA(p, D, ¢) model is an ARMA(p,q) model
for (1 — £)"Y;:

p D q
(1 - Za¢£i> (1 —~ 2) Y = (1 + ij£j>et,
i=1 j=1
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Other Extensions

B Further variants:

mode
mode

mode

S Wit
S Wit

S Wit

N seasonal components (SARIMA).

N side information (ARIMAX).

N long-memory (ARFIMA).

multi-variate time series models (VAR).

models with time-varying coefficients.

other non-linear models.
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Modeling Variance

(Engle, 1982; Bollerslev, 1986)

B Definition: the generalized autoregressive conditional
heteroscedasticity GARCH(p,¢) model is an ARMA(p,q)
model for the variance o; of the noise term e;:

p—1 qg—1
2 2 2
Vi, 0p 1 = w+ E a;0;_; + E Bi€i_
i=0 §=0

where

® ¢S are zero mean Gaussian random variables with
variance o; conditioned on {Y:—1,Y:_o,...}

* w > 0isthe mean parameter.
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GARCH Process

GARCH Process
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State-Space Models

B Continuous state space version of Hidden Markov Models:
Xit+1 = BXy 4+ Uy,
Vi = AX; + ¢
where
e X,is an n-dimensional state vector.
®* Y; isan observed stochastic process.
* A and B are model parameters.

e U,ande¢;are noise terms.

Theory and Algorithms for Forecasting Non-Stationary Time Series page 26



State-Space Models

Local level state-space model

.'}'l..‘a. A.l'

-10
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Estimation

B Different methods for estimating model parameters:
e Maximum likelihood estimation:

¢ Requires further parametric assumptions on the noise
distribution (e.g. Gaussian).

e Method of moments (Yule-Walker estimator).
e (Conditional and unconditional least square estimation.

e Restricted to certain models.
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Invertibility of ARMA

B Definition: an ARMA(p,q) process is invertible if the roots of
the polynomial

q
Q(z) =1+ b2’
j=1

are outside the unit circle.
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Learning guarantee

B Theorem: assume Y; ~ARMA(P,9) is weakly stationary and
invertible. Let ardenote the least square estimate of
a=(ai,...,a,)and assume that p is known. Then,
converges in probability to zero.

ar — a

B Similar results hold for other estimators and other models.
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Notes

B Many other generative models exist.
B [earning guarantees are asymptotic.
B Model needs to be correctly specified.

B Non-stationarity needs to be modeled explicitly.
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Theory



Time Series Forecasting

B Training data: finite sample realization of some stochastic
process,

(Xlayl)a"'7(XT7YT) cZ=4Xx).

® |oss function: L: H x Z — [0,1], where H is a hypothesis
set of functions mapping from X' to ).

B Problem: find h € Hwith small path-dependent expected
loss,
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Standard Assumptions

B Stationarity:
4 same distribution

~
N N

(Zt7 I Zt—l—m) (Zt—l—ka ) Zt—l—m—l—k)

| Mixing:

dependence between events decaying with k.

— @

B A

_—

n n+k
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Learning Theory

B Stationary and Sg-mixing process: generalization bounds.
e PAC-learning preserved in that setting (vidyasagar, 1997).
* VC-dimension bounds for binary classification (vu, 1994).
® covering number bounds for regression (Meir, 2000).

¢ Rademacher complexity bounds for general loss
functions (VM and Rostamizadeh, 2000).

* PAC-Bayesian bounds (Alquier et al., 2014).
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Learning Theory

B Stationarity and mixing: algorithm-dependent bounds.
e AdaBoost (Lozano et al,, 1997).
e general stability bounds (viM and Rostamizadeh, 2010).
* regularized ERM (Steinwart and Christmann, 2009).

e stable on-line algorithms (Agarwal and Duchi, 2013).
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Problem

B Stationarity and mixing assumptions:
e often do not hold (think trend or periodic signals).
® not testable.

* estimating mixing parameters can be hard, even if
general functional form known.

* hypothesis set and loss function ignored.
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Questions

B |s |earning with general (non-stationary, non-mixing)
stochastic processes possible?

B (Can we design algorithms with theoretical guarantees?

-—P need a new tool for the analysis.
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Key Quantity - Fixed h

key difference

< O\

L(h,Zi7T) L(h,ZT)
_—nmm— —
1 t T T+ 1

T
—Pp Key average quantity: ‘ ! Z [ (h,Zi) — L(h, Z’i_l)} |

t=1
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Discrepancy

B Definition:

| T

_ Ty t—1

A—}sbug L(h,Z7) 7 E L(h,Z7 7).
< t=1

® captures hypothesis set and loss function.
® can be estimated from data, under mild assumptions.

* A =0inlID case or for weakly stationary processes with
linear hypotheses and squared |0ss (K and MM, 2014).
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Weighted Discrepancy

B Definition: extension to weights(q1,...,97) = q.

Ala) = sup |£( L(h,Z7) - th L(h,Zi)

e strictly extends discrepancy definition in drifting (viv and
Mufioz Medina, 2012) or domain adaptation (Mansour, MM,
Rostamizadeh 2009; Cortes and MM 2011, 2014); or for binary loss
(Devroye et al., 1996; Ben-David et al., 2007).

® admits upper bounds in terms of relative entropy, or in
terms of p-mixing coefficients of asymptotic stationarity
for an asymptotically stationary process.
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Estimation

® Decomposition: A( ) < Ag(q) + AS.

A(q) <Sup( ZL’ JZEh th Zt]‘)

heH t=T—s+1

+ sup (c(h, Z1) 1 ET: L(h, z';l)).

heH t=T—s+1

1 T—s T T+1

"
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Learning Guarantee

B Theorem: for anyd > 0, with probability at least 1 — ¢, for
allh € Handa >0,

E[ 1(04, ga Z)]
5 )

T
L(h,Z7) < ZQtL(ha Zi) + Aq) + 200+ HQH2\/2 log

t=1

where G = {z+— L(h,z): h € H}.
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Bound with Emp. Discrepancy

B Corollary: for anyé > 0, with probability at least 1 — §, for
allh € Hand a >0,

T
L(hZ1) <Y aL(h, Zt) + Ala) + Ay + 4a
t=1
2E |Ni(a,G,2)]

+ [Hfﬂlz + |la — ust} \/2 log — 5 :

R T

A(q) = sup ( Z L(h,Z) =Y qL(h, Zt))
t=1

heH t=T—s+1
u, unif. dist. over [T'— s, 7]

G={z— L(h,z): he H}.

where

\
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Weighted Sequential a-Cover

(Rakhlin et al., 2010; K and MM, 2015)
B Definition: let z be a Zvalued full binary tree of depth 7.

Then, a set of trees V is an l;-norm q-weighted a-cover of a
function class Gon z if

Vg € G, Vo € {£1}7,3v e V: Zm — g(ze(0))] < HqH
t=1 o0
g(21),v1
—1 +1
9(22)702 9(23)7’03
—1 +1 —1 +1

g(212), v12
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Sequential Covering Numbers

B Definitions:
® sequential covering number:
Ni(a,G,z) = min{|V|: V [;-norm g-weighted a-cover of G}.

® expected sequential covering number: E [N (o, G,2)].

ZNZ,T

Kzl)

0z, @2
~ D3 |Zl ZQ ~ 3( ‘Zl, Zé) @trlbUtIOn based@

Theory and Algorithms for Forecasting Non-Stationary Time Series page 46




Proof

B Key quantities: ®(Z7) = sup ( (h, Zr) thL h, Z:) )
heH

A(q):sggﬁhZT th ztl‘

® Chernoff technique: forany ¢ > 0,

P [CI)(ZT — A(q) > €]

<P | sup Z q:|[L(h,Z ") — L(h, Zy)] > e] (sub-add. of sup)
hEH
_ t—1y te
=P | exp (tslelgz% h,Z7 ") L(h,Zt)]) > e ] (t > 0)
e K | exp (t sup Z q:[L(h,ZY) — L(h, Zt)]) . (Markov’s ineq.)
heH %
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Symmetrization

m Key tool: decoupled tangent sequence Z’; associated to /AR

 Z;and Z;] i.i.d. given Zt~ .
P [®(Z{ — A(q) > ¢)]

< e—te E exp t sup Z qt [E(h, Z’i_l) _ L(h, Zt)])

—e " | exp

<e K |exp (Jensen’s ineq.)

(
(

— e E | exp (t sup E {ET: gt |L(h, Z;) — L(h, Z})] ‘ Zﬂ )] (lin. of expectation)
(

Theory and Algorithms for Forecasting Non-Stationary Time Series page48



Symmetrization

P [2(2] — A() > o]

exp (t sglgz qe|L(h, Z;) — L(h, Zt)])

teE

—e¢ " E E|exp (t sup ZC]tUt (h,zé(a))—L(h,Zt(O'D])

(z,2') O hEH

(tangent seq. prop.)

—e ' E E|exp(tsu ot L(h, z +t su ot L(h, z sub-add. of su
B e ( he}izq” () hegzqtt o >>)] ( p)

1
<e'™ E E 5 XP (Ztsup thatLh 2z (o )))

(z,2") O I heH §
1 :
+ — exp (225 sup Z qrotL(h, zi(o )))] (convexity. of exp)
2 heH

—te ]EE
hEH

exp (2t sup iQtUtL h,z(o )))]
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Covering Number

P[®(Z] — A(q) > €)]

< e_tEIEZIUE exp <2t sup ZQtUtL (h, z(o )))]

i T
< e "EE | exp (Qt [max Z qrotvs (o) + OzD

S e—t(G—QO{) E

< e—t(e—Zoz) E

heH

(a-covering)

veV —

- T

Z E | exp (275 Z qtatvt(a))] ] (monotonicity of exp)
_veV 7 t=1
I 2|2

Z exp ( ”;” )] (Hoeffding’s ineq.)
_veV

t2 2
<E { 1(04,9,2)} exp [—t(e— 2a0) + %]
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Algorithms



Review

B Theorem: for anyd > 0, with probability at least 1 — 4, for
aIIheHaana>O,

L(hZ{) <Y aLlh, Z0) + Ala) + A, + 4a

t=1

ZIZE Ni(,G,2)]
+ [llallz + la - ull2| |/ 210g ————

B This bound can be extended to hold uniformly over q at
the price of the additional term:

O(Jla — ulj1y/10g; logy (1 — [la — ul) =),

B Data-dependent learning guarantee.
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Discrepancy-Risk Minimization

B Key Idea: directly optimize the upper bound on
generalization over q and h.

B This problem can be solved efficiently for some Land H.
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Kernel-Based Regression

m Squared loss function: L(y,y') = (y — ¢')?
® Hypothesis set: for PDS kernel K,
H = {:c — W Pr(x): ||w|g < A}-

B Complexity term can be bounded by

O ((logg/2 TYAsup K(z,x) Hqu)

Theory and Algorithms for Forecasting Non-Stationary Time Series
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Instantaneous Discrepancy

B Empirical discrepancy can be further upper bounded in
terms of instantaneous discrepancies:

AN

T
Alq) <) qdi + Mg —ul;

t=1
where M = sup L(y,y") and
vy’
— Sup ( Z L h Zt (h, Zt)) .
heH t=T—-s+1
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Proof

B By sub-additivity of supremum

3(Ql) = Sup 4 % Z L(h, Zi) — ZQtL(hazt)}

he H
\

t=T—s+1
(T
:sup@qt( S Lz - <h,zt>)
heH | =1 t=T—s+1
DICENES IS
t=1 t=1T—s+1

I/\

$

N

-

®)
R
w | =
i

T
> L(h, Zy) — i L(h, Zt>> +M|u—aql:
T—s+1
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Computing Discrepancies

B |nstantaneous discrepancy for kernel-based hypothesis
with squared loss:

[w’[| <A

— Sup (Zus w’ (I)K 158) 95)2 - (W, ' (I)K(:Ct) - yt>2>.

B Difference of convex (DC) functions.

B Global optimum via DC-programming: (Tao and Ahn, 1998).
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Discrepancy-Based Forecasting

B Theorem: for anyéd > 0, with probability at least 1 — ¢, for
all kernel-based hypothesish € Handall 0 <|jq—ulj; <1

T
L(h,Z7) < Z q:L(h, Zy) + A(q) + A

t=1

+ 01082 Tsup K (2. 2)A + [ —u,).

B Corresponding optimization problem:

T T
min { th(w . \PK(ZEt) — yt)Z + )\1 thdt + )\QHWHH + )\3”(] — U—Hl}'

T
A s t=1
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Discrepancy-Based Forecasting

B Theorem: for anyéd > 0, with probability at least 1 — ¢, for

all kernel-based hypothesish € Hand all 0 < |lg—u

1 <1

AN

T
L(h,Z7) < ZQtL(ha Z) [+ Aa) + Ag
t=1

+0(fog®> T sup K (w,2)A + [ — ull, )

B Corresponding gptimization problem:

min { th(w W (xy) — yt)2

117

T
+ )\1 thdt + )\QHWHH -+ )\3Hq - 11”1}.

t=1
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Discrepancy-Based Forecasting

B Theorem: for anyéd > 0, with probability at least 1 — ¢, for

all kernel-based hypothesish € Hand all 0 < |lg—u

T

t=1

A

(q)

1 <1

+ A

61022 T sup K(z. 2)A + la ] )

B Corresponding optimization pn\blem:

117

T T
min { th(w . \PK(ZEt) — yt)Z + )\1 Z qtdt + )\QHWHH —+ )\3Hq — U—Hl}'
t=1
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Discrepancy-Based Forecasting

B Theorem: for anyéd > 0, with probability at least 1 — ¢, for
all kernel-based hypothesish € Handall 0 <|jq—ulj; <1

T
L(h,Z7) < Z q:L(h, Zy) + A(q) + A

t=1

+0(|10g*2 Tsup K (2. 2)A[+ [ —ul,).

B Corresponding optimization probtem:

T T
min { th(w . \PK(ZEt) — yt)Z + )\1 Z qtdt + )\QHWHH —+ )\3Hq — U—Hl}'
t=1

117
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Discrepancy-Based Forecasting

B Theorem: for anyéd > 0, with probability at least 1 — ¢, for
all kernel-based hypothesish € Handall 0 <|jq—ulj; <1

T
L(h,Z7) < Z q:L(h, Zy) + A(q) + A

t=1

+0(10g Tsup K (2, 2)A 4l — ul).

B Corresponding optimization problem: \

T T
min { th(w . \PK(ZEt) — yt)Z + )\1 thdt + )\QHWHH —+ )\3Hq — 11||1 }

T
A s t=1
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Convex Problem

B Change of variable: 7 = 1/¢;.

® Upper bound: r, = 1/T| < T Yry = TY.

T T
-\ — )% + M\id
min {Z (w - Pre(@e) = yo)” + Made + A2f|wllm + As Z 7y — T|} '

reD,w r
t=1 t t=1

o where D ={r:r; > 1}

® convex optimization problem.
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Two-Stage Algorithm

B Minimize empirical discrepancy A(q) over q (convex
optimization).

B Solve (weighted) kernel-ridge regression problem:

min { S g (w e W lay) — ) + Awm}

t=1
where q”is the solution to discrepancy minimization
problem.

Theory and Algorithms for Forecasting Non-Stationary Time Series
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Preliminary Experiments

B Artificial data sets:

adsl: Y, =Y, 1+€¢, o,=-0.9ift¢e[1000,2000] and 0.9 otherwise,
ads2: Y, =Y, 1+€, oy=1-—(t/1500),

ads3: Y, =oaipYi-1+¢€&, ar=-0.5and a; =0.9,

ads4: Y, = —0.5Y,_1 + €,

500 1000 1500 2000 2500 3000
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True vs. Empirical Discrepancies

3.0 1 1 1 1 1 0.0016

|

0.0014Hi®

0.0012Hif W

0.0010H i ®

0.0008H W

0.0006 1§

0.0004}]
'IM 0.0002|}
|

0.0000LL ‘”l

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

0.0

Discrepancies Weights

Theory and Algorithms for Forecasting Non-Stationary Time Series page 66



Running MSE

0.009

: ‘ : ‘ — tDBF
— ARIMA

0007} N
0,006 |

0.004} g N e T -

|

0,002 [ - ]

0.0005 500 1000 1500 2000 2500
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Real-world Data

® Commodity prices, exchange rates, temperatures &

climate. [ Dataset DBF ARIMA
bitcoin | 4.400 x 10° 4.900 x 107
(26.500x1073) | (29.990 x 10~9)
coffee 3.080 x 10~ ° 3.260 x 10~
(6.570x1073) | (6.390 x 107?)
eur/jpy | 7.100 x 1075 7.800 x 107
(16.900x1075) | (24.200 x 1079)
jpy/usd | 9.770 x 101 10.004 x 10~
(25.893x10°1) | (27.531 x 10°1)
mso 32.876 x 10" 32.193 x 10°
(55.586 x 109) (51.109 x 10°)
silver | 7.640 x 104 34.180 x 10~4
(46.65x10~%) | (158.090 x 10~%)
soy 5.071 x 10~* 5.003 x 10~4
(9.938x102) | (10.097 x 10~2?)
temp 6.418 x 10° 6.461 x 10°
(9.958 x 10°) (10.324 x 109)
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Time Series Prediction &
On-line Learning



Two Learning Scenarios

B Stochastic scenario:
e distributional assumption.
* performance measure: expected loss.

® guarantees: generalization bounds.

® On-line scenario:
® no distributional assumption.
e performance measure: regret.
® guarantees: regret bounds.

e active research area: (Cesa-Bianchi and Lugosi, 2006; Anava et al.
2013, 2015, 2016; Bousquet and Warmuth, 2002; Herbster and Warmuth,
1998, 2001; Koolen et al., 2015).
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On-Line Learning Setup

B Adversarial setting with hypothesis/action set H.

® Fort=1toTdo
® player receives x; € X.
e player selects h; € H.
e adversary selectsy; € V.

e playerincursloss L(h¢(xt),y:).

B Objective: minimize (external) regret

Regy = Y L(hi(z¢),y:) — min > L(h(xe), v1).
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Example: Exp. Weights (EW)

B Expertset H* ={€&1,...,ENn}, H = conv(H™).

EW({&1,...,EN})
1 fori:<+1to N do

wl,i%l
fort+1to 71 do

RECEIVE(z:)

N
ht < Zi:l wt,igi
Zé\rz1 Wt,i

2
3
4
5
6 RECEIVE(y;)
7
8
9
0

INCUR-LOSS(L(h¢(¢), yt))
for 1+ 1to N do
Wiyl < Wi e~ L(&i(ze)ye) (parameter 1 > 0)

10 return hr
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EW Guarantee

B Theorem: assume that Lis convex in its first argument and
takes values in [0, 1]. Then, for any >0 and any

sequence yi,...,yr € YV, the regret of EW attime T

satisfies

loc N T
SRR

7 8

Regr <

Forn = +/8log N/T,

Regy < V/(T/2)log N.

Reg log N
=0 .
o)

Theory and Algorithms for Forecasting Non-Stationary Time Series page73



EW - Proof

m Potential: ®, = log >0 | wy.;.

® Upper bound:

Zij\il Wt—1,i e~ nL(Ei(xt),yt)

S Wi,

_ log( E [e_'rlL(Si(xt)ayt)])

We—1

¢, — Py = log

We—1 We—1

= log <w£E1 [exp (_”(L(Ez‘(fct)ayt) -k [L(gi(xt)’yt)]) =08 [L(gi(xt)’yt)])D

< —n E [L(Ei(xy),yt)] +

wt—1

(Hoeffding’s ineq.)

< —nL( E [&(zy)],ue) + (convexity of first arg. of L)

We—1

n?
8
n?
8

n?
= —nL(h(2¢),yz) + g
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EW - Proof

B Upper bound: summing up the inequalities yields

n°T
Cp — @ < —n;L(ht(%‘t%yt) L
& [ower bound: N
(I)T _ (I)O — logz e " 2321 L(Ei(ze),ye) _ ]OgN
1=1
N T
= —nmin » L(&(xt),y:) —log N.
C) Comparison =l
T
log N
ZL (he(xt), ye) mm L(Ei(xe),yr) < 5
t=1

Theory and AIgonthms for Forecasting Non-Stationary Time Series

N’

g

page 75



Questions

B Can we exploit both batch and on-line to

* design flexible algorithms for time series prediction with
stochastic guarantees?

e tackle notoriously difficult time series problems e.g.,
model selection, learning ensembles?
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Model Selection

B Problem: given N time series models, how should we use
sample Z{ to select a single best model?

® ini.i.d. case, cross-validation can be shown to be close to
the structural risk minimization solution.

* but, how do we select a validation set for general
stochastic processes?

® Use mostrecent data?
e use the most distant data?
® use various splits?

* models may have been pre-trained on Z7.
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Learning Ensembles

®m Problem: given a hypothesis set H#and a sample Z7, find
accurate convex combination h = Zthl g:h: with h € H 4
and q € A.

* in most general case, hypotheses may have been pre-
trained on Z7.

=3 ON-line-to-batch conversion for general non-stationary
non-mixing processes.
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On-Line-to-Batch (OTB)

® [nput: sequence of hypotheses h = (hy,..., hr) returned
after T'rounds by an on-line algorithm A minimizing
general regret

T

T
Regr = »  L(hy, Zy) — ,inf L(h*, Z,).
t=1 t=1
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On-Line-to-Batch (OTB)

® Problem:use h = (hy,...,hy)to derive a hypothesis h €¢ H
with small path-dependent expected loss,

Lrii(h,Z1) = E [L(h, Zri1)|Z7 ].

ZT41

® |.i.d.problem is standard: (Littlestone, 1989), (Cesa-Bianchi et al.,
2004).

® but, how do we design solutions for the general time-
series scenario?
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Questions

B |s OTB with general (non-stationary, non-mixing) stochastic
processes possible?

B (Can we design algorithms with theoretical guarantees?

-—P need a new tool for the analysis.
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Relevant Quantity

key difference

Y >\

Li(he, ZE1) Lri1(he, Z7)
s e, S e
1 t+1 T T+ 1

1 T

— Average difference: = » [£T+1(ht, Z1) — Li(hy, Z'j‘l)}.

T
t=1
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On-line Discrepancy

B Definition:

T
disc(q) = sup th [ETH(ht, Z1) — Li(hy, Zﬁ_l)} .
heH 4 —1

* H,:sequences that A can return.

e q=(q,-...,q7r) : arbitrary weight vector.
* natural measure of non-stationarity or dependency.
® captures hypothesis set and loss function.
® can be efficiently estimated under mild assumptions.

e generalization of definition of (Kuznetsov and MM, 2015).
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Discrepancy Estimation

B Batch discrepancy estimation method.

B Alternative method:
e assume that the loss is p-Lipschitz.

e assume that there exists an accurate hypothesis h*:

N = i}ILI*fE {L(ZTH, h*(XT+1))|Zﬂ < 1.
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Discrepancy Estimation

® Lemma: fix sequence Z1in Z Then, for any ¢ > 0, with
probability at least1 — §, the following holds for alla > 0:

Tiac EN Y I
disc(q) < discyr(q) + pun + 2a + MHQHQ\/Q log | 1(054 g z)]’

where

—_—

discy(q) =  sup
he HheH 4

ZQt[ (ht(X741), M(X711)) — L(ht,Zt)} |

t=1
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Proof Sketch

disc(q) = sup th £T+1(ht, 1) — Li(he, 2 1)}‘

< sup th :£T+1(ht7 Zf) —E [L(ht(XTH), h*(XT+1))‘Z{H '

+ sup
heH 4

t=1

th[ [ (ht(X141), 07 (XT+1))’Z;_FH Lt(ht,Zﬁl)}‘

< 4 sup thE{ (h* (XT—|—1)7YT—|—1)‘Z{}
hGH.At 1

+hselg),4 ;qt[ [ (he(X741), B (X741)) | Z1 H ﬁt(htazil)]‘
= sup E {L(h*(XTH),YTH)‘Zﬂ

heH 4

+hS€l;_II)A ;qt{ [ ht XT—l—l) h*(XT—I—l ‘Zl}] _/:’t(ht’Z?l_l)} ‘
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Learning Guarantee

B [emma: let Lbe a convex loss bounded by M and hi a
hypothesis sequence adapted to Z7. Fixq € A. Then, for
any é > 0, the following holds with probability at least 1 — §

for the hypothesis b = X7 qihy:

T
. 1
Lrsa(hZ7) < ) arL(he, Z2) + dise(q) + M| |21/ 21og ~.

t=1
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Proof

B By definition of the on-line discrepancy,

T
Z qt [£T+1(ht7 Z{) — L (hy, Z’i_l)} < disc(q).

t=1

m A =q [Et(ht, Z77h) = L(hy, Zt)} is a martingale difference,
thus by Azuma's inequality, whp,

T T
Z%Et(hta Zi ) < thL(ht, Zy) + |ldl|24/21og 5.

t=1 t=1

B By convexity of the loss:

T
Lri1(h,Z7) < Z @ Lri1(he, 7).
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Learning Guarantee

B Theorem: let L be a convex loss bounded by M and H*a set
of hypothesis sequences adapted toZ?. Fixq € A. Then, for

any é > 0, the following holds with probability at least 1 — §
for the hypothesish = 32, q;hy:

L1 (h, ZT)
Reg
* T T
hgéf;qg Lri1(h™,Z7) + 2disc(q) + n

2
+ Mllg - ully +2M|qll21/2log .
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Conclusion

B Time series forecasting:
e key learning problem in many important tasks.
e very challenging: theory, algorithms, applications.

* new and general data-dependent learning guarantees
for non-mixing non-stationary processes.

* algorithms with guarantees.

B Time series prediction and on-line learning:
o proof for flexible solutions derived via OTB.
e application to model selection.

e application to learning ensembles.
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Time Series Workshop

Join us in Room 117
Friday, December 9th.
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p-Mixing
m Definition: a sequence of random variablesZ = {Z;} T is
B-mixing if

B(k) =sup E [ sup |P[AyB]—P[A](] 0.

n Be€o”__ AEJZO_I_k

dependence between events decaying with k.

— @

B A

n n+k
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