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Motivation
Time series prediction: 

• stock values. 

• economic variables. 

• weather: e.g., local and global temperature. 

• sensors: Internet-of-Things. 

• earthquakes. 

• energy demand. 

• signal processing. 

• sales forecasting.
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Google Trends
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Google Trends
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Google Trends
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Challenges
Standard Supervised Learning: 

• IID assumption. 

• Same distribution for training and test data. 

• Distributions fixed over time (stationarity).
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none of these assumptions holds 
for time series!
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Outline
Introduction to time series analysis. 

Learning theory for forecasting non-stationary time series. 

Algorithms for forecasting non-stationary time series. 

Time series prediction and on-line learning.
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Classical Framework
Postulate a particular form of a parametric model that is 
assumed to generate data. 

Use given sample to estimate unknown parameters of the 
model. 

Use estimated model to make predictions.
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Autoregressive (AR) Models
Definition: AR(  ) model is a linear generative model based 
on the   th order Markov assumption: 
 
 
 
where   

•     s are zero mean uncorrelated random variables with 
variance    . 

•                    are autoregressive coefficients. 

•       is observed stochastic process. 
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Moving Averages (MA)
Definition: MA(  ) model is a linear generative model for  
the noise term based on the   th order Markov assumption: 
 
 
 
where 

•                  are moving average coefficients.
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ARMA model
Definition: ARMA(  ,  ) model is a generative linear model 
that combines AR(  ) and MA(  ) models: 
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ARMA
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Stationarity
Definition: a sequence of random variables                       is 
stationary if its distribution is invariant to shifting in time.
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Weak Stationarity
Definition: a sequence of random variables                       is 
weakly stationary if its first and second moments are 
invariant to shifting in time, that is, 

•          is independent of   . 

•                              for some function   .
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Lag Operator
Lag operator     is defined by   

ARMA model in terms of the lag operator: 

Characteristic polynomial 
 
 
 
can be used to study properties of this stochastic process.
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Weak Stationarity of ARMA
Theorem: an ARMA(  ,  ) process is weakly stationary if the 
roots of the characteristic polynomial          are outside the 
unit circle.
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Proof
If roots of the characteristic polynomial are outside the unit 
circle then:  
 
 
 
 
 
where               for all                      and        are constants.
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Proof
Therefore, the ARMA(  ,  ) process 
 
 
  
admits MA(    ) representation: 
 
 
 
where  
 
 
 
is well-defined since 
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Proof
Therefore, it suffices to show that 
 
 
 
is weakly stationary. 

The mean is constant 

Covariance function                  only depends on the lag   :
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ARIMA
Non-stationary processes can be modeled using processes 
whose characteristic polynomial has unit roots. 

Characteristic polynomial with unit roots can be factored: 
 
 
where          has no unit roots. 

Definition: ARIMA(   ,    ,   ) model is an ARMA(  ,  ) model 
for                    : 
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ARIMA
Non-stationary processes can be modeled using processes 
whose characteristic polynomial has unit roots. 

Characteristic polynomial with unit roots can be factored: 
 
 
where          has no unit roots. 

Definition: ARIMA(   ,    ,   ) model is an ARMA(  ,  ) model 
for                    : 
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Other Extensions
Further variants: 

• models with seasonal components (SARIMA). 

• models with side information (ARIMAX). 

• models with long-memory (ARFIMA). 

• multi-variate time series models (VAR). 

• models with time-varying coefficients. 

• other non-linear models.
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Modeling Variance
Definition: the generalized autoregressive conditional 
heteroscedasticity GARCH(  ,  ) model is an ARMA(  ,  ) 
model for the variance     of the noise term    : 
 
 
 
where 

•  s are zero mean Gaussian random variables with 
variance      conditioned on                           . 

•           is the mean parameter.
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GARCH Process
Definition: the generalized autoregressive conditional 
heteroscedasticity (GARCH(  ,  )) model is an ARMA(  ,  ) 
model for the variance     of the noise term    : 
 
 
 
where 

•  s are zero mean Gaussian random variables with 
variance      conditioned on                           . 

•           is the mean parameter.
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State-Space Models
Continuous state space version of Hidden Markov Models: 
 
 
 
where 

•      is an   -dimensional state vector. 

•      is an observed stochastic process. 

•      and     are model parameters. 

•      and    are noise terms. 
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State-Space Models
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Estimation
Different methods for estimating model parameters: 

• Maximum likelihood estimation: 

• Requires further parametric assumptions on the noise 
distribution (e.g. Gaussian). 

• Method of moments (Yule-Walker estimator). 

• Conditional and unconditional least square estimation. 

• Restricted to certain models.

28



pageTheory and Algorithms for Forecasting Non-Stationary Time Series

Invertibility of ARMA
Definition: an ARMA(  ,  ) process is invertible if the roots of 
the polynomial           
 
 
are outside the unit circle.
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Learning guarantee
Theorem: assume          ARMA(  ,  ) is weakly stationary and 
invertible. Let       denote the least square estimate of                            
                            and assume that     is known. Then,                               
converges in probability to zero. 

Similar results hold for other estimators and other models.
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Notes
Many other generative models exist. 

Learning guarantees are asymptotic. 

Model needs to be correctly specified. 

Non-stationarity needs to be modeled explicitly.
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Time Series Forecasting
Training data: finite sample realization of some stochastic 
process, 

Loss function:                                , where     is a hypothesis 
set of functions mapping from     to    . 

Problem: find            with small path-dependent expected 
loss,
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Standard Assumptions
Stationarity: 

Mixing:
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Learning Theory
Stationary and   -mixing process: generalization bounds. 

• PAC-learning preserved in that setting (Vidyasagar, 1997). 

• VC-dimension bounds for binary classification (Yu, 1994). 

• covering number bounds for regression (Meir, 2000). 

• Rademacher complexity bounds for general loss 
functions (MM and Rostamizadeh, 2000). 

• PAC-Bayesian bounds (Alquier et al., 2014).
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Learning Theory
Stationarity and mixing: algorithm-dependent bounds. 

• AdaBoost (Lozano et al., 1997). 

• general stability bounds (MM and Rostamizadeh, 2010). 

• regularized ERM (Steinwart and Christmann, 2009). 

• stable on-line algorithms (Agarwal and Duchi, 2013).
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Problem
Stationarity and mixing assumptions: 

• often do not hold (think trend or periodic signals). 

• not testable. 

• estimating mixing parameters can be hard, even if 
general functional form known. 

• hypothesis set and loss function ignored.
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Questions
Is learning with general (non-stationary, non-mixing) 
stochastic processes possible? 

Can we design algorithms with theoretical guarantees? 

             need a new tool for the analysis.
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Key Quantity - Fixed h
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Discrepancy
Definition: 

• captures hypothesis set and loss function. 

• can be estimated from data, under mild assumptions.            

•            in IID case or for weakly stationary processes with 
linear hypotheses and squared loss (K and MM, 2014).
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Weighted Discrepancy
Definition: extension to weights                           . 

• strictly extends discrepancy definition in drifting (MM and 

Muñoz Medina, 2012) or domain adaptation (Mansour, MM, 

Rostamizadeh 2009; Cortes and MM 2011, 2014); or for binary loss 
(Devroye et al., 1996; Ben-David et al., 2007). 

• admits upper bounds in terms of relative entropy, or in 
terms of   -mixing coefficients of asymptotic stationarity 
for an asymptotically stationary process.
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Estimation
Decomposition:                                   .
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Learning Guarantee
Theorem: for any          , with probability at least          , for 
all            and           ,
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Bound with Emp. Discrepancy
Corollary: for any          , with probability at least          , for 
all            and           ,

44

� > 0 1� �

h 2 H ↵ > 0

where 

8
>>>><

>>>>:

b
�(q) = sup

h2H

✓
1

s

TX

t=T�s+1

L(h, Zt)�
TX

t=1

qtL(h, Zt)

◆

us unif. dist. over [T � s, T ]

G = {z 7! L(h, z) : h 2 H}.

L(h,ZT
1 ) 

TX

t=1

qtL(h, Zt) +
b
�(q) +�s + 4↵

+

h
kqk2 + kq� usk2

i
s

2 log

2E
z

⇥
N1(↵,G, z)

⇤

�
,



pageTheory and Algorithms for Forecasting Non-Stationary Time Series

Weighted Sequential α-Cover
Definition: let    be a   -valued full binary tree of depth   . 
Then, a set of trees     is an    -norm    -weighted   -cover of a 
function class    on    if
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Sequential Covering Numbers
Definitions: 

• sequential covering number: 

• expected sequential covering number:
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Proof
Key quantities: 

 Chernoff technique: for any          ,
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Symmetrization
Key tool: decoupled tangent sequence       associated to     . 

•    and      i.i.d. given         .

48

Z0T
1 ZT

1

Zt Z 0
t Zt�1

1

P
⇥
�(ZT

1 ��(q) > ✏)
⇤

 e�t✏ E
"
exp

⇣
t sup
h2H

TX

t=1

qt
⇥
L(h,Zt�1

1 )� L(h, Zt)
⇤⌘

#

= e�t✏ E
"
exp

⇣
t sup
h2H

TX

t=1

qt
⇥
E[L(h, Z 0

t)|Zt�1
1 ]� L(h, Zt)

⇤⌘
#

(tangent seq.)

= e�t✏ E
"
exp

⇣
t sup
h2H

E
h TX

t=1

qt
⇥
L(h, Z 0

t)� L(h, Zt)
⇤ ���ZT

1

i⌘#
(lin. of expectation)

 e�t✏ E
"
exp

⇣
t sup
h2H

TX

t=1

qt
⇥
L(h, Z 0

t)� L(h, Zt)
⇤⌘

#
. (Jensen’s ineq.)



pageTheory and Algorithms for Forecasting Non-Stationary Time Series

Symmetrization
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Covering Number
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Review
Theorem: for any          , with probability at least          , for 
all            and           ,  
 
 
 
                                                                                       

This bound can be extended to hold uniformly over     at 
the price of the additional term:  
 
                                                                                       . 

Data-dependent learning guarantee.
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Discrepancy-Risk Minimization
Key Idea: directly optimize the upper bound on 
generalization over     and    . 

This problem can be solved efficiently for some    and    .
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Kernel-Based Regression
Squared loss function:  

Hypothesis set: for PDS kernel    , 

Complexity term can be bounded by 
                                                                                 
                                                                               .
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Instantaneous Discrepancy
Empirical discrepancy can be further upper bounded in 
terms of instantaneous discrepancies: 
 
 
 
where                               and 
 
                                                                                    .
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Proof
By sub-additivity of supremum 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Computing Discrepancies
Instantaneous discrepancy for kernel-based hypothesis 
with squared loss: 
 
                                                                                                         . 

Difference of convex (DC) functions. 

Global optimum via DC-programming: (Tao and Ahn, 1998).
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Discrepancy-Based Forecasting
Theorem: for any          , with probability at least          , for 
all  kernel-based hypothesis            and all  
 
                                                                                           
                                                                                       
                                                                                          . 

Corresponding optimization problem: 
 
                                                                                                         .
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Convex Problem
Change of variable:                    . 

Upper bound:                                              . 

• where                                 . 

• convex optimization problem.
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Two-Stage Algorithm
Minimize empirical discrepancy            over     (convex 
optimization). 

Solve (weighted) kernel-ridge regression problem:  
 
                                                                                      
 
where      is the solution to discrepancy minimization 
problem. 
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Preliminary Experiments
Artificial data sets:

65

,
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True vs. Empirical Discrepancies

66

Discrepancies Weights
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Running MSE
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Real-world Data
Commodity prices, exchange rates, temperatures & 
climate.

68



Time Series Prediction & 
On-line Learning
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Two Learning Scenarios
Stochastic scenario: 

• distributional assumption. 

• performance measure: expected loss. 

• guarantees: generalization bounds. 

On-line scenario: 

• no distributional assumption. 

• performance measure: regret. 

• guarantees: regret bounds. 

• active research area: (Cesa-Bianchi and Lugosi, 2006; Anava et al. 
2013, 2015, 2016; Bousquet and Warmuth, 2002; Herbster and Warmuth, 
1998, 2001; Koolen et al., 2015).
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On-Line Learning Setup
Adversarial setting with hypothesis/action set    . 

For          to    do 

• player receives            . 

• player selects             . 

• adversary selects            . 

• player incurs loss                      . 

Objective: minimize (external) regret

71
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Example: Exp. Weights (EW)
Expert set                                 ,                          .

72

EW({E1, . . . ,EN

})
1 for i 1 to N do

2 w1,i  1
3 for t 1 to T do

4 Receive(x
t

)

5 h

t

 
PN

i=1 wt,iEiPN
i=1 wt,i

6 Receive(y
t

)
7 Incur-Loss(L(h

t

(x
t

), y
t

))
8 for i 1 to N do

9 w

t+1,i  w

t,i

e

�⌘L(Ei(xt),yt)
. (parameter ⌘ > 0)

10 return h

T

H⇤ = {E1, . . . ,EN} H = conv(H⇤
)
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EW Guarantee
Theorem: assume that    is convex in its first argument and 
takes values in        . Then, for any          and any       
sequence                          , the regret of EW at time     
satisfies
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EW - Proof
Potential:  

Upper bound:
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EW - Proof
Upper bound: summing up the inequalities yields 

Lower bound: 

Comparison:
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Questions
Can we exploit both batch and on-line to 

• design flexible algorithms for time series prediction with 
stochastic guarantees? 

• tackle notoriously difficult time series problems e.g., 
model selection, learning ensembles?
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Model Selection
Problem: given     time series models, how should we use 
sample      to select a single best model? 

• in i.i.d. case, cross-validation can be shown to be close to 
the structural risk minimization solution. 

• but, how do we select a validation set for general 
stochastic processes?  

• use most recent data?  

• use the most distant data?  

• use various splits? 

• models may have been pre-trained on      .

77

N
ZT
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ZT
1



pageTheory and Algorithms for Forecasting Non-Stationary Time Series

Learning Ensembles
Problem: given a hypothesis set     and a sample      , find 
accurate convex combination                          with              
and            . 

• in most general case, hypotheses may have been pre-
trained on      .

78

H ZT
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h =
PT

t=1 qtht h 2 HA

q 2 �
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on-line-to-batch conversion for general non-stationary 
non-mixing processes.
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On-Line-to-Batch (OTB)
Input: sequence of hypotheses                              returned 
after    rounds by an on-line algorithm     minimizing 
general regret
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On-Line-to-Batch (OTB)
Problem: use                             to derive a hypothesis            
with small path-dependent expected loss, 

• i.i.d. problem is standard: (Littlestone, 1989), (Cesa-Bianchi et al., 

2004). 

• but, how do we design solutions for the general time-
series scenario?
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Questions
Is OTB with general (non-stationary, non-mixing) stochastic 
processes possible? 

Can we design algorithms with theoretical guarantees? 

             need a new tool for the analysis.
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Relevant Quantity

82
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On-line Discrepancy
Definition: 

•       : sequences that     can return. 

•                            : arbitrary weight vector. 

• natural measure of non-stationarity or dependency. 

• captures hypothesis set and loss function. 

• can be efficiently estimated under mild assumptions. 

• generalization of definition of (Kuznetsov and MM, 2015) .
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Discrepancy Estimation
Batch discrepancy estimation method. 

Alternative method: 

• assume that the loss is   -Lipschitz. 

• assume that there exists an accurate hypothesis     :
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Discrepancy Estimation
Lemma: fix sequence      in   . Then, for any          , with 
probability at least         , the following holds for all          :
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Proof Sketch
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Learning Guarantee
Lemma: let    be a convex loss bounded by     and      a 
hypothesis sequence adapted to     . Fix           . Then, for 
any          , the following holds with probability at least          
for the hypothesis                         :
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Proof
By definition of the on-line discrepancy, 

                                                       is a martingale difference, 
thus by Azuma’s inequality, whp, 

By convexity of the loss:

88

At = qt
h
Lt(ht, Z

t�1
1 )� L(ht, Zt)

i

TX

t=1

qtLt(ht, Z
t�1
1 ) 

TX

t=1

qtL(ht, Zt) + kqk2
q

2 log

1
� .

TX

t=1

qt
h
LT+1(ht,Z

T
1 )� Lt(ht,Z

t�1
1 )

i
 disc(q).

LT+1(h,Z
T
1 ) 

TX

t=1

qtLT+1(ht,Z
T
1 ).



pageTheory and Algorithms for Forecasting Non-Stationary Time Series

Learning Guarantee
Theorem: let    be a convex loss bounded by      and      a set 
of hypothesis sequences adapted to     . Fix           . Then, for 
any          , the following holds with probability at least          
for the hypothesis                         :
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Conclusion
Time series forecasting: 

• key learning problem in many important tasks. 

• very challenging: theory, algorithms, applications. 

• new and general data-dependent learning guarantees 
for non-mixing non-stationary processes. 

• algorithms with guarantees. 

Time series prediction and on-line learning: 

• proof for flexible solutions derived via OTB. 

• application to model selection. 

• application to learning ensembles.
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Time Series Workshop

91

Join us in Room 117 
Friday, December 9th.
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𝜷-Mixing
Definition: a sequence of random variables                       is   
-mixing if
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