Foundations of Machine Learning On-Line Learning

Mehryar Mohri
Courant Institute and Google Research mohri@cims.nyu.edu

Motivation

- PAC learning:
- distribution fixed over time (training and test).
- IID assumption.
- On-line learning:
- no distributional assumption.
- worst-case analysis (adversarial).
- mixed training and test.
- Performance measure: mistake model, regret.

This Lecture

- Prediction with expert advice
- Linear classification

General On-Line Setting

- For $t=1$ to T do
- receive instance $x_{t} \in X$.
- predict $\widehat{y}_{t} \in Y$.
- receive label $y_{t} \in Y$.
- incur loss $L\left(\widehat{y}_{t}, y_{t}\right)$.
- Classification: $Y=\{0,1\}, L\left(y, y^{\prime}\right)=\left|y^{\prime}-y\right|$.
- Regression: $Y \subseteq \mathbb{R}, L\left(y, y^{\prime}\right)=\left(y^{\prime}-y\right)^{2}$.

■ Objective: minimize total loss $\sum_{t=1}^{T} L\left(\widehat{y}_{t}, y_{t}\right)$.

Prediction with Expert Advice

- For $t=1$ to T do
- receive instance $x_{t} \in X$ and advice $y_{t, i} \in Y, i \in[1, N]$.
- predict $\widehat{y}_{t} \in Y$.
- receive label $y_{t} \in Y$.
- incur loss $L\left(\widehat{y}_{t}, y_{t}\right)$.

■ Objective: minimize regret, i.e., difference of total loss incurred and that of best expert.

$$
\operatorname{Regret}(T)=\sum_{t=1}^{T} L\left(\widehat{y}_{t}, y_{t}\right)-\min _{i=1}^{N} \sum_{t=1}^{T} L\left(y_{t, i}, y_{t}\right)
$$

Mistake Bound Model

- Definition: the maximum number of mistakes a learning algorithm L makes to learn c is defined by

$$
M_{L}(c)=\max _{x_{1}, \ldots, x_{T}}|\operatorname{mistakes}(L, c)| .
$$

- Definition: for any concept class C the maximum number of mistakes a learning algorithm L makes is

$$
M_{L}(C)=\max _{c \in C} M_{L}(c)
$$

A mistake bound is a bound M on $M_{L}(C)$.

Halving Algorithm

 see (Mitchell, I 997)```
Halving \((H)\)
 \(1 \quad H_{1} \leftarrow H\)
 2 for \(t \leftarrow 1\) to \(T\) do
 3 Receive \(\left(x_{t}\right)\)
 \(4 \quad \widehat{y}_{t} \leftarrow \operatorname{Majority} \operatorname{Vote}\left(H_{t}, x_{t}\right)\)
 5 RECEIVE \(\left(y_{t}\right)\)
6 if \(\widehat{y}_{t} \neq y_{t}\) then
\(7 \quad H_{t+1} \leftarrow\left\{c \in H_{t}: c\left(x_{t}\right)=y_{t}\right\}\)
8 return \(H_{T+1}\)
```


## Halving Algorithm - Bound

(Littlestone, 1988)

- Theorem: Let $H$ be a finite hypothesis set, then

$$
M_{H a l v i n g(H)} \leq \log _{2}|H| .
$$

- Proof:At each mistake, the hypothesis set is reduced at least by half.


## VC Dimension Lower Bound

(Littlestone, I988)

- Theorem: Let opt $(H)$ be the optimal mistake bound for $H$. Then,
$\operatorname{VCdim}(H) \leq \operatorname{opt}(H) \leq M_{\text {Halving }(H)} \leq \log _{2}|H|$.
- Proof: for a fully shattered set, form a complete binary tree of the mistakes with height $\mathrm{VCdim}(H)$.


## Weighted Majority Algorithm

(Littlestone and Warmuth, 1988)
Weighted-Majority $\left(N\right.$ experts) $\triangleright y_{t}, y_{t, i} \in\{0,1\}$.
1 for $i \leftarrow 1$ to $N$ do


3 for $t \leftarrow 1$ to $T$ do
4 RECEIVE $\left(x_{t}\right)$

6 Receive $\left(y_{t}\right)$
$7 \quad$ if $\widehat{y}_{t} \neq y_{t}$ then
for $i \leftarrow 1$ to $N$ do
9
10
11 if $\left(y_{t, i} \neq y_{t}\right)$ then

$$
w_{t+1, i} \leftarrow \beta w_{t, i}
$$

else $w_{t+1, i} \leftarrow w_{t, i}$
12 return $\mathbf{w}_{T+1}$

## Weighted Majority - Bound

- Theorem: Let $m_{t}$ be the number of mistakes made by the WM algorithm till time $t$ and $m_{t}^{*}$ that of the best expert. Then, for all $t$,

$$
m_{t} \leq \frac{\log N+m_{t}^{*} \log \frac{1}{\beta}}{\log \frac{2}{1+\beta}}
$$

- Thus, $m_{t} \leq O(\log N)+$ constant $\times$ best expert.
- Realizable case: $m_{t} \leq O(\log N)$.
- Halving algorithm: $\beta=0$.


## Weighted Majority - Proof

- Potential: $\Phi_{t}=\sum_{i=1}^{N} w_{t, i}$.
- Upper bound: after each error,

$$
\Phi_{t+1} \leq\left[\frac{1}{2}+\frac{1}{2} \times \beta\right] \Phi_{t}=\left[\frac{1+\beta}{2}\right] \Phi_{t} .
$$

Thus, $\Phi_{t} \leq\left[\frac{1+\beta}{2}\right]^{m_{t}} N$.
■ Lower bound: for any expert $i, \Phi_{t} \geq w_{t, i}=\beta^{m_{t, i}}$.

- Comparison: $\beta^{m_{t}^{*}} \leq\left[\frac{1+\beta}{2}\right]^{m_{t}} N$

$$
\begin{aligned}
& \Rightarrow m_{t}^{*} \log \beta \leq \log N+m_{t} \log \left[\frac{1+\beta}{2}\right] \\
& \Rightarrow m_{t} \log \left[\frac{2}{1+\beta}\right] \leq \log N+m_{t}^{*} \log \frac{1}{\beta} .
\end{aligned}
$$

## Weighted Majority - Notes

- Advantage: remarkable bound requiring no assumption.
- Disadvantage: no deterministic algorithm can achieve a regret $R_{T}=o(T)$ with the binary loss.
- better guarantee with randomized WM.
- better guarantee for WM with convex losses.


## Exponential Weighted Average

- Algorithm: total loss incurred by expert $i$ up to time $t$
- weight update: $w_{t+1, i} \leftarrow w_{t, i} e^{-\eta L\left(y_{t, i}, y_{t}\right)}=e^{-\eta\left(L_{t, i}\right)}$.
- prediction: $\widehat{y}_{t}=\frac{\sum_{i=1}^{N} w_{t, i} y_{t, i}}{\sum_{i=1}^{N} w_{t, i}}$.
- Theorem: assume that $L$ is convex in its first argument and takes values in $[0,1]$. Then, for any $\eta>0$ and any sequence $y_{1}, \ldots, y_{T} \in Y$, the regret at $T$ satisfies

$$
\operatorname{Regret}(T) \leq \frac{\log N}{\eta}+\frac{\eta T}{8}
$$

For $\eta=\sqrt{8 \log N / T}$,

$$
\operatorname{Regret}(T) \leq \sqrt{(T / 2) \log N} .
$$

## Exponential Weighted Avg - Proof

- Potential: $\Phi_{t}=\log \sum_{i=1}^{N} w_{t, i}$.
- Upper bound:

$$
\begin{aligned}
\Phi_{t}-\Phi_{t-1} & =\log \frac{\sum_{i=1}^{N} w_{t-1, i} e^{-\eta L\left(y_{t, i}, y_{t}\right)}}{\sum_{i=1}^{N} w_{t-1, i}} \\
& =\log \left(\underset{w_{t-1}}{\mathrm{E}}\left[e^{-\eta L\left(y_{t, i}, y_{t}\right)}\right]\right) \\
& =\log \left(\underset{w_{t-1}}{\mathrm{E}}\left[\exp \left(-\eta\left(L\left(y_{t, i}, y_{t}\right)-\underset{w_{t-1}}{\mathrm{E}}\left[L\left(y_{t, i}, y_{t}\right)\right]\right)-\eta \underset{w_{t-1}}{\mathrm{E}}\left[L\left(y_{t, i}, y_{t}\right)\right]\right)\right]\right) \\
& \leq-\eta \underset{w_{t-1}}{\mathrm{E}}\left[L\left(y_{t, i}, y_{t}\right)\right]+\frac{\eta^{2}}{8} \quad(\text { Hoeffding's ineq. }) \\
& \left.\leq-\eta L\left(\underset{w_{t-1}}{\mathrm{E}}\left[y_{t, i}\right], y_{t}\right)+\frac{\eta^{2}}{8} \quad \text { (convexity of first arg. of } L\right) \\
& =-\eta L\left(\widehat{y}_{t}, y_{t}\right)+\frac{\eta^{2}}{8}
\end{aligned}
$$

## Exponential Weighted Avg - Proof

- Upper bound: summing up the inequalities yields

$$
\Phi_{T}-\Phi_{0} \leq-\eta \sum_{t=1}^{T} L\left(\widehat{y}_{t}, y_{t}\right)+\frac{\eta^{2} T}{8} .
$$

- Lower bound:

$$
\begin{aligned}
\Phi_{T}-\Phi_{0}=\log \sum_{i=1}^{N} e^{-\eta L_{T, i}}-\log N & \geq \log \max _{i=1}^{N} e^{-\eta L_{T, i}}-\log N \\
& =-\eta \min _{i=1}^{N} L_{T, i}-\log N .
\end{aligned}
$$

- Comparison:

$$
\begin{aligned}
& \quad \underset{\min _{i=1}^{N}}{N} L_{T, i}-\log N \leq-\eta \sum_{t=1}^{T} L\left(\widehat{y}_{t}, y_{t}\right)+\frac{\eta^{2} T}{8} \\
\Rightarrow & \sum_{t=1}^{T} L\left(\widehat{y}_{t}, y_{t}\right)-\underset{i=1}{N} \min _{T, i} \leq \frac{\log N}{\eta}+\frac{\eta T}{8} .
\end{aligned}
$$

## Exponential Weighted Avg - Notes

- Advantage: bound on regret per bound is of the form $\frac{R_{T}}{T}=O\left(\sqrt{\frac{\log (N)}{T}}\right)$.
- Disadvantage: choice of $\eta$ requires knowledge of horizon $T$.


## Doubling Trick

- Idea: divide time into periods [ $\left.2^{k}, 2^{k+1}-1\right]$ of length $2^{k}$ with $k=0, \ldots, n, T \geq 2^{n}-1$, and choose $\eta_{k}=\sqrt{\frac{8 \log N}{2^{k}}}$ in each period.
- Theorem: with the same assumptions as before, for any $T$, the following holds:

$$
\operatorname{Regret}(T) \leq \frac{\sqrt{2}}{\sqrt{2}-1} \sqrt{(T / 2) \log N}+\sqrt{\log N / 2}
$$

## Doubling Trick - Proof

- By the previous theorem, for any $I_{k}=\left[2^{k}, 2^{k+1}-1\right]$,

$$
L_{I_{k}}-\min _{i=1}^{N} L_{I_{k}, i} \leq \sqrt{2^{k} / 2 \log N} .
$$

Thus, $\begin{aligned} L_{T}=\sum_{k=0}^{n} L_{I_{k}} & \leq \sum_{k=0}^{n} \min _{i=1}^{N} L_{I_{k}, i}+\sum_{k=0}^{n} \sqrt{2^{k}(\log N) / 2} \\ & \leq \min _{i=1}^{N} L_{T, i}+\sum_{k=0}^{n} 2^{\frac{k}{2}} \sqrt{(\log N) / 2} .\end{aligned}$
with

$$
\sum_{i=0}^{n} 2^{\frac{k}{2}}=\frac{\sqrt{2}^{n+1}-1}{\sqrt{2}-1}=\frac{2^{(n+1) / 2}-1}{\sqrt{2}-1} \leq \frac{\sqrt{2} \sqrt{T+1}-1}{\sqrt{2}-1} \leq \frac{\sqrt{2}(\sqrt{T}+1)-1}{\sqrt{2}-1} \leq \frac{\sqrt{2} \sqrt{T}}{\sqrt{2}-1}+1
$$

## Notes

- Doubling trick used in a variety of other contexts and proofs.
- More general method, learning parameter function of time: $\eta_{t}=\sqrt{(8 \log N) / t}$. Constant factor improvement:

$$
\operatorname{Regret}(T) \leq 2 \sqrt{(T / 2) \log N}+\sqrt{(1 / 8) \log N} .
$$

## This Lecture

■ Prediction with expert advice

- Linear classification


## Perceptron Algorithm

(Rosenblatt, 1958)
$\operatorname{Perceptron}\left(\mathbf{w}_{0}\right)$
$1 \quad \mathbf{w}_{1} \leftarrow \mathbf{w}_{0} \quad \triangleright$ typically $\mathbf{w}_{0}=\mathbf{0}$
2 for $t \leftarrow 1$ to $T$ do
3 Receive $\left(\mathbf{x}_{t}\right)$
$4 \quad \widehat{y}_{t} \leftarrow \operatorname{sgn}\left(\mathbf{w}_{t} \cdot \mathbf{x}_{t}\right)$
5 Receive $\left(y_{t}\right)$
6 if $\left(\widehat{y}_{t} \neq y_{t}\right)$ then
$7 \quad \mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t}+y_{t} \mathbf{x}_{t} \quad \triangleright$ more generally $\eta y_{t} \mathbf{x}_{t}, \eta>0$
$8 \quad$ else $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t}$
9 return $\mathbf{w}_{T+1}$

## Separating Hyperplane

- Margin and errors




## Perceptron $=$ Stochastic Gradient Descent

- Objective function: convex but not differentiable.

$$
F(\mathbf{w})=\frac{1}{T} \sum_{t=1}^{T} \max \left(0,-y_{t}\left(\mathbf{w} \cdot \mathbf{x}_{t}\right)\right)=\underset{\mathbf{x} \sim \widehat{D}}{\mathrm{E}}[f(\mathbf{w}, \mathbf{x})]
$$

with $f(\mathbf{w}, \mathbf{x})=\max (0,-y(\mathbf{w} \cdot \mathbf{x}))$.

- Stochastic gradient: for each $\mathrm{x}_{t}$, the update is

$$
\mathbf{w}_{t+1} \leftarrow \begin{cases}\mathbf{w}_{t}-\eta \nabla_{\mathbf{w}} f\left(\mathbf{w}_{t}, \mathbf{x}_{t}\right) & \text { if differentiable } \\ \mathbf{w}_{t} & \text { otherwise }\end{cases}
$$

where $\eta>0$ is a learning rate parameter.

- Here:

$$
\mathbf{w}_{t+1} \leftarrow \begin{cases}\mathbf{w}_{t}+\eta y_{t} \mathbf{x}_{t} & \text { if } y_{t}\left(\mathbf{w}_{t} \cdot \mathbf{x}_{t}\right)<0 \\ \mathbf{w}_{t} & \text { otherwise }\end{cases}
$$

## Perceptron Algorithm - Bound

(Novikoff, I962)

- Theorem:Assume that $\left\|x_{t}\right\| \leq R$ for all $t \in[1, T]$ and that for some $\rho>0$ and $\mathbf{v} \in \mathbb{R}^{N}$, for all $t \in[1, T]$,

$$
\rho \leq \frac{y_{t}\left(\mathbf{v} \cdot \mathbf{x}_{t}\right)}{\|\mathbf{v}\|}
$$

Then, the number of mistakes made by the perceptron algorithm is bounded by $R^{2} / \rho^{2}$.

- Proof: Let $I$ be the set of $t$ s at which there is an update and let $M$ be the total number of updates.


## - Summing up the assumption inequalities gives:

$$
\begin{aligned}
& M \rho \leq \frac{\mathbf{v} \cdot \sum_{t \in I} y_{t} \mathbf{x}_{t}}{\|\mathbf{v}\|} \\
&=\frac{\mathbf{v} \cdot \sum_{t \in I}\left(\mathbf{w}_{t+1}-\mathbf{w}_{t}\right)}{\|\mathbf{v}\|} \quad \text { (definition of updates) } \\
&=\frac{\mathbf{v} \cdot \mathbf{w}_{T+1}}{\|\mathbf{v}\|} \\
& \leq\left\|\mathbf{w}_{T+1}\right\| \\
&=\left\|\mathbf{w}_{t_{m}}+y_{t_{m}} \mathbf{x}_{t_{m}}\right\| \quad \text { (Cauchy-Schwarz ineq.) } \\
&=[\left\|\mathbf{w}_{t_{m}}\right\|^{2}+\left\|\mathbf{x}_{t_{m}}\right\|^{2}+2 \underbrace{y_{t_{m}} \mathbf{w}_{t_{m}} \cdot \mathbf{x}_{t_{m}}}_{\leq 0}]^{1 / 2} \\
& \leq\left[\left\|\mathbf{w}_{t_{m}}\right\|^{2}+R^{2}\right]^{1 / 2} \quad \begin{array}{l}
\leq \text { largest } t \text { in } I) \\
\end{array} \\
& \leq\left[M R^{2}\right]^{1 / 2}=\sqrt{M} R . \quad(\text { applying the same to previous } t \mathrm{~s} \text { in } I)
\end{aligned}
$$

- Notes:
- bound independent of dimension and tight.
- convergence can be slow for small margin, it can be in $\Omega\left(2^{N}\right)$.
- among the many variants: voted perceptron algorithm. Predict according to

$$
\operatorname{sign}\left(\left(\sum_{t \in I} c_{t} \mathbf{w}_{t}\right) \cdot \mathbf{x}\right),
$$

where $c_{t}$ is the number of iterations $\mathbf{w}_{t}$ survives.

- $\left\{x_{t}: t \in I\right\}$ are the support vectors for the perceptron algorithm.
- non-separable case: does not converge.


## Perceptron - Leave-One-Out Analysis

- Theorem: Let $h_{S}$ be the hypothesis returned by the perceptron algorithm for sample $S=\left(x_{1}, \ldots, x_{T}\right) \sim D$ and let $M(S)$ be the number of updates defining $h_{S}$. Then,

$$
\underset{S \sim D^{m}}{\mathrm{E}}\left[R\left(h_{S}\right)\right] \leq \underset{S \sim D^{m+1}}{\mathrm{E}}\left[\frac{\min \left(M(S), R_{m+1}^{2} / \rho_{m+1}^{2}\right)}{m+1}\right] .
$$

- Proof: Let $S \sim D^{m+1}$ be a sample linearly separable and let $\mathbf{x} \in S$. If $h_{S-\{\mathrm{x}\}}$ misclassifies x , then x must be a 'support vector' for $h_{S}$ (update at x). Thus,

$$
\widehat{R}_{\mathrm{loo}}(\text { perceptron }) \leq \frac{M(S)}{m+1}
$$

## Perceptron - Non-Separable Bound

(MM and Rostamizadeh, 2013)

- Theorem: let $I$ denote the set of rounds at which the Perceptron algorithm makes an update when processing $\mathrm{x}_{1}, \ldots, \mathbf{x}_{T}$ and let $M_{T}=|I|$. Then,

$$
M_{T} \leq \inf _{\rho>0,\|\mathbf{u}\|_{2} \leq 1}\left[\sqrt{L_{\rho}(\mathbf{u})}+\frac{R}{\rho}\right]^{2}
$$

where $R=\max _{t \in I}\left\|\mathrm{x}_{t}\right\|$

$$
L_{\rho}(\mathbf{u})=\sum_{t \in I}\left(1-\frac{y_{t}\left(\mathbf{u} \cdot \mathbf{x}_{t}\right)}{\rho}\right)_{+} .
$$

- Proof: for any $t, 1-\frac{y_{t}\left(\mathbf{u} \cdot \mathbf{x}_{t}\right)}{\rho} \leq\left(1-\frac{y_{t}\left(\mathbf{u} \cdot \mathbf{x}_{t}\right)}{\rho}\right)_{+}$, summing up these inequalities for $t \in I$ yields:

$$
\begin{aligned}
M_{T} & \leq \sum_{t \in I}\left(1-\frac{y_{t}\left(\mathbf{u} \cdot \mathbf{x}_{t}\right)}{\rho}\right)_{+}+\sum_{t \in I} \frac{y_{t}\left(\mathbf{u} \cdot \mathbf{x}_{t}\right)}{\rho} \\
& \leq L_{\rho}(\mathbf{u})+\frac{\sqrt{M_{T}} R}{\rho}
\end{aligned}
$$

by upper-bounding $\sum_{t \in I}\left(y_{t} \mathbf{u} \cdot \mathbf{x}_{t}\right)$ as in the proof for the separable case.

- solving the second-degree inequality

$$
\begin{gathered}
M_{T} \leq L_{\rho}(\mathbf{u})+\frac{\sqrt{M_{T}} R}{\rho}, \\
\text { gives } \sqrt{M_{T}} \leq \frac{\frac{R}{\rho}+\sqrt{\frac{R^{2}}{\rho^{2}}}+4 L_{\rho}(\mathbf{u})}{2} \leq \frac{R}{\rho}+\sqrt{L_{\rho}(\mathbf{u}) .}
\end{gathered}
$$

## Non-Separable Case - L2 Bound

 (Freund and Schapire, I998; MM and Rostamizadeh, 2013)- Theorem: let $I$ denote the set of rounds at which the Perceptron algorithm makes an update when processing $\mathrm{x}_{1}, \ldots, \mathrm{x}_{T}$ and let $M_{T}=|I|$. Then,
$M_{T} \leq \inf _{\rho>0,\|u\|_{2} \leq 1}\left[\frac{\left\|\mathbf{L}_{\rho}(\mathbf{u})\right\|_{2}}{2}+\sqrt{\frac{\left\|\mathbf{L}_{\rho}(\mathbf{u})\right\|_{2}^{2}}{4}+\frac{\sqrt{\sum_{t \in I}\left\|\mathbf{x}_{t}\right\|^{2}}}{\rho}}\right]^{2}$.
- when $\left\|\mathbf{x}_{t}\right\| \leq R$ for all $t \in I$, this implies

$$
M_{T} \leq \inf _{\rho>0,\|u\|_{2} \leq 1}\left(\frac{R}{\rho}+\left\|\mathbf{L}_{\rho}(\mathbf{u})\right\|_{2}\right)^{2}
$$

where $\mathbf{L}_{\rho}(\mathbf{u})=\left[\left(1-\frac{y_{t}\left(\mathbf{u} \cdot \mathbf{x}_{t}\right)}{\rho}\right)_{+}\right]_{t \in I}$.

- Proof: Reduce problem to separable case in higher dimension. Let $l_{t}=\left(1-\frac{y_{t} \mathbf{u} \cdot \mathbf{x}_{t}}{\rho}\right)_{+} 1_{t \in I}$, for $t \in[1, T]$.
- Mapping (similar to trivial mapping):

$$
\left.\begin{array}{c}
(N+t) \text { th component }\left[\begin{array}{c}
x_{t, 1} \\
\vdots \\
x_{t, N} \\
0 \\
\mathbf{x}_{t}=\left[\begin{array}{c}
x_{t, 1} \\
\vdots \\
x_{t, N}
\end{array}\right] \rightarrow \mathbf{x}_{t}^{\prime}=\left[\begin{array}{c}
\frac{u_{1}}{Z} \\
\vdots \\
0 \\
\Delta \\
0 \\
\vdots \\
0
\end{array}\right] \quad \mathbf{u} \rightarrow \mathbf{u}^{\prime}=\left[\begin{array}{c}
\frac{u_{N}}{N} \\
\frac{y_{1} \rho l_{1}}{\Delta Z} \\
\vdots \\
\frac{y_{T} \rho l_{T}}{\Delta Z}
\end{array}\right] \\
\quad \mathbf{u}^{\prime} \|=1 \Longrightarrow Z=\sqrt{1+\frac{\rho^{2}\left\|\mathbf{L}_{\rho}(\mathbf{u})\right\|^{2}}{\Delta^{2}}} .
\end{array} . \quad \begin{array}{c} 
\\
\hline
\end{array}\right] \\
\hline
\end{array}\right]
$$

- Observe that the Perceptron algorithm makes the same predictions and makes updates at the same rounds when processing $\mathrm{x}_{1}^{\prime}, \ldots, \mathrm{x}_{T}^{\prime}$.
- For any $t \in I$,

$$
\begin{aligned}
y_{t}\left(\mathbf{u}^{\prime} \cdot \mathbf{x}_{t}^{\prime}\right) & =y_{t}\left(\frac{\mathbf{u} \cdot \mathbf{x}_{t}}{Z}+\Delta \frac{y_{t} \rho l_{t}}{Z \Delta}\right) \\
& =\frac{y_{t} \mathbf{u} \cdot \mathbf{x}_{t}}{Z}+\frac{\rho l_{t}}{Z} \\
& =\frac{1}{Z}\left(y_{t} \mathbf{u} \cdot \mathbf{x}_{t}+\left[\rho-y_{t}\left(\mathbf{u} \cdot \mathbf{x}_{t}\right)\right]_{+}\right) \geq \frac{\rho}{Z}
\end{aligned}
$$

- Summing up and using the proof in the separable case yields:

$$
M_{T} \frac{\rho}{Z} \leq \sum_{t \in I} y_{t}\left(\mathbf{u}^{\prime} \cdot \mathbf{x}_{t}^{\prime}\right) \leq \sqrt{\sum_{t \in I}\left\|\mathbf{x}_{t}^{\prime}\right\|^{2}} .
$$

- The inequality can be rewritten as

$$
\begin{aligned}
& M_{T}^{2} \leq\left(\frac{1}{\rho^{2}}+\frac{\left\|\mathbf{L}_{\rho}(\mathbf{u})\right\|^{2}}{\Delta^{2}}\right)\left(r^{2}+M_{T} \Delta^{2}\right)=\frac{r^{2}}{\rho^{2}}+\frac{r^{2}\left\|\mathbf{L}_{\rho}(\mathbf{u})\right\|^{2}}{\Delta^{2}}+\frac{M_{T} \Delta^{2}}{\rho^{2}}+M_{T}\left\|\mathbf{L}_{\rho}(\mathbf{u})\right\|^{2}, \\
& \text { Where } r=\sqrt{\sum_{t \in I}\left\|\mathbf{x}_{t}\right\|^{2}} .
\end{aligned}
$$

- Selecting $\Delta$ to minimize the bound gives $\Delta^{2}=\frac{\rho\left\|\mathbf{L}_{\rho}(\mathbf{u})\right\|_{2} r}{\sqrt{M_{T}}}$ and leads to

$$
M_{T}^{2} \leq \frac{r^{2}}{\rho^{2}}+2 \frac{\sqrt{M_{T}}\left\|\mathbf{L}_{\rho}(\mathbf{u})\right\| r}{\rho}+M_{T}\left\|\mathbf{L}_{\rho}(\mathbf{u})\right\|^{2}=\left(\frac{r}{\rho}+\sqrt{M_{T}}\left\|\mathbf{L}_{\rho}(\mathbf{u})\right\|_{2}\right)^{2} .
$$

- Solving the second-degree inequality

$$
M_{T}-\sqrt{M_{T}}\left\|\mathbf{L}_{\rho}(\mathbf{u})\right\|_{2}-\frac{r}{\rho} \leq 0
$$

yields directly the first statement. The second one results from replacing $r$ with $\sqrt{M_{T}} R$.

## Dual Perceptron Algorithm

Dual-Perceptron $\left(\boldsymbol{\alpha}^{0}\right)$
$1 \quad \boldsymbol{\alpha} \leftarrow \boldsymbol{\alpha}^{0} \quad \triangleright$ typically $\boldsymbol{\alpha}^{0}=\mathbf{0}$
2 for $t \leftarrow 1$ to $T$ do
3 Receive $\left(\mathbf{x}_{t}\right)$
4

$$
\begin{aligned}
& \widehat{y}_{t} \leftarrow \operatorname{sgn}\left(\sum_{s=1}^{T} \alpha_{s} y_{s}\left(\mathbf{x}_{s} \cdot \mathbf{x}_{t}\right)\right) \\
& \operatorname{RECEIVE}\left(y_{t}\right)
\end{aligned}
$$

if $\left(\widehat{y}_{t} \neq y_{t}\right)$ then
$7 \quad \alpha_{t} \leftarrow \alpha_{t}+1$
8 return $\alpha$

## Kernel Perceptron Algorithm

(Aizerman et al., 1964)

## $K$ PDS kernel.

Kernel-Perceptron $\left(\boldsymbol{\alpha}^{0}\right)$
$1 \boldsymbol{\alpha} \leftarrow \boldsymbol{\alpha}^{0}$
$\triangleright$ typically $\boldsymbol{\alpha}^{0}=\mathbf{0}$
2 for $t \leftarrow 1$ to $T$ do
$3 \quad \operatorname{Receive}\left(x_{t}\right)$
$4 \quad \widehat{y}_{t} \leftarrow \operatorname{sgn}\left(\sum_{s=1}^{T} \alpha_{s} y_{s} K\left(x_{s}, x_{t}\right)\right)$
5 Receive $\left(y_{t}\right)$
6 if $\left(\widehat{y}_{t} \neq y_{t}\right)$ then
$7 \quad \alpha_{t} \leftarrow \alpha_{t}+1$
8 return $\alpha$

## Winnow Algorithm

(Littlestone, I988)
Winnow $(\eta)$
$1 \quad w_{1} \leftarrow \mathbf{1} / N$
2 for $t \leftarrow 1$ to $T$ do
3 RECEIVE $\left(\mathbf{x}_{t}\right)$
$4 \quad \widehat{y}_{t} \leftarrow \operatorname{sgn}\left(\mathbf{w}_{t} \cdot \mathbf{x}_{t}\right)$
$\triangleright \quad y_{t} \in\{-1,+1\}$
5
6
7

9
10 else $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t}$
11 return $\mathbf{w}_{T+1}$

## Notes

- Winnow = weighted majority:
- for $y_{t, i}=x_{t, i} \in\{-1,+1\}, \operatorname{sgn}\left(\mathbf{w}_{t} \cdot \mathbf{x}_{t}\right)$ coincides with the majority vote.
- multiplying by $e^{\eta}$ or $e^{-\eta}$ the weight of correct or incorrect experts, is equivalent to multiplying by $\beta=e^{-2 \eta}$ the weight of incorrect ones.
- Relationships with other algorithms: e.g., boosting and Perceptron (Winnow and Perceptron can be viewed as special instances of a general family).


## Winnow Algorithm - Bound

- Theorem:Assume that $\left\|x_{t}\right\|_{\infty} \leq R_{\infty}$ for all $t \in[1, T]$ and that for some $\rho_{\infty}>0$ and $\mathbf{v} \in \mathbb{R}^{N}, \mathbf{v} \geq 0$ for all $t \in[1, T]$,

$$
\rho_{\infty} \leq \frac{y_{t}\left(\mathbf{v} \cdot \mathbf{x}_{t}\right)}{\|\mathbf{v}\|_{1}}
$$

Then, the number of mistakes made by the Winnow algorithm is bounded by $2\left(R_{\infty}^{2} / \rho_{\infty}^{2}\right) \log N$.

- Proof: Let $I$ be the set of $t$ at which there is an update and let $M$ be the total number of updates.


## Notes

- Comparison with perceptron bound:
- dual norms: norms for $\mathrm{x}_{t}$ and $\mathbf{v}$.
- similar bounds with different norms.
- each advantageous in different cases:
- Winnow bound favorable when a sparse set of experts can predict well. For example, if $\mathbf{v}=\mathbf{e}_{1}$ and $\mathrm{x}_{t} \in\{ \pm 1\}^{N}, \log N$ vs $N$.
- Perceptron favorable in opposite situation.


## Winnow Algorithm - Bound

- Potential: $\Phi_{t}=\sum_{i=1}^{N} \frac{v_{i}}{\|\mathbf{v}\|} \log \frac{v_{i} /\|\mathbf{v}\|}{w_{t, i}}$.
- Upper bound: for each $t$ in $I$,

$$
\begin{aligned}
\Phi_{t+1}-\Phi_{t} & =\sum_{i=1}^{N} \frac{v_{i}}{\|\mathbf{v}\|_{1}} \log \frac{w_{t, i}}{w_{t+1, i}} \\
& =\sum_{i=1}^{N} \frac{v_{i}}{\|\mathbf{v}\|_{1}} \log \frac{Z_{t}}{\exp \left(\eta y_{t} x_{t, i}\right)} \\
& =\log Z_{t}-\eta \sum_{i=1}^{N} \frac{v_{i}}{\|\mathbf{v}\|_{1}} y_{t} x_{t, i} \\
& \leq \log \left[\sum_{i=1}^{N} w_{t, i} \exp \left(\eta y_{t} x_{t, i}\right)\right]-\eta \rho_{\infty} \\
& =\log \underset{\mathbf{w}_{t}}{E}\left[\exp \left(\eta y_{t} x_{t}\right)\right]-\eta \rho_{\infty} \\
\text { (Hoeffding) } & \leq \log \left[\exp \left(\eta^{2}\left(2 R_{\infty}\right)^{2} / 8\right)\right]+\underbrace{\eta y_{t} \mathbf{w}_{t} \cdot \mathbf{x}_{t}}_{\leq 0}-\eta \rho_{\infty} \\
& \leq \eta^{2} R_{\infty}^{2} / 2-\eta \rho_{\infty} .
\end{aligned}
$$

## Winnow Algorithm - Bound

- Upper bound: summing up the inequalities yields

$$
\Phi_{T+1}-\Phi_{1} \leq M\left(\eta^{2} R_{\infty}^{2} / 2-\eta \rho_{\infty}\right)
$$

- Lower bound: note that
$\Phi_{1}=\sum_{i=1}^{N} \frac{v_{i}}{\|\mathbf{v}\|_{1}} \log \frac{v_{i} /\|\mathbf{v}\|_{1}}{1 / N}=\log N+\sum_{i=1}^{N} \frac{v_{i}}{\|\mathbf{v}\|_{1}} \log \frac{v_{i}}{\|\mathbf{v}\|_{1}} \leq \log N$
and for all $t, \Phi_{t} \geq 0$ (property of relative entropy).
Thus, $\Phi_{T+1}-\Phi_{1} \geq 0-\log N=-\log N$.
- Comparison: $-\log N \leq M\left(\eta^{2} R_{\infty}^{2} / 2-\eta \rho_{\infty}\right)$. For $\eta=\frac{\rho_{\infty}}{R_{\infty}^{2}}$ we obtain

$$
M \leq 2 \log N \frac{R_{\infty}^{2}}{\rho_{\infty}^{2}} .
$$

## Conclusion

- On-line learning:
- wide and fast-growing literature.
- many related topics, e.g., game theory, text compression, convex optimization.
- online to batch bounds and techniques.
- online version of batch algorithms, e.g., regression algorithms (see regression lecture).


## References

- Aizerman, M.A., Braverman, E. M., \& Rozonoer, L. I. (I964). Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25, 821-837.
- Nicolò Cesa-Bianchi, Alex Conconi, Claudio Gentile: On the Generalization Ability of OnLine Learning Algorithms. IEEE Transactions on Information Theory 50(9): 2050-2057. 2004.
- Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge University Press, 2006.
- Yoav Freund and Robert Schapire. Large margin classification using the perceptron algorithm. In Proceedings of COLT I998.ACM Press, 1998.
- Nick Littlestone. From On-Line to Batch Learning. COLT 1989: 269-284.
- Nick Littlestone. "Learning Quickly When Irrelevant Attributes Abound:A New Linearthreshold Algorithm" Machine Learning 285-3I8(2). 1988.


## References

- Nick Littlestone, Manfred K.Warmuth:The Weighted Majority Algorithm. FOCS 1989: 256-26I.
- Tom Mitchell. Machine Learning, McGraw Hill, I997.
- Mehryar Mohri and Afshin Rostamizadeh. Perceptron Mistake Bounds. arXiv:I 305.0208, 2013.
- Novikoff,A. B. (I962). On convergence proofs on perceptrons. Symposium on the Mathematical Theory of Automata, 12, 615-622. Polytechnic Institute of Brooklyn.
- Rosenblatt, Frank, The Perceptron:A Probabilistic Model for Information Storage and Organization in the Brain, Cornell Aeronautical Laboratory, Psychological Review, v65, No. 6, pp. 386-408, 1958.
- Vladimir N.Vapnik. Statistical Learning Theory.Wiley-Interscience, New York, 1998.


## Appendix

## SVMs - Leave-One-Out Analysis

(Vapnik, I995)

- Theorem: let $h_{S}$ be the optimal hyperplane for a sample $S$ and let $N_{\mathrm{SV}}(S)$ be the number of support vectors defining $h_{S}$. Then,

$$
\underset{S \sim D^{m}}{\mathrm{E}}\left[R\left(h_{S}\right)\right] \leq \underset{S \sim D^{m+1}}{\mathrm{E}}\left[\frac{\min \left(N_{\mathrm{SV}}(S), R_{m+1}^{2} / \rho_{m+1}^{2}\right)}{m+1}\right] .
$$

- Proof: one part proven in lecture 4. The other part due to $\alpha_{i} \geq 1 / R_{m+1}^{2}$ for $\mathbf{x}_{i}$ misclassified by SVMs.


## Comparison

■ Bounds on expected error, not high probability statements.

- Leave-one-out bounds not sufficient to distinguish SVMs and perceptron algorithm. Note however:
- same maximum margin $\rho_{m+1}$ can be used in both.
- but different radius $R_{m+1}$ of support vectors.
- Difference: margin distribution.

