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tA (publi
 key) Tra
e and Revoke S
heme 
ombines the fun
tionality of broad
ast en
ryption with the
apability of traitor tra
ing. Spe
i�
ally, (1) a trusted 
enter publishes a single publi
 key and distributesindividual se
ret keys to the users of the system; (2) anybody 
an en
rypt a message so that all but aspe
i�ed subset of \revoked" users 
an de
rypt the resulting 
iphertext; and (3) if a (small) group ofusers 
ombine their se
ret keys to produ
e a \pirate de
oder", the 
enter 
an tra
e at least one of the\traitors" given a

ess to this de
oder.We 
onstru
t the �rst 
hosen 
iphertext (CCA2) se
ure Tra
e and Revoke S
heme based on the DDHassumption. Our s
heme is also the �rst adaptively se
ure s
heme, allowing the adversary to 
orruptplayers at any point during exe
ution, while prior works (e.g., [17, 19℄) only a
hieves a very weak formof non-adaptive se
urity even against 
hosen plaintext atta
ks.Of independent interest, we present a slightly simpler 
onstru
tion that shows a \natural separation"between the 
lassi
al notion of CCA2 se
urity and the re
ently proposed [18, 1℄ relaxed notion of gCCA2se
urity.1 Introdu
tionA broad
ast en
ryption s
heme allows the sender to se
urely distribute data to a dynami
ally 
hanging set ofusers over an inse
ure 
hannel. Namely, it should be possible to sele
tively ex
lude (i.e., \revoke") a 
ertainsubset of users from re
eiving the data. For that reason, it is often 
onvenient to think of broad
ast en
ryptionas a revo
ation s
heme, sin
e the revo
ation ability is what makes the task of broad
ast en
ryption non-trivial.In parti
ular, ea
h user should re
eive an individualized de
oder (i.e., a de
ryption devi
e with a unique se
retkey) whi
h de
rypts only the 
iphertexts intended for the given user. Broad
ast en
ryption has numerousappli
ations, in
luding pay-TV systems, distribution of 
opyrighted material, streaming audio/video andmany others.The formal study of broad
ast en
ryption was initiated by Fiat and Naor [9℄, who showed a s
heme withmessage overhead roughly O(z2 log2 z logN), where z is the maximum number of ex
luded users (so 
alledrevo
ation threshold) and N is the total number of users. Subsequent works in
lude [14, 13, 11℄, and, morere
ently, [16, 12℄ whi
h show how to a
hieve linear message overhead O(z) and !(logN) storage per user.A related line of work 
on
erns multi
ast se
urity [20, 15, 21, 4, 5℄. However, in this setting revoking asingle user involves 
hanging the keys for all the users, whi
h makes it inappli
able to situations where there
eivers are \stateless", do not always stay \on-line", or where the set of re
eivers 
an 
hange rapidly.Most of the above works primarily 
on
entrate on the 
entralized setting, where only the trusted 
enter(the entity who generates all the se
ret keys) 
an send messages to the re
eivers. In the publi
 key setting,studied in this paper, the 
enter also prepares a �xed publi
 key whi
h allows any entity to play the roleof the sender. Aside from a
hieving this extra fun
tionality, the publi
 key setting also allows the 
enter tostore se
ret keys in a more se
ure pla
e than the station used for data transmission (e.g., o�-line), and a

essthis storage only for \system maintenan
e" (e.g., when a new user joins the system).�Courant Institute of Mathemati
al S
ien
e, New York University1



In the publi
 key setting, the only known publi
 key Broad
ast En
ryption S
hemes have been 
onstru
tedby [17, 19℄ based on the DDH assumption, and a
hieve publi
 key and message overhead O(z). In fa
t, theses
hemes are essentially identi
al: in the following we will refer to the work of [19℄, who emphasize more thepubli
 key nature of their s
heme.Some Criti
ism. Despite providing a simple and elegant s
heme, the work of [19℄ has several noti
eableshort
omings. First, the given (informal) notion of se
urity makes little sense in a revo
ation setting. Indeed,to show the \se
urity" of revo
ation, [19℄ shows the following two 
laims: (1) the s
heme is semanti
allyse
ure when no users are revoked; (2) no set of z a-priori �xed users 
an 
ompute the se
ret key of anotheruser. Clearly, these properties do not imply the se
urity notion we really 
are about and whi
h informallystates: (3) if the adversary 
ontrols some set R of up to z revoked users, then the s
heme remains semanti
allyse
ure. A
tually, the s
heme of [19℄ 
an be shown to satisfy the needed property (3) only when the set R is
hosen by the adversary non-adaptively, and in fa
t only if it is 
hosen before the adversary learns the publi
key. Su
h weak non-adaptive se
urity is 
learly insuÆ
ient for realisti
 usages of a publi
 key revo
ations
heme.Most importantly, the extended s
heme of [19℄ is proven to be CCA2-se
ure when none of the users is
orrupted, but stops being su
h the moment just a single user is 
orrupted, even if this user is immediatelyrevoked for the rest of the proto
ol. Again, this is too weak | the s
heme should remain CCA2-se
ure evenafter many users have been revoked. As we will see, a
hieving this strong type of se
urity is very non-trivial,and requires a mu
h more involved s
heme than the one proposed by [19℄.Our Contributions. We 
onstru
t the �rst adaptive 
hosen 
iphertext (CCA2) se
ure publi
 key Broad
astEn
ryption S
heme under the DDH assumption (with no random ora
les). We remark that no CCA2 s
hemeswere known even in the symmetri
 setting. Moreover, it doesn't seem obvious how to extend 
urrentsymmetri
 s
hemes (e.g. [16℄) to meet the CCA2 notion. Our publi
 key s
heme is based on the regularCramer-Shoup en
ryption [7, 8℄, but our extension is non-trivial, as we have to resolve some diÆ
ultiesinherent to Broad
ast En
ryption. Furthermore, we introdu
e for the �rst time a pre
ise formalization of anappropriate notion of adaptive se
urity for Broad
ast En
ryption (for both the CPA and the CCA2 setting).We also extend the CPA s
heme of [19℄ to a
hieve su
h higher level of se
urity, while maintaining essentiallythe same eÆ
ien
y in all the parameters (up to a fa
tor of 2).Of independent interest, we also provide another s
heme a
hieving a slightly weaker (but still very strong)notion of generalized CCA2 se
urity (gCCA2) [18, 1℄. As argued in [1℄, the gCCA2 se
urity is mu
h morerobust to synta
ti
 
hanges, while still suÆ
ient for all known uses of CCA2 se
urity. Interestingly, all theexamples separating CCA2- and gCCA2-se
ure en
ryption were \arti�
ial" in a sense that they made a more
ompli
ated s
heme from an already existing CCA2-se
ure en
ryption. Our work shows the �rst \natural"separation, but for the setting of broad
ast publi
 key en
ryption.A Note on Traitor Tra
ing. As �rst expli
itly noti
ed by Gafni et al. [10℄, Broad
ast En
ryption ismost useful when 
ombined with a Traitor Tra
ing me
hanism [6℄ by whi
h the 
enter 
an extra
t the identityof (at least one) \pirate" from any illegal de
oder produ
ed 
ombining de
ryption equipments of a groupof legal members (the \traitors"). By slightly modifying standard tra
ing algorithms from previous weakers
hemes (e.g. [17, 19℄ ), tra
ing algorithms 
an be added to our s
hemes, thus yielding fully fun
tional Tra
eand Revoke s
hemes [17℄. However, we will fo
us only on Broad
ast En
ryption (i.e. revo
ation), whi
h isalso the main novelty of this paper.2 Notations and Basi
 Fa
tsLagrange Interpolation in the Exponent. Let q be a prime and f(x) a polynomial of degree z overZq; let j0; : : : ; jz be distin
t elements of Zq, and let f0 = f(j0); : : : ; fz = f(jz). Using Lagrange Interpolation,we 
an express the polynomial as f(x) =Pzt=0(ft � �t(x)), where �t(x) = Q0�i 6=t�z ji�xji�jt ; t = 0; : : : ; z. We
an now de�ne the Lagrange Interpolation Operator as follows:LI(j0; : : : ; jz; f0; : : : ; fz)(x) := zXt=0(ft � �t(x)):2



Now, 
onsider any 
y
li
 group G of order q and a generator g of G . For any distin
t values j0; : : : ; jz of Zqand (non ne
essarily distin
t) elements v0; : : : ; vz of G , let us de�ne the Lagrange Interpolation Operator inthe Exponent as:EXP-LI(j0; : : : ; jz; v0; : : : ; vz)(x) := gLI(j0;:::;jz;loggv0;:::;loggvz)(x) = zYt=0 g(loggvt��t(x)) = zYt=0 v�t(x)t :The last expression shows that the fun
tion EXP-LI is poly-time 
omputable, despite being de�ned in termsof dis
rete logarithms (whi
h are usually hard to 
ompute). We also remark on another useful property ofthe above operator: EXP-LI(j0; : : : ; jz ; vr0 ; : : : ; vrz)(x) = [EXP-LI(j0; : : : ; jz; v0; : : : ; vz)(x)℄r .In what follows, we will refer to a fun
tion of the form gf(x), where f(x) is a polynomial, as an EXP-polynomial.DDH Assumption. The se
urity of our s
hemes will rely on the De
isional DiÆe-Hellman (DDH) Assumptionin the group G : namely, it is 
omputationally hard to distinguish a random tuple (g1; g2; u1; u2) of fourindependent elements in G from a random tuple satisfying logg1 u1 = logg2 u2 (for a survey, see [3℄).A Probabilisti
 Lemma. The following useful lemma states that to estimate the di�eren
e between tworelated experiments U1 and U2, it is suÆ
ient to bound the probability of some event F whi
h \subsumes"all the di�eren
es between the experiments. Formally,Lemma 1 If U1; U2 and F are events su
h that (U1 ^ :F ) and (U2 ^ :F ) are equivalent events, then���Pr[U1℄� Pr[U2℄��� � Pr[F ℄.3 Definition of Broad
ast En
ryption S
hemeSin
e a publi
-key broad
ast en
ryption is typi
ally used by en
rypting a session key s for the privilegedusers (this en
ryption is 
alled the enabling blo
k), and then symmetri
ally en
rypting the \a
tual" messagewith s, we will often say that the goal of a Broad
ast En
ryption S
heme is to en
apsulate [8℄ a session keys, rather than to en
rypt a message M .De�nition 2 (Broad
ast En
ryption S
heme)A Broad
ast En
ryption S
heme BE is a 4-tuple of poly-time algorithms (KeyGen, Reg, En
, De
), where:� KeyGen, the key generation algorithm, is a probabilisti
 algorithm used by the 
enter to set up all theparameters of the s
heme. KeyGen takes as input a se
urity parameter 1� and a revo
ation thresholdz (i.e. the maximum number of users that 
an be revoked) and generates the publi
 key PK and themaster se
ret key SKBE.� Reg, the registration algorithm, is a probabilisti
 algorithm used by the 
enter to 
ompute the se
retinitialization data needed to 
onstru
t a new de
oder ea
h time a new user subs
ribes to the system.Reg re
eives as input the master key SKBE and a (new) index i asso
iated with the user; it returns theuser's se
ret key SKi.� En
, the en
ryption algorithm, is a probabilisti
 algorithm used to en
apsulate a given session key swithin an enabling blo
k T . En
 takes as input the publi
 key PK, the session key s and a set R ofrevoked users (with jRj � z) and returns the enabling blo
k T .� De
, the de
ryption algorithm, is a deterministi
 algorithm that takes as input the se
ret key SKi ofuser i and the enabling blo
k T and returns the session key s that was en
apsulated within T if i wasa legitimate user when T was 
onstru
ted, or the spe
ial symbol ?.3.1 Se
urity of Revo
ationIntuitively, we would like to say that even if a mali
ious adversary A learns the se
ret keys of at most z users,and these users are later revoked, then subsequent broad
asts do not leak any information to su
h adversary.3



The se
urity threat posed by su
h adversary is usually referred to as Chosen Plaintext Atta
k (CPA), and aBroad
ast En
ryption S
heme withstanding su
h an atta
k is said to be z-Resilient against CPA. It is wellknown that su
h an atta
k is not powerful enough to model some realisti
 adversarial s
enarios, e.g. in thepresen
e of an insider who helps the adversary to get de
ryptions of arbitrary 
iphertexts.To be on the safe side, it is possible to 
onsider the Chosen Ciphertext Atta
k (CCA2) in whi
h theadversary is allowed to \play" with the de
ryption ma
hinery as she wishes, subje
t only to the 
onditionthat she doesn't ask about enabling blo
ks 
losely related to her \
hallenge" T �. In formalizing the notion of\
lose relationship", the usual treatment is to impose a minimal restri
tion to the adversary, just disallowingher to submit the 
hallenge itself to the de
ryption ma
hinery. As already noted in [1, 18℄, su
h a mild
onstraint does in turn restri
t too mu
h the 
lass of s
hemes that 
an be proven se
ure, ex
luding evens
hemes that ought to be 
onsidered se
ure under a more intuitive notion. For this reason, it seems morereasonable to 
onsider a variant of the CCA2, to whi
h we will refer to as Generalized Chosen CiphertextAtta
k (gCCA2), following the terminology introdu
ed in [1℄.In a Generalized Chosen Ciphertext Atta
k, the set of enabling blo
ks the adversary is forbidden to askabout is de�ned in term of an eÆ
iently 
omputable equivalen
e relation <(�; �). In fa
t, in the 
ase of abroad
ast (as opposed to ordinary) en
ryption, there is no unique de
ryption ma
hinery, sin
e the de
ryptionalgorithm 
an be used with the se
ret key of any legitimate user. For this reason, in our setting we need to
onsider a family of eÆ
ient equivalen
e relations f<i(�; �)g, one for ea
h user i. As in the regular 
ase [1℄,the equivalen
e relation <i(�; �) 
orresponding to ea
h user i needs to be i-de
ryption-respe
ting : equivalentenabling blo
ks under <i are guaranteed to have exa
tly the same de
ryption a

ording to the se
ret dataof user i. Finally, this family should form an expli
it parameter of the s
heme (i.e., one has to spe
ify somede
ryption-respe
ting family f<ig when proving the gCCA2 se
urity of a given s
heme).Formal Model. We now formalize the above atta
k s
enarios, starting with the CPA.First, (PK;SKBE) BE:KeyGen(1�; z) is run and the adversary A is given the publi
 key PK. Then Aenters the user 
orruption stage, where she is given ora
le a

ess to the User Corruption Ora
le CorSKBE(�).This ora
le re
eives as input the index i of the user to be 
orrupted, 
omputes SKi  BE:Reg(SKBE; i) andreturns the user's se
ret key SKi. This ora
le 
an be 
alled adaptively for at most z times. Let us say thatat the end of this stage the set R of at most z users is 
orrupted.In the se
ond stage, a random bit � is 
hosen, and A 
an query the En
ryption Ora
le (sometimesalso 
alled the left-or-right ora
le) EPK;R;�(�; �) on any pair of session keys s0; s1.1 This ora
le returnsEn
(PK; s� ;R). Without loss of generality (see [2℄), we 
an assume that the en
ryption ora
le is 
alledexa
tly on
e, and returns to A the 
hallenge enabling blo
k T �. At the end of this se
ond stage, A outputsa bit �� whi
h she thinks is equal to �. De�ne the advantage of A as AdvCPABE;A(�) := jPr(�� = �)� 12 j.Additionally, in the 
ase of a Chosen Ciphertext Atta
k (generalized or not), A has also a

ess to aDe
ryption Ora
le DSKBE(�; �), whi
h she 
an query on any pair hi; T i, where i is the index of some userand T is any enabling blo
k of her 
hoi
e. A 
an 
all this ora
le at any point during the exe
ution (i.e.,both in the �rst and in the se
ond stage, arbitrarily interleaved with her other ora
le 
alls). To prevent theadversary from dire
tly de
rypting her 
hallenge T �, the de
ryption ora
le �rst 
he
ks whether <i(T ; T �)holds2: if so, D outputs ?; if not, D 
omputes SKi  BE:Reg(SKBE; i) and uses it to output BE:De
(i; T ).As before, we de�ne the 
orresponding advantages AdvgCCA2BE;A (�) and AdvCCA2BE;A(�).De�nition 3 (z-Resilien
e of a Broad
ast En
ryption S
heme)Let � 2 fCPA; gCCA2;CCA2g. We say that a Broad
ast En
ryption S
heme BE is z-resilient against a �-typeatta
k if the advantage, Adv�BE;A(�), of any probabilisti
 poly-time algorithm A is a negligible fun
tion of �.1For the sake of generality, we 
ould have allowed A to interleave the 
alls to CorSKBE (i) and EPK;R;� (where A 
an 
hooseany i's and R's only subje
t to i 62 R). However, this 
lumsier de�nition is easily seen to be equivalent to the one we present.2This preliminary 
he
k applies to the standard Chosen Ciphertext Atta
k as well, whi
h 
orresponds to all the <i's beingthe equality relation.
4



4 Revo
ation S
hemesIn this se
tion, we present three Broad
ast En
ryption S
hemes, a
hieving z-resilien
e in an adaptive settingfor the 
ase of a CPA, gCCA2 and CCA2 atta
k respe
tively. Subsequent s
hemes build on the previous one,in a in
remental way, so that it is possible to obtain in
reasing se
urity at the 
ost of a slight eÆ
ien
y loss.Considering the subtlety of the arguments, our proofs follow the stru
tural approa
h advo
ated in [8℄de�ning a sequen
e of atta
k games G0, G1, . . . , all operating over the same underlying probability spa
e.Starting from the a
tual adversarial game G0, we in
rementally make slight modi�
ations to the behaviorof the ora
les, thus 
hanging the way the adversary's view is 
omputed, while maintaining the view's distri-butions indistinguishable among the games. While this stru
tural approa
h takes more spa
e to write down,it is mu
h less error-prone and mu
h more understandable than a sli
ker \dire
t argument" (e.g., 
ompare[7℄ and [8℄).4.1 z-Resilien
e against CPA atta
kAs a warm-up before addressing the more 
hallenging 
ase of 
hosen 
iphertext se
urity, we des
ribe a simplerCPA-se
ure s
heme. Our s
heme naturally builds upon previous works [17, 19℄, but a
hieves a mu
h moreappropriate notion of adaptive se
urity, whi
h those previous s
hemes do not enjoy.The Key Generation Algorithm. The �rst step in the key generation algorithm KeyGen(1�; z) is tode�ne a group G of order q, for a random �-bit-long prime q su
h that p = 2q+1 is also prime, in whi
h theDDH assumption is believed to hold. This is a

omplished sele
ting a random prime q with the above twoproperties and a random element g1 of order q modulo p: the group G is then set to be the subgroup of Z�pgenerated by g1, i.e. G = fgi1 mod p : i 2 Zqg � Z�p. A random w  R Zq is then 
hosen and used to 
omputeg2 = gw1 . (In what follows, all 
omputations are mod q in the exponent, and mod p elsewhere.) Then, thekey generation algorithm sele
ts two random z-degree polynomials3 Z1(�) and Z2(�) over Zq, and 
omputesthe values: h0 := gZ1;01 � gZ2;02 ; : : : ; hz := gZ1;z1 � gZ2;z2 . Finally, the pair (PK;SKBE) is given in output, wherePK := hg1; g2; h0; : : : ; hzi and SKBE := hZ1; Z2i.The Registration Algorithm. Ea
h time a new user i > z (in all our s
hemes, we reserve the �rstindi
es 0 : : : z for \spe
ial purposes"), de
ides to subs
ribe to the system, the 
enter provides him with ade
oder box 
ontaining the se
ret key: SKi := hi; Z1;i; Z2;ii .The En
ryption Algorithm. The en
ryption algorithm En
 is given in Figure 1. It re
eives as input thepubli
 key PK, a session key s and a set R = fj1; : : : ; jzg of revoked users and returns the enabling blo
kT . If there are less than z revoked users, the remaining indi
es are set to 1 : : : (z � jRj), whi
h are nevergiven to any \real" user.E1: r1  R ZqE2: u1  gr11E3: u2  gr12E4: Ht  hr1t ; t = 0 : : : zE5: Hjt  EXP-LI(0; : : : ; z;H0; : : : ; Hz)(jt); t = 1 : : : zE6: S  s �H0E7: T  hS; u1; u2; (j1; Hj1); : : : ; (jz; Hjz )iFigure 1: En
ryption algorithm: En
(PK; s;R)The De
ryption Algorithm. If a legitimate user i wants to re
over the session key embedded in theenabling blo
k T = hS; u1; u2; (j1; Hj1); : : : ; (jz ; Hjz)i, he 
an pro
eed as in Figure 2. If i is a revoked user3For 
on
iseness, we will use the following notation: Z1;i := Z1(i) and Z2;i := Z2(i).5



(i.e. i 2 fj1; : : : ; jzg), the algorithm fails in step D2, sin
e the interpolation points j1; : : : ; jz; i are notpairwise distin
t. D1: Hi  uZ1;i1 � uZ2;i2D2: s S=EXP-LI(j1; : : : ; jz; i;Hj1 ; : : : ; Hjz ; Hi)(0)Figure 2: De
ryption algorithm (for user i) De
(i; T )Se
urity. As shown in the theorem below, the z-resilien
e of the above s
heme relies on the De
isionalDiÆe-Hellman (DDH) assumption.Theorem 4 If the DDH problem is hard in G , then the above Broad
ast En
ryption S
heme is z-resilientagainst 
hosen plaintext atta
ks. In parti
ular, for all probabilisti
 poly-time algorithm A, we have thatAdvCPABE;A(�) � �(�).Proof: We de�ne a sequen
e of \indistinguishable" games G0; : : :, where G0 is the original game, and thelast game 
learly gives no advantage to the adversary.Game G0. In game G0, A re
eives the publi
 key PK and adaptively queries the 
orruption ora
leCorSKBE(�). Then, she queries the en
ryption ora
le EPK;R;�(�;�) on (s0; s1), where R must 
ontain allusers that A 
ompromised through the ora
le CorSKBE(�); A re
eives ba
k the enabling blo
k T �. At thispoint, A outputs her guess �� 2 f0; 1g. Let T0 be the event that � = �� in game G0.Game G1. Game G1 is identi
al to gameG0, ex
ept that, in gameG1, step E4 of the en
ryption algorithmin Figure 1, is repla
ed with the following:E40: Ht  uZ1;t1 � uZ2;t2 ; t = 0 : : : zBy the properties of the Lagrange Interpolation in the Exponent, it is 
lear that step E40 
omputes the samevalues Ht, t = 0 : : : z as step E4. The point of this 
hange is just to make expli
it any fun
tional dependen
yof the above quantities on u1 and u2. Let T1 be the event that � = �� in game G1; 
learly, it holds thatPr[T0℄ = Pr[T1℄ .Game G2. To turn game G1 into game G2 we make another 
hange to the en
ryption ora
le used in gameG1. In game G2 steps E1; E3 are repla
ed with the following:E10: r1  R Zq; r2  R Zq n fr1gE30: u2  gr22Let T2 be the event that � = �� in game G2. Noti
e that while in game G1 the values u1 and u2 areobtained using the same value r1, in game G2 they are independent subje
t to r1 6= r2. Therefore, using astandard redu
tion argument, any non-negligible di�eren
e in behavior between G1 and G2 
an be used to
onstru
t a PPT algorithm A1 that is able to distinguish DiÆe-Hellman tuples from totally random tupleswith non negligible advantage. Hen
e, ��Pr[T2℄� Pr[T1℄�� � �1 for some negligible �1.Game G3. To de�ne game G3, we again modify the en
ryption ora
le as follows:E60: e R Zq; S  ge1Let T3 be the event that � = �� in gameG3. Be
ause of this last 
hange, the 
hallenge no longer 
ontains�, nor does any other information in the adversary's view; therefore, we have that Pr[T3℄ = 12 . Moreover,we 
an prove (see Appendix 4.3, Lemma 9), that the adversary has the same 
han
es to guess � in bothgame G2 and G3, i.e. Pr[T3℄ = Pr[T2℄ .Finally, 
ombining all the intermediate results together, we 
an 
on
lude that adversary A's advantageis negligible; more pre
isely: AdvCPABE;A(�) � �1. 6



4.2 z-Resilien
e against gCCA2 Atta
kOn
e we have 
onstru
ted a Broad
ast En
ryption S
heme z-resilient against CPA atta
ks, it is natural totry to devise an extension a
hieving adaptive 
hosen 
iphertext se
urity. This was already attempted by [19℄,but they do not elaborate (neither formally nor informally) on what an \adaptive 
hosen 
iphertext atta
k"on a Broad
ast En
ryption S
heme exa
tly is. As a 
onsequen
e, in their se
urity theorem (Theorem 3 of[19℄), the authors only show the se
urity of their s
heme against an adversary that does not parti
ipate tothe system, while their s
heme is 
ertainly not CCA2-se
ure with respe
t to even a single mali
ious revokeduser.To a
hieve CCA2 se
urity, we will �rst try to apply the standard te
hnique of [7, 8℄ to the s
heme presentedin Se
tion 4.1. Unfortunately, this natural approa
h does not 
ompletely solve the CCA2 problem; still itleads us to an interesting s
heme that a
hieves the (sligthly weaker) notion of generalized 
hosen 
iphertextse
urity.The Key Generation Algorithm. As before, the �rst task of the key generation algorithm is to sele
ta random group G � Z�p of prime order q and two random generators g1; g2 2 G . Then, KeyGen sele
ts sixrandom z-degree polynomials4 X1(�), X2(�), Y1(�), Y2(�), Z1(�) and Z2(�) over Zq, and 
omputes the values
t := gX1;t1 � gX2;t2 , dt := gY1;t1 � gY2;t2 and ht := gZ1;t1 � gZ2;t2 , for t = 0 : : : z.Finally, KeyGen 
hooses at random a hash fun
tion H from a family F of 
ollision resistant hashfun
tions,5 and outputs the pair (PK;SKBE), where PK := hg1; g2; 
0; : : : ; 
z; d0; : : : ; dz; h0; : : : ; hz;Hi andSKBE := hX1; X2; Y1; Y2; Z1; Z2i.The Registration Algorithm. Ea
h time a new user i > z de
ides to subs
ribe to the system, the 
enterprovides him with a de
oder box 
ontaining the se
ret key SKi := hi;X1;i; X2;i; Y1;i; Y2;i; Z1;i; Z2;ii.The En
ryption Algorithm. Using the idea of [7, 8℄, in order to obtain non-malleable 
iphertexts, we\tag" ea
h en
rypted message so that it 
an be veri�ed before pro
eeding with the a
tual de
ryption. Inthe broad
ast en
ryption s
enario, where ea
h user has a di�erent de
ryption key, the tag 
annot be a singlepoint | we need to distribute an entire EXP-polynomial V(x). This is a

omplished appending z + 1 tagsto the 
iphertext: ea
h user i �rst 
omputes the tag vi using his private key and then veri�es the validity ofthe 
iphertext by 
he
king the interpolation of the z + 1 values in point i against its vi.The en
ryption algorithm En
 re
eives as input the publi
 key PK, the session key s to be embeddedwithin the enabling blo
k and a set R = fj1; : : : ; jzg of revoked users. It pro
eeds as des
ribed in Figure 3,and �nally it outputs T .E1: r1  R ZqE2: u1  gr11E3: u2  gr12E4: Ht  hr1t ; t = 0 : : : zE5: Hjt  EXP-LI(0; : : : ; z;H0; : : : ; Hz)(jt); t = 1 : : : zE6: S  s �H0E7: � H(S; u1; u2; (j1; Hj1); : : : ; (jz; Hjz ))E8: vt  
r1t � dr1�t ; t = 0 : : : zE9: T  hS; u1; u2; (j1; Hj1); : : : ; (jz ; Hjz); v0; : : : ; vziFigure 3: En
ryption algorithm En
(PK; s;R)The De
ryption Algorithm. If a legitimate user i wants to re
over the session key embedded in theenabling blo
k T = hS; u1; u2; (j1; Hj1); : : : ; (jz ; Hjz); v0; : : : ; vzi, he 
an pro
eed as in Figure 4. If i is a4For 
on
iseness, we will use the following notation: X1;i := X1(i); X2;i := X2(i); Y1;i := Y1(i); Y2;i := Y2(i); Z1;i :=Z1(i) and Z2;i := Z2(i).5Re
all, it is hard to �nd x 6= y su
h that H(x) = H(y) for a random member H of F .7



revoked user, the algorithm fails in step D6, sin
e the interpolation points j1; : : : ; jz; i are not pairwisedistin
t. D1: � H(S; u1; u2; (j1; Hj1); : : : ; (jz ; Hjz))D2: �vi  uX1;i+Y1;i�1 � uX2;i+Y2;i�2D3: vi  EXP-LI(0; : : : ; z; v0; : : : ; vz)(i)D4: if vi = �viD5: then Hi  uZ1;i1 � uZ2;i2D6: s S=EXP-LI(j1; : : : ; jz ; i;Hj1 ; : : : ; Hjz ; Hi)(0)D7: return sD8: else return ?Figure 4: De
ryption algorithm (for user i) De
(i; T )Se
urity. As mentioned above, the presen
e of many de
ryption keys leads to the use of an EXP-polynomialV(x) to tag the en
ryption of the message. This in turn makes the 
iphertext malleable: sin
e ea
h useri 
an verify the value of V(x) only in one point, the adversary 
an modify the vj 's values and 
onstru
ta di�erent EXP-polynomial V 0(x) interse
ting V(x) at point i | thus fooling user i to a

ept as valid a
orrupted 
iphertext. In the next se
tion we show a non-trivial solution to this problem; here, we assessthe z-resilien
e of the Broad
ast En
ryption S
heme presented above against a gCCA2 atta
k. As alreadydis
ussed in Se
tion 3.1, to this aim it is ne
essary to introdu
e a family of equivalen
e relations f<ig:intuitively, two 
iphertexts T and T 0 are equivalent for user i if they have the same \data" 
omponents, andthe tag \relevant to user i" is 
orre
tly veri�ed, i.e. vi = v0i (even though other \irrelevant" tags 
ould bedi�erent). Clearly, this relation is eÆ
iently 
omputable and i-de
ryption-respe
ting.De�nition 5 (Equivalen
e Relation)Consider V(x) = EXP-LI(0; : : : ; z; v0; : : : ; vz)(x) and V 0(x) = EXP-LI(0; : : : ; z; v00; : : : ; v0z)(x). Given a user i,and the two enabling blo
ks T = hS; u1; u2; (j1; Hj1); : : : ; (jz ; Hjz ); v0; : : : ; vzi and T 0 = hS; u1; u2; (j1; Hj1);: : : ; (jz; Hjz ); v00; : : : ; v0zi, we say that T is equivalent to T 0 with respe
t to user i, and we write <i(T ; T 0), ifthe two EXP-polynomials V(x) and V 0(x) interse
t at point i, i.e. vi = V(i) = V 0(i) = v0i.Theorem 6 If the DDH Problem is hard in G and H is 
hosen from a 
ollision-resistant hash fun
tionsfamily F , then the above Broad
ast En
ryption S
heme is z-resilient against generalized 
hosen 
iphertextatta
ks, under the family of equivalen
e relations f<ig.Proof: To prove this theorem, we pursue the same approa
h as in the proof of Theorem 4, where the startings
enario of the sequen
e of games is de�ned as in the de�nition of the adaptive gCCA2 atta
k.Game G0. Re
all that in game G0, A re
eives the publi
 key PK and adaptively interleaves queries tothe 
orruption ora
le CorSKBE(�) with queries to the de
ryption ora
le DSKBE(�; �). Then, she queries theen
ryption ora
le EPK;R;�(�; �) on (s0; s1), where R must 
ontain all users that A 
ompromised through theora
le CorSKBE(�); A re
eives ba
k the enabling blo
k T �. Then, A 
an again query the de
ryption ora
leDSKBE(i; T ), restri
ted only in that :<i(T ; T �). Finally, she outputs her guess �� 2 f0; 1g. Let T0 be theevent that � = �� in game G0.Game G1. Game G1 is identi
al to game G0, ex
ept that, in game G1, steps E4; E8 of the en
ryptionalgorithm in Figure 3, are repla
ed with the following:E40: Ht  uZ1;t1 � uZ2;t2 ; t = 0 : : : zE80: vt  uX1;t+Y1;t�1 � uX2;t+Y2;t�2 t = 0 : : : zBy the properties of the Lagrange Interpolation in the Exponent, it is 
lear that step E40 
omputes thesame values Hjt , t = 0 : : : z as steps E4; similarly, step E80 
omputes the same values vt, t = 0 : : : z as step8



E8. The point of these 
hanges is just to make expli
it any fun
tional dependen
y of the above quantitieson u1 and u2.Let T1 be the event that � = �� in game G1. Clearly, it holds that Pr[T0℄ = Pr[T1℄ .Game G2. To turn game G1 into game G2 we make another 
hange to the en
ryption ora
le used in gameG1. In game G2 steps E1; E3 are repla
ed with the following:E10: r1  R Zq; r2  R Zq n fr1gE30: u2  gr22Let T2 be the event that � = �� in game G2. Noti
e that while in game G1 the values u1 and u2 areobtained using the same value r1, in game G2 they are independent subje
t to r1 6= r2. Therefore, using astandard redu
tion argument, any non-negligible di�eren
e in behavior between G1 and G2 
an be used to
onstru
t a PPT algorithm A1 that is able to distinguish DiÆe-Hellman tuples from totally random tupleswith non negligible advantage. Hen
e, ��Pr[T2℄� Pr[T1℄�� � �1 for some negligible �1.Game G3. To de�ne game G3 we slightly modify the de
ryption ora
le: instead of using the algorithm inFigure 4, in game G3 steps D2; D4; D5 are repla
ed with the following:D20: �vi  u(X1;i+Y1;i�)+(X2;i+Y2;i�)�w1D40: if (u2 = uw1 ^ vi = �vi)D50: then Hi  uZ1;i+Z1;i�w1The rationale behind these 
hanges is that we want to strengthen the 
ondition that the enabling blo
khas to meet in order to be 
onsidered valid and hen
e to be de
rypted. This will make it easier to show these
urity of the s
heme; however, for these 
hanges to be useful, there should be no observable di�eren
e inthe way invalid enabling blo
ks are \
aught" in games G2 and G3. To make it formal, we now introdu
ethe following two events: let T3 be the event that � = �� in game G3, and let R3 be the event that Asubmits some de
ryption query that would have been de
rypted in game G2 but is reje
ted in game G3; inother words, R3 is the event that some de
ryption query that would have passed the test in step D4 of thede
ryption ora
le used in game G2, fails to pass the test in step D40 used in game G3. Clearly, G2 and G3are identi
al until event R3 o

urs; hen
e, if R3 never o

urs, the adversary has the same 
han
es to win inboth the two games, i.e. (using Lemma 1) T3 ^ :R3 � T2 ^ :R3 ) ��Pr[T3℄� Pr[T2℄�� � Pr[R3℄ .To bound the last probability, we 
onsider two more games, G4 and G5.Game G4. To de�ne game G4, we again modify the en
ryption ora
le as follows:E60: e R Zq; S  ge1Let T4 be the event that � = �� in gameG4. Be
ause of this last 
hange, the 
hallenge no longer 
ontainsthe bit �, nor does any other information in the adversary's view; therefore, we have that Pr[T4℄ = 12 .Let R4 be the event that A submits some de
ryption query that would have been de
rypted in game G2but is reje
ted in game G4; in other words, R4 is the event that some de
ryption query that would havepassed the test in step D4 of the de
ryption ora
le used in game G2, fails to pass the test in step D40 usedin game G4. In Appendix 4.3, we prove (Lemma 10) that those events happen with the same probability asthe 
orresponding events of game G3, i.e. Pr[T4℄ = Pr[T3℄ and Pr[R4℄ = Pr[R3℄ .Game G5. In this game, we again modify the de
ryption algorithm, adding the following spe
ial reje
tionrule, whose goal is to prevent the adversary from submitting illegal enabling blo
ks to the de
ryption ora
le,on
e she has re
eived her 
hallenge.After A re
eives her 
hallenge T � = hS�; u�1; u�2; (j�1 ; Hj�1 ); : : : ; (j�z ; Hj�z ); v�0 ; : : : ; v�z i, the de
ryp-tion ora
le reje
ts any query hi; T i, with T = hS; u1; u2; (j1; Hj1); : : : ; (jz ; Hjz ); v0; : : : ; vzi su
hthat hS; u1; u2; (j1; Hj1); : : : ; (jz; Hjz )i 6= hS�; u�1; u�2; (j�1 ; Hj�1 ); : : : ; (j�z ; Hj�z )i, but � = ��, and itdoes so before exe
uting the test in step D40. 9



Noti
e that in the gCCA2 setting the adversary is not allowed to query the de
ryption ora
le De
(i; T ) onenabling blo
ks <i-equivalent to the 
hallenge T �. Therefore, when the spe
ial reje
tion rule is applied, wealready know that it holds :<i(T ; T �).Let C5 be the event that the adversary submits a de
ryption query that is reje
ted using the abovespe
ial reje
tion rule; let R5 be the event that A submits some de
ryption query that would have passedthe test in step D4 of the de
ryption ora
le used in game G2, but fails to pass the test in step D40 used ingame G5. Noti
e that this implies that su
h a query passed the <i-equivalen
e test and the spe
ial reje
tionrule, be
ause otherwise step D40 wouldn't have been exe
uted. Clearly, G4 and G5 are identi
al until eventC5 o

urs, i.e. R5 ^ :C5 � R4 ^ :C5 ) ��Pr[R5℄� Pr[R4℄�� � Pr[C5℄ , where the impli
ation follows fromLemma 1.Our �nal task is to show that events C5 and R5 o

ur with negligible probability: while the argument tobound event C5 is based on the 
ollision resistan
e assumption for the family F (using a standard redu
tionargument, we 
an 
onstru
t a PPT algorithm A2 that breaks the 
ollision resistan
e assumption with nonnegligible advantage), the argument to bound event R5 hinges upon the fa
t that the adversary is not allowedto submit queries that are \<i-related" to her 
hallenge, and upon information-theoreti
 
onsiderations(as proven in Appendix 4.3, Lemma 11). From these 
onsiderations, we obtain that Pr[C5℄ � �2 andPr[R5℄ � QA(�)q , where �2 is a negligible quantity and QA(�) is an upper bound on the number of de
ryptionqueries made by the adversary.Finally, 
ombining the intermediate results, we 
an 
on
lude that adversary A's advantage is negligible;more pre
isely: AdvgCCA2BE;A (�) � �1 + �2 +QA(�)=q.4.3 z-Resilien
e against CCA2 Atta
kIn Se
tion 4.2, we saw how a dire
t appli
ation of the standard te
hnique of [7, 8℄ does not provide a
omplete solution to the CCA2 problem, but only suÆ
es for gCCA2 se
urity. As proven in Lemma 11 (seeAppendix 4.3), the restri
tion imposed by the gCCA2 atta
k (namely, forbidding the adversary to submitde
ryption queries hi; T i su
h that <i(T ; T �) holds) is essential for the se
urity of the previous Broad
astEn
ryption S
heme. Indeed, given a 
hallenge T � with tag sequen
e v0 : : : vz , it is trivial to 
ome up witha di�erent sequen
e v00 : : : v0z su
h that vi = v0i, resulting in a \di�erent" enabling blo
k T 0 6= T �: however,De
(i; T �) = De
(i; T 0), allowing the adversary to \break" the CCA2 se
urity.Although we feel that gCCA2 se
urity is enough for most appli
ations of Broad
ast En
ryption S
hemes,it is possible to non-trivially modify the Broad
ast En
ryption S
heme presented in Se
tion 4.2 to obtainCCA2 se
urity (with only a slight eÆ
ien
y loss). The modi�ed s
heme, presented in this se
tion, maintainsthe same Key Generation and Registration algorithms des
ribed before; the essential modi�
ations involvethe operations used to 
onstru
t the enabling blo
k. In parti
ular, to a
hieve CCA2 se
urity, it is ne
essaryto 
ome up with some tri
k to make the tag sequen
e v0; : : : ; vz non-malleable. To this aim, we will use anyse
ure (deterministi
) message authenti
ation 
ode (MAC) to guarantee the integrity of the entire sequen
e.In fa
t, we only need any one-time MAC, satisfying the following simple property: given a (unique) 
orre
tvalue MACk(M) for some messageM (under key k), it is infeasible to 
ome up with a 
orre
t (unique) valueof MACk(M 0), for any M 0 6=M .The En
ryption Algorithm. The en
ryption algorithm En
 re
eives as input the publi
 key PK, thesession key s to be embedded within the enabling blo
k and a set R = fj1; : : : ; jzg of revoked users. To
onstru
t the enabling blo
k T , the en
ryption algorithm (de�ned in Figure 3) operates similarly to thegCCA2 en
ryption algorithm: the main di�eren
e is that now a MAC key k, randomly 
hosen from the MACkey spa
e K, is used to MAC the tag sequen
e v0; : : : ; vz, and is en
apsulated within T along with the sessionkey s.The De
ryption Algorithm. If a legitimate user i wants to re
over the session key embedded in theenabling blo
k T = hS; u1; u2; (j1; Hj1); : : : ; (jz ; Hjz)i, he 
an pro
eed as in Figure 6. If i is a revoked user,the algorithm fails in step D6, sin
e the interpolation points j1; : : : ; jz ; i are not pairwise distin
t.Se
urity. The se
urity analysis for this s
heme is very subtle, be
ause there is the risk of 
ir
ularity in the10



E1: r1  R ZqE2: u1  gr11E3: u2  gr12E4: Ht  hr1t ; t = 0 : : : zE5: Hjt  EXP-LI(0; : : : ; z;H0; : : : ; Hz)(jt); t = 1 : : : zE6: k  R KE7: S  (s k k) �H0E8: � H(S; u1; u2; (j1; Hj1); : : : ; (jz; Hjz ))E9: vt  
r1t � dr1�t ; t = 0 : : : zE10: �  MACk(v0; : : : ; vz)E11: T  hS; u1; u2; (j1; Hj1); : : : ; (jz ; Hjz ); v0; : : : ; vz ; �iFigure 5: En
ryption algorithm En
(PK; s;R)D1: � H(S; u1; u2; (j1; Hj1); : : : ; (jz ; Hjz ))D2: �vi  uX1;i+Y1;i�1 � uX2;i+Y2;i�2D3: vi  EXP-LI(0; : : : ; z; v0; : : : ; vz)(i)D4: if vi = �viD5: then Hi  uZ1;i1 � uZ2;i2D6: s k k  S=EXP-LI(j1; : : : ; jz; i;Hj1 ; : : : ; Hjz ; Hi)(0)D7: extra
t s and k from s k kD8: if � 6= MACk(v0; : : : ; vz)D9: then return ?D10: else return sD11: else return ?Figure 6: De
ryption algorithm (for user i) De
(i; T )use of the MAC key k. Namely, k is part of the 
iphertext (sin
e it is en
apsulated, along with the session keys, within S); this means that �, the hash of the 
iphertext, depends on k (at least Information-Theoreti
ally),and thus the sequen
e of tags depends on k. In other words, we are MAC-ing something that depends on theMAC key k, whi
h 
ould be a problem. Lu
kily, the Information-Theoreti
 nature of the stru
tural approa
hto the se
urity analysis that we are pursuing (following [8℄) allows us to prove that a
tually k is 
ompletelyhidden within S, so that MAC-ing the resulting tag with k is still se
ure.The solution to the CCA2 problem for Broad
ast En
ryption S
hemes and the relative se
urity analysis
an be viewed as the main te
hni
al 
ontribution of this paper; at the same time, the 
apability to resolvethe apparent 
ir
ularity in the use of the MAC demonstrates the importan
e of providing a formal modeland pre
ise de�nitions, without whi
h it would have been mu
h harder to devise a 
orre
t proof of se
urityfor the above s
heme.Theorem 7 If the DDH Problem is hard in G , H is 
hosen from a 
ollision-resistant hash fun
tions familyF and MAC is a one-time message authenti
ation 
ode, then the above Broad
ast En
ryption S
heme isz-resilient against 
hosen 
iphertext atta
ks.Proof: The proof pro
eeds de�ning a sequen
e of games similar to that presented in Theorem 6. Thede�nition of games G0, . . . , G5 
losely follow the exposition given in Theorem 6: however, the statements11



of all lemmas (and their proofs) need to be 
hanged to a

ommodate for the use of the MAC. In parti
ular,we 
an easily state and prove a lemma analogous to Lemma 10, where the only di�eren
e is the presen
eof information about the MAC key k in the 
hallenge (see Lemma 12). More importantly, to bound theprobability Pr[R5℄ we introdu
e a new game G6 to deal with the use of the MAC in the enabling blo
k,while a lemma similar to Lemma 11 is used to bound the probability of event R6 de�ned in game G6 (seeAppendix 4.3 for the details on the proofs).Game G6. To de�ne this game, we modify the de
ryption algorithm, adding the following se
ond spe
ialreje
tion rule, whose goal is to dete
t illegal enabling blo
ks submitted by the adversary to the de
ryptionora
le, on
e she has re
eived her 
hallenge. Noti
e that, while the spe
ial reje
tion rule, de�ned in game G5,is used to reje
t adversary's queries aiming at exploiting any weakness in the 
ollision-resistant hash familyF , the se
ond spe
ial reje
tion rule is used to reje
t 
iphertexts aiming at exploiting any weakness in theMAC s
heme.After A re
eives her 
hallenge T � = hS�; u�1; u�2; (j�1 ; Hj�1 ); : : : ; (j�z ; Hj�z ); v�0 ; : : : ; v�z ; ��i, the de-
ryption ora
le reje
ts any query hi; T i, with T = hS; u1; u2; (j1; Hj1); : : : ; (jz ; Hjz ); v0; : : : ; vz ; �isu
h that hS; u1; u2; (j1; Hj1); : : : ; (jz ; Hjz )i = hS�; u�1; u�2; (j�1 ; Hj�1 ); : : : ; (j�z ; Hj�z )i and (v0; : : : ; vz)6= (v�0 ; : : : ; v�z), but � = MACk�(v0; : : : ; vz), and it does so before exe
uting the test in step D40,and before applying the spe
ial reje
tion rule.Let M6 be the event that the adversary submits a de
ryption query that is reje
ted in game G6 using these
ond spe
ial reje
tion rule; let C6 be the event that the adversary submits a de
ryption query that isreje
ted in game G6 using the spe
ial reje
tion rule; let R6 be the event that A submits some de
ryptionquery that would have passed both the test in step D4 and in step D8 of the de
ryption ora
le used in gameG2, but fails to pass the test in step D40 used in game G6. Noti
e that this implies that su
h a query passedboth the se
ond spe
ial reje
tion rule and the spe
ial reje
tion rule, be
ause otherwise step D40 wouldn'thave been exe
uted at all.Event M6 is 
losely related to the se
urity of the one time MAC used in the s
heme; in parti
ular, anydi�eren
e in behavior between game G5 and game G6 
an be used to 
onstru
t a PPT algorithm A3 thatis able to forge a legal authenti
ation 
ode under a one-message atta
k with non-negligible probability, thusbreaking the MAC s
heme. Hen
e, Pr[M6℄ � �3 , for some negligible �3.Moreover, sin
eG5 andG6 are identi
al until eventM6 o

urs, if it doesn't o

ur at all, they will pro
eedidenti
ally; i.e., by Lemma 1:C6 ^ :M6 � C5 ^ :M6 ) ��Pr[C6℄� Pr[C5℄�� � Pr[M6℄R6 ^ :M6 � R5 ^ :M6 ) ��Pr[R6℄� Pr[R5℄�� � Pr[M6℄ :Our �nal task is to bound the probability that events C6 and R6 o

ur: the argument to bound Pr[C6℄ isbased on the 
ollision resistan
e assumption for the family F , while the argument to bound Pr[R6℄ hingesupon information-theoreti
 
onsiderations (as proven in Appendix 4.3, Lemma 13). From those fa
ts, weobtain that Pr[C6℄ � �2 and Pr[R6℄ � QA(�)q , where �2 is a negligible quantity and QA(�) is an upperbound on the number of de
ryption queries made by the adversary.Finally, 
ombining the intermediate results, we 
an 
on
lude that adversary A's advantage is negligible;more pre
isely: AdvCCA2BE;A(�) � �1 + �2 + 2�3 +QA(�)=q.A
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eedingsof the ACM SIGCOMM '98, 1998.AppendixThe proofs of the following lemmas is based on the same te
hniques used in [8℄; the main tool is the followingte
hni
al lemma.Lemma 8 Let k,n be integers with 1 � k � n, and let K be a �nite �eld. Consider a probability spa
ewith random variables ~� 2 Kn�1; ~� = (�1; : : : ; �k)T 2 Kk�1; ~
 2 Kk�1, and M 2 Kk�n, su
h that ~� isuniformly distributed over Kn; ~� =M~�+~
, and for 1 � i � k, the �rst ith rows of M and ~
 are determinedby �1; : : : ; �i�1. Then, 
onditioning on any �xed values of �1; : : : ; �k�1 su
h that the resulting matrix M hasrank k, the value of �k is uniformly distributed over K in the resulting 
onditional probability spa
e.In what follows, we will denote with Coins the 
oin tosses of A and we de�neXt := X1;t + wX2;t; Yt := Y1;t + wY2;t; Zt := Z1;t + wZ2;t; t = 0 : : : z:Proof of the Lemma stated in Theorem 4Lemma 9 Pr[T4℄ = Pr[T3℄.Proof: Consider the quantity V := (Coins; w;Z1; : : : ;Zz; �; r�1 ; r�2) and the value Z0. A

ording to thespe
i�
ation of games G2 and G3, V and Z0 assume the same value in both games. Let us now 
onsider thevalue e� = logg1 S�: unlike the previous two quantities, e� assumes di�erent values in the above two games.In parti
ular, while in game G2 e� 
ontains information about the session key s� , in game G3 e� is just arandom value: let us denote with [e�℄2 and [e�℄3 the values of e� in game G2 and game G3, respe
tively.By de�nition of game G2, event T2 solely depends on (V;Z0; [e�℄2); similarly, by de�nition of game G3,event T3 solely depends on (V;Z0; [e�℄3). Moreover, event T2 depends on (V;Z0; [e�℄2) a

ording to the samefun
tional dependen
e of event T3 upon (V;Z0; [e�℄3). Therefore, to prove the lemma, it suÆ
es to show that(V;Z0; [e�℄2) and (V;Z0; [e�℄3) have the same distribution.A

ording to the spe
i�
ation of game G3, [e�℄3 is 
hosen uniformly over Zq, independently from V andZ0. Hen
e, to rea
h the thesis, it suÆ
es to prove that the distribution of [e�℄2, 
onditioned on V and Z0,is also uniform in Zq.In game G2, the quantities (V;Z0; [e�℄2) are related a

ording to the following matrix equation:� Z0[e�℄2� = � 1 wr�1 wr�2�| {z }M � �Z1;0Z2;0� + � 0logg1s��where det(M) = w(r�2 � r�1) 6= 0, sin
e r�2 6= r�1 .As soon as we �x the value of V , the matrix M is 
ompletely �xed, but the values Z1;0 and Z2;0 are stilluniformly and independently distributed over Zq. Now, �xing a value for Z0 also �xes a value for s� ; hen
e,by Lemma 8, we 
an 
on
lude that the 
onditioned distribution of [e�℄2, w.r.t. V and Z0, is also uniformover Zq. 14



Proofs of Lemmas stated in Theorem 6Lemma 10 Pr[T4℄ = Pr[T3℄ and Pr[R4℄ = Pr[R3℄.Proof: Consider the quantity:V := (Coins;H; w;X1;0; X2;0; : : : ; X1;z; X2;z; Y1;0; Y2;0; : : : ; Y1;z; Y2;z;Z1; : : : ;Zz ; �; r�1 ; r�2)and the value Z0. Introdu
ing similar notations as in Lemma 9 and reasoning as above, we 
an noti
e thatevent T3 solely depends on (V;Z0; [e�℄3) and that event T4 solely depends on (V;Z0; [e�℄4). Moreover, eventT3 depends on (V;Z0; [e�℄3) a

ording to the same fun
tional dependen
e of event T4 upon (V;Z0; [e�℄4).The same 
onsiderations hold for events R3 and R4. Therefore, to prove the lemma, it suÆ
es to show that(V;Z0; [e�℄3) and (V;Z0; [e�℄4) have the same distribution.A

ording to the spe
i�
ation of game G4, [e�℄4 is 
hosen uniformly over Zq, independently from V andZ0. Hen
e, to rea
h the thesis, it suÆ
es to prove that the distribution of [e�℄3, 
onditioned on V and Z0,is also uniform in Zq.In game G3, the quantities (V;Z0; [e�℄3) are related a

ording to the following matrix equation:� Z0[e�℄3� = � 1 wr�1 wr�2�| {z }M � �Z1;0Z2;0� + � 0logg1s��where det(M) = w(r�2 � r�1) 6= 0, sin
e r�2 6= r�1 .As soon as we �x the value of V , the matrix M is 
ompletely �xed, but the values Z1;0 and Z2;0 are stilluniformly and independently distributed over Zq. Now, �xing a value for Z0 also �xes a value for s� ; hen
e,by Lemma 8, we 
an 
on
lude that the 
onditioned distribution of [e�℄3, w.r.t. V and Z0, is also uniformover Zq.Lemma 11 If QA(�) is an upper bound on the number of de
ryption queries that A poses to the de
ryptionalgorithm, then Pr[R5℄ � QA(�)q .Proof: In what follows, for 1 � j � QA(�), we will denote with R(j)5 the event that the jth 
iphertexthi; T i, submitted by A to the de
ryption ora
le in game G5, fails to pass the test in step D40, but wouldhave passed the test in step D4 in game G2. Besides, for 1 � j � QA(�), we will denote with B(j)5 the eventthat the jth 
iphertext is submitted to the de
ryption ora
le before A re
eived her 
hallenge, and with B̂(j)5the event that the jth 
iphertext is submitted to the de
ryption ora
le after A re
eived her 
hallenge. If weshow that, for 1 � j � QA(�), Pr[R(j)5 j B(j)5 ℄ � 1q and that Pr[R(j)5 j B̂(j)5 ℄ � 1q , then the thesis will follow.Claim.: Pr[R(j)5 j B(j)5 ℄ � 1q .To prove this 
laim, �x 1 � j � QA(�) and 
onsider the quantities:V := (Coins;H; w;Z0; : : : ;Zz); V 0 := (X0; : : : ;Xz ;Y0; : : : ;Yz):These two quantities together 
ontain all the randomness needed to determine the behavior of A and ofall the ora
les she intera
ts with, up to the moment that A performs the en
ryption query: on
e we �x Vand V 0, we totally de�ne how the adversary pro
eeds in her atta
k, before she re
eives her 
hallenge ba
k.Moreover, �xing V and V 0, the event B(j)5 is 
ompletely de�ned: given V and V 0, we say they are relevant,if the event B(j)5 o

urs.Hen
e, to rea
h the 
laim, it suÆ
e to prove that the probability of event R(j)5 , 
onditioned on anyrelevant values of V and V 0, is less then 1=q.Re
all that the 
ondition tested in step D40 in game G5 is (u2 = uw1 ^ vi = �vi): sin
e we are 
onsideringthe 
ase that the jth query fails to pass the test in step D40, but would have passed the test in step D4 ofgame G2, it must be the 
ase that vi = �vi but u2 6= uw1 . Therefore, we only 
onsider relevant values of V15



and V 0 su
h that u2 6= uw1 . Taking the logs (base g1), the 
ondition u2 6= uw1 is equivalent to r1 6= r2 andthe 
ondition vi = �vi is equivalent to �i = ��i, where ��i := logg1 �vi = r1X1;i + wr2X2;i + �r1Y1;i + �wr2Y2;iand �i := logg1 vi = LI(0; : : : ; z; logg1v0; : : : ; logg1vz)(i). Noti
e that ��i 
an be expressed in terms of theve
tor (X1;0; X2;0; : : : ; X1;z; X2;z; Y1;0; Y2;0; : : : ; Y1;z; Y2;z)T ; indeed, X1;i = LI(0; : : : ; z;X1;0; : : : ; X1;z)(i) =Pzt=0(X1;t � �t(i)), and similar relations hold for X2;i; Y1;i and Y2;i. Therefore, by means of some matrixmanipulation, we 
an write:��i = ~Æ � (X1;0; X2;0; : : : ; X1;z; X2;z; Y1;0; Y2;0; : : : ; Y1;z; Y2;z)Twhere ~Æ � (Æ0; Æ1; : : : ; Æ2z; Æ2z+1; Æ2z+2; Æ2z+3; : : : ; Æ4z+2; Æ4z+3) is de�ned as:~Æ := (r1�0(i); wr2�0(i); : : : ; r1�z(i); wr2�z(i); �r1�0(i); �wr2�0(i); : : : ; �r1�z(i); �wr2�z(i)):In game G5, the random values de�ned above are related a

ording to the following matrix equation:0BBBBBBBBBB�
X0...XzY0...Yz��i
1CCCCCCCCCCA = 0BBBBBBBBBB�

1 w : : : 0 0 0 0 : : : 0 0... ... ... ...0 0 : : : 1 w 0 0 : : : 0 00 0 : : : 0 0 1 w : : : 0 0... ... ... ...0 0 : : : 0 0 0 0 : : : 1 wÆ0 Æ1 : : : Æ2z Æ2z+1 Æ2z+2 Æ2z+3 : : : Æ4z+2 Æ4z+3
1CCCCCCCCCCA| {z }M �

0BBBBBBBBBBBBBBBB�
X1;0X2;0...X1;zX2;zY1;0Y2;0...Y1;zY2;z

1CCCCCCCCCCCCCCCCAWe want to show that the rank of the matrix M is 2z + 3. Clearly, the �rst 2z + 2 rows are linearlyindependent; to see why the last row (i.e. the ve
tor ~Æ) is independent from the others, noti
e that the onlyway to obtain Æ0 is by multiplying the �rst row by r1�0(i): doing so, the se
ond 
omponent of Æ results to bewr1�0(i). But sin
e Æ1 = wr2�0(i), this implies that r1 = r2, 
ontradi
ting the assumption that the queryfails to pass the test in step D40 in game G5.As soon as we �x V , the �rst 2z+2 rows of matrixM are �xed, but the values X1;0; X2;0; : : : ; Y1;z; Y2;z arestill uniformly and independently distributed over Zq; as for ~Æ, its value is still undetermined, sin
e r1; r2 andi are not yet �xed. Now, �xing a value for V 0 su
h that V and V 0 are relevant and that r1 6= r2, determinesthe value of the jth query (and hen
e the value of ~Æ), along with the values X0; : : : ;Xz;Y0; : : : ;Yz and ��i.Therefore, by Lemma 8, we 
an 
on
lude that the distribution of ��i, 
onditioned on relevant values of V andV 0, is uniform over Zq; sin
e 
onditioning on any �xed, relevant value of V and V 0, �i is just a single pointin Zq, it follows that Pr[�i = ��i℄ = 1q .Claim.: Pr[R(j)5 j B̂(j)5 ℄ � 1q .To prove this 
laim, �x 1 � j � QA(�) and 
onsider the quantities:V := (Coins;H; w;Z0; : : : ;Zz; r�1 ; r�2 ; e�); V 0 := (X0; : : : ;Xz ;Y0; : : : ;Yz; ��i )where ��i := logg1 v�i = LI(0; : : : ; z; logg1v�0 ; : : : ; logg1v�z)(i) and i > z. Noti
e that by the spe
i�
ation ofthe en
ryption ora
le used in game G5, it holds that: logg1 v�t = r�1X1;t + wr�2X2;t + ��r�1Y1;t + ��wr�2Y2;t,t = 0; : : : ; z. Therefore, we 
an write:��i = zXt=0 �t(i)(r�1X1;t + wr�2X2;t + ��r�1Y1;t + ��wr�2Y2;t):Together, V and V 0 
ontain all the parameters needed to determine the behavior of A and of all theora
les she intera
ts with: on
e we �x V and V 0, we totally de�ne how the adversary pro
eeds in the entire16



atta
k. Moreover, �xing V and V 0, the event B̂(j)5 is 
ompletely de�ned: given V and V 0, we say they arerelevant, if the event B̂(j)5 o

urs.Hen
e, to rea
h the 
laim, it suÆ
es to prove that the probability of event R(j)5 , 
onditioned on anyrelevant values of V and V 0, is less then 1=q.As shown above, we 
an 
onsider just relevant values of V and V 0 for whi
h it holds that u2 6= uw1 .Reasoning as in the previous 
ase, and maintaining the notation introdu
ed there, the random values de�nedabove are related a

ording to the following matrix equation:0BBBBBBBBBBBB�
X0...XzY0...Yz��i��i
1CCCCCCCCCCCCA = 0BBBBBBBBBBBB�

1 w : : : 0 0 0 0 : : : 0 0... ... ... ...0 0 : : : 1 w 0 0 : : : 0 00 0 : : : 0 0 1 w : : : 0 0... ... ... ...0 0 : : : 0 0 0 0 : : : 1 wÆ�0 Æ�1 : : : Æ�2z Æ�2z+1 Æ�2z+2 Æ�2z+3 : : : Æ�4z+2 Æ�4z+3Æ0 Æ1 : : : Æ2z Æ2z+1 Æ2z+2 Æ2z+3 : : : Æ4z+2 Æ4z+3
1CCCCCCCCCCCCA| {z }M
�
0BBBBBBBBBBBBBBBB�
X1;0X2;0...X1;zX2;zY1;0Y2;0...Y1;zY2;z

1CCCCCCCCCCCCCCCCAwhere ~Æ� � (Æ�0 ; Æ�1 ; : : : ; Æ�2z; Æ�2z+1; Æ�2z+2; Æ�2z+3; : : : ; Æ�4z+2; Æ�4z+3) is de�ned as:~Æ� := (r�1�0(i); wr�2�0(i); : : : ; r�1�z(i); wr�2�z(i); ��r�1�0(i); ��wr�2�0(i); : : : ; ��r�1�z(i); ��wr�2�z(i)):We want to show that the rank of the matrix M is 2z + 4. Clearly, the �rst 2z + 2 rows of M are alllinear independent. Moreover, as shown in the previous 
laim, both ��i and ��i are linearly independent fromthe �rst 2z + 2 rows of M . Firstly, noti
e that the assumption that the jth query hi; T i is reje
ted in stepD40 of gameG5, implies not only :<i(T ; T �), but also that T passed the spe
ial reje
tion rule; furthermore,we may assume that � 6= ��, sin
e otherwise the only way T may have passed the spe
ial reje
tion rule isthat hS; u1; u2; (j1; Hj1); : : : ; (jz; Hjz )i = hS�; u�1; u�2; (j�1 ; Hj�1 ); : : : ; (j�z ; Hj�z )i. But this on one hand entails~Æ� = ~Æ, i.e. ��i = ��i, whereas on the other hand implies that �i 6= ��i (be
ause otherwise T and T � wouldbe <i-related). Thus, if � = �� then �i 6= ��i, 
ontradi
ting the assumption that the jth query hi; T i wouldhave passed the test in step D4 in game G2.In order to show that ~Æ is linearly independent from the �rst 2z + 3 rows, observe that the only way toobtain Æ0 is by multiplying the �rst row by (r1 � r�1)�0(i) and ~Æ� by 1; similarly, to obtain Æ2z+2 as a linear
ombination of the other elements in its 
olumn, we need to multiply the (z + 2)th row by �(r1 � r�1)�0(i)and ~Æ� by ��� : sin
e � 6= ��, ��� 6= 1 and so, ~Æ is linearly independent from all the other rows.As soon as we �x V , the �rst 2z + 2 rows of matrix M are �xed, but the values X1;0; X2;0; : : : ; Y1;z; Y2;zare still uniformly and independently distributed over Zq; as for Æ� and Æ, their values are still undetermined,sin
e r�1 ; r�2 ; r1; r2 and i, are not yet �xed. Now, �xing a value for V 0 su
h that V and V 0 are relevant andthat r1 6= r2, also �xes the last 2 rows of matrix M along with the values X0; : : : ;Xz;Y0; : : : ;Yz and ��i ;hen
e, by Lemma 8, we 
an 
on
lude that the distribution of ��i, 
onditioned on relevant values of V andV 0, is also uniform over Zq; sin
e 
onditioning on any �xed, relevant values of V and V 0, �i is just a singlepoint in Zq, it follows that Pr[�i = ��i℄ = 1q .Proofs of Lemmas stated in Theorem 7Lemma 12 Pr[T4℄ = Pr[T3℄ and Pr[R4℄ = Pr[R3℄ .Proof: Consider the quantities:V := (Coins;H; w;X1;0; X2;0; : : : ; X1;z; X2;z; Y1;0; Y2;0; : : : ; Y1;z; Y2;z;Z1; : : : ;Zz ; �; r�1 ; r�2 ; k):17



and the value Z0. We 
an repeat the same 
onsiderations stated in Lemma 10: the only di�eren
e is thatthe quantities (V;Z0; [e�℄3) 
hara
terizing game G3 are related a

ording to the following slightly di�erentmatrix equation: � Z0[e�℄3� = � 1 wr�1 wr�2�| {z }M � �Z1;0Z2;0� + � 0logg1(s�kk)�For the same reasons seen in Lemma 10, as soon as we �x a value for V , the matrix M is 
ompletely�xed, as well as the value of k, but the values Z1;0 and Z2;0 are still uniformly and independently distributedover Zq. Now, �xing a value for Z0 also �xes a value for s� and hen
e for logg1(s�kk); thus, by Lemma 8,the 
onditioned distribution of [e�℄3, w.r.t. V and Z0, is also uniform over Zq.Lemma 13 If QA(�) is an upper bound on the number of de
ryption queries that A poses to the de
ryptionalgorithm, then Pr[R6℄ � QA(�)q .Proof: In what follows, for 1 � j � QA(�), we will denote with R(j)6 the event that the jth 
iphertext hi; T i,submitted by A to the de
ryption ora
le in game G6, fails to pass the test in step D40, but would havepassed both tests in step D4 and in step D8 in game G2. Besides, for 1 � j � QA(�), we will denote withB(j)6 the event that the jth 
iphertext is submitted to the de
ryption ora
le before A re
eived her 
hallenge,and with B̂(j)6 the event that the jth 
iphertext is submitted to the de
ryption ora
le after A re
eived her
hallenge. If we show that, for 1 � j � QA(�), Pr[R(j)6 j B(j)6 ℄ � 1q and that Pr[R(j)6 j B̂(j)6 ℄ � 1q , then thethesis will follow.Claim.: Pr[R(j)6 j B(j)6 ℄ � 1q .This proof 
losely follows the one presented in Lemma 11, so we omit the details here.Claim.: Pr[R(j)6 j B̂(j)6 ℄ � 1q .To prove this 
laim we pro
eed like in Lemma 11, �xing 1 � j � QA(�) and 
onsidering the quantities:V := (Coins;H; w;Z0; : : : ;Zz; r�1 ; r�2 ; e�); V 0 := (X0; : : : ;Xz;Y0; : : : ;Yz; ��i ; k)where we are maintaining all the notations introdu
ed above.Again, we 
an repeat exa
tly the same 
onstru
tion utilized in Lemma 11: the only di�eren
e from theargument presented there is in the 
onsiderations aiming at showing that we 
an assume that � 6= ��; thus,we only need to justify this assumption in the new s
enario, and the 
laim will follow.Under the assumptions that the jth query hi; T i is reje
ted in step D40 of game G6 but would have beende
rypted as valid in game G2, we 
an dedu
e that T passed both the se
ond spe
ial reje
tion rule and thespe
ial reje
tion rule. We may also assume that � 6= ��, sin
e otherwise the only way that T may have passedthe spe
ial reje
tion rule is that hS; u1; u2; (j1; Hj1); : : : ; (jz; Hjz )i = hS�; u�1; u�2; (j�1 ; Hj�1 ); : : : ; (j�z ; Hj�z )i; butsin
e T must di�er from the 
hallenge T �, then it must be the 
ase that (v0; : : : ; vz) 6= (v�0 ; : : : ; v�z), andso, from the fa
t that T passed the se
ond spe
ial reje
tion rule we get that � 6= MACk�(v0; : : : ; vz), thus
ontradi
ting the assumption that the jth query would have been de
rypted in game G2 (sin
e the test instep D8, for the validity of the tag � , would have failed).
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