
Space-Time Tradeo�s for Graph PropertiesbyYevgeniy DodisSubmitted to the Department of Electrical Engineering and Computer Sciencein partial ful�llment of the requirements for the degree ofMaster of Science in Computer Scienceat theMASSACHUSETTS INSTITUTE OF TECHNOLOGYJune 1998c Massachusetts Institute of Technology 1998. All rights reserved.
Author :Department of Electrical Engineering and Computer ScienceMay 8, 1998
Certi�ed by :Madhu SudanProfessorThesis Supervisor
Accepted by :Arthur SmithChairman, Departmental Committee on Graduate Students

2

Space-Time Tradeo�s for Graph PropertiesbyYevgeniy DodisSubmitted to the Department of Electrical Engineering and Computer Scienceon May 8, 1998, in partial ful�llment of therequirements for the degree ofMaster of Science in Computer ScienceAbstractGiven a graph property P , we study the tradeo� between the pre-processing space and the query time in thefollowing scenario. We are given a graph G, a boolean function family F , and a parameter s which indicates theamount of space available for storing a data structure D that contains information about G. The data structureD satis�es the constraint that the value of each cell c inD corresponds to an application of some function drawnfrom F . Our queries are of the form: \Does the subgraph GX induced by the vertex set X satisfy property P ?"For various settings of F and s, this model uni�es many well-studied problems. At one extreme, when the spaces is unrestricted, we study the generalized decision tree complexity of evaluating P on the entire graph G itself;each tree node stores a function in F applied to some subset of edges. A special case of this model is the famousAKR conjecture (where F , contains merely the identity function g(x) = x) which states that any non-trivialmonotone graph property is evasive. At the other extreme, when the function family F is unrestricted, ourproblem is an example of the classical static data structure problem and we examine the cell probe complexityof our problem. We study graph properties across this broad spectrum of computational frameworks. A centralthesis of our work is that \polynomial preprocessing space yields only a negligible (poly-logarithmic) speedup".While proving such a result for an unrestricted F is unlikely, we provide formal evidence towards this thesis byestablishing near-quadratic (optimal in many cases) lower bounds under a variety of natural restrictions. Ourresults are built upon a diverse range of techniques drawn from communication complexity, the probabilisticmethod and algebraic representations of boolean functions. We also study the problem from an algorithmicviewpoint and develop a framework for designing algorithms that e�ciently answer queries using bounded space.We conclude with a study of space-time tradeo�s in an abstract setting of general interest that highlights certainstructural issues underlying our problem.Thesis Supervisor: Madhu SudanTitle: Professor

AcknowledgmentsThe author would like to thank Sanjeev Khanna for collaborating on the research presented in this thesis. Theauthor also thanks Sha� Goldwasser, Tom Leighton, Dan Spielman, Madhu Sudan, Avi Wigderson and PeterWinkler for their valuable comments and suggestions. Special thanks to my family for their continuing support.

Contents
1 Introduction 82 Notation and Preliminaries 122.1 Generalized Cell Probe Model . 122.2 Decision Tree Complexity (Unrestricted s) . 132.3 Communication Complexity Model . 142.4 Graph Properties and the Induced Subgraph Problem . 153 Unrestricted Function Families 173.1 Unconditional Lower Bounds . 173.2 Asymmetric Complexity . 184 Restricted Function Families with Restricted Space 214.1 Stabilization Technique . 214.2 AND and OR Families . 234.3 �-CNF and �-DNF Families . 234.4 Symmetric Monotone Functions . 254.5 Computing P Using P . 264.6 Small Degree Polynomials . 265 Restricted Function Families with Unrestricted Space 275.1 Low Degree Polynomials . 275.1.1 Transitive Functions and Their Degree . 285.2 \Small Threshold" Family . 305.2.1 \Dense Certi�cate" Technique . 315.2.2 Evasive Path Technique . 315.2.3 \YES/NO unless cannot" Technique . 315.3 Oblivious versus Adaptive Bounds . 346 Upper Bounds Techniques and Results 366.1 Standard Representations . 366.1.1 Standard Variable Representation (SVR) . 366.1.2 Standard Graph Representation (SGR) . 386.1.3 Some Extensions . 386.2 Optimality of SGR/SVR . 396.3 Applications of SGR . 406.3.1 Computing Splittable Functions . 406.3.2 Edge-Separated Properties . 415

6.3.3 Computing BFS/DFS Forest . 416.3.4 Transitive Closure Computation . 416.3.5 Speedup-Preserving Reductions . 427 (s; t)-Spanning Set 447.1 Basic Setup and General Results . 447.2 Computing Monotone Functions Using AND/OR Families . 467.3 Applications To Graph Properties . 47

6

List of Figures5-1 Various Cases for no-isolated-vertex . 34

7

Chapter 1IntroductionWe study space-time tradeo�s for graph properties. Speci�cally, given a graph property P , we study thetradeo� between the pre-processing space and the query time in the following scenario. We are given a graphG, a boolean function family F , and a parameter s which indicates the amount of space available for storinga data structure D = fc1; c2; :::; csg that contains information about G. The data structure D satis�es theconstraint that the value of each cell ci in D corresponds to an application of some g 2 F to a subset of edgevariables. Our queries are of the form \Does the subgraph GX of G induced by the vertex set X satisfy theproperty P ?" We refer to this problem as the induced subgraph problem. A given query q is answered byprobing cells of D and the time t spent in answering q is the number of probes made. Our goal is to study theworst-case time t = TF ;s(P) needed to answer queries as a function of the family F , space s, and the numbern of vertices in the input graph G. Our framework elegantly uni�es several well-studied questions concerninggraph properties and data structures, hitherto studied in isolated settings. At one extreme, when the space s isunrestricted, the time t = TF (P) measures the decision tree complexity of evaluating P on the entire graph Gitself; each tree node stores a function in F applied to some subset of edges. A well-known special case of thismodel is the famous AKR conjecture (where F , contains merely the identity function g(x) = x) which statesthat any non-trivial monotone graph property is evasive.1 The conjecture is proven to within a constant factori.e. every non-trivial monotone graph property is known to be almost evasive [13, 5].At the other extreme, when the function family F is unrestricted, our problem becomes an example ofthe classical static data structure problem and the time t = Ts(P) measures the cell probe complexity ofinduced subgraph problem. The static data structure problem is de�ned in general for an arbitrary functionf : Y � Q 7! f0; 1g (f is the property P in our case), where the �rst input y 2 Y is static (the graph G),jyj = m, and the second input q 2 Q is a dynamic query (the induced subset X), jqj = n. The objective is todetermine the worst case number of probes needed to compute f(y; q) using a data structure with s cells; theproblem has been well-studied in the literature ([1], [2], [8], [9], [10], [14]). Still, no explicitly de�ned functionf is known for which t = !(n) is proven when space s = poly(n). Showing such a super linear bound for an NPfunction f (an NP graph property in our case) would unconditionally separate NP from the class of read-twicebranching programs ([11]); a long-standing question in complexity theory. Notice that the case when bothspace s and family F are unrestricted is trivial as every query can be answered in unit time.We study graph properties across this broad spectrum of computational frameworks, shedding some lighton the combinatorial structure of many fundamental properties. Our techniques for obtaining the lower boundsrely on the probabilistic method, information-theoretic arguments such as the ones used in communicationcomplexity, algebraic methods for representation of boolean functions and combinatorial arguments that exploitthe structure of minimal \certi�cates" for a given property. The diverse nature of these techniques highlights1A function h : f0; 1gm 7! f0; 1g is said to be evasive (almost evasive) if any decision tree for h has depth m (
(m)).8

various structural aspects of graph properties that are interesting in their own right. A thesis central to ourwork is that for any function family F , the time TF ;s(P) =
(n2=polylog(s)) for any evasive graph propertyP , that is, polynomial preprocessing space yields only a negligible (poly-logarithmic) speedup. While provingsuch a result for unrestricted F is unlikely, as indicated in the preceding discussion, our work provides formalevidence towards this thesis under a variety of natural restrictions. In what follows, we describe more preciselyour results, motivations and techniques, organized across this broad spectrum.Restricted Space, Unrestricted Function Families: Since F is unrestricted, we denote time simply byTs. The best known lower bound for an explicitly de�ned function, as indicated above, is
(n= log s). Wematch this bound for the induced subgraph problem when the underlying property is any non-trivial monotonegraph property. We also show the same result for non-monotone property parity. The result is shown usingthe connection between static data structure problems and the communication complexity model, discoveredby Miltersen [8], and essentially all known bounds can be viewed as an application of this technique [11]. Incontrast, a simple counting argument shows that almost every function f : f0; 1gm � f0; 1gn 7! f0; 1g requirest =
(m) even with exponential space s = 2n�1 [8]. Thus, a central problem is to construct an explicitfamily of functions which is \hard" to speed-up. We believe that induced subgraph problem for evasive graphproperties is a candidate function family towards this end.We also study the asymmetric communication complexity [11] of our problem. In this setup, instead ofmeasuring simply the total number of bits exchanged, we measure the number of bits sent by Alice and Bobindividually. An [A;B]-protocol is a protocol where Alice sends at most A bits and Bob sends at most B bits.A lower bound of [A;B] means that either Alice must send
(A) bits or Bob must send
(B) bits in orderto compute the function. We show that when the underlying graph property is parity (of edges), there is a[n2= log n; n] lower bound. We conjecture that the asymmetric communication complexity of induced subgraphproblem for evasive P is [n2; n]. Thus, if Bob does not send almost the entire subset X to Alice, Alice mustsend Bob almost the entire graph G.Restricted Space, Restricted Function Families: Our interest here is to study space-time tradeo�s whenci's are drawn from some general, yet not arbitrary, function family F i.e. the measure TF ;s. We remark herethat if F equals the family of all monotone functions, it is \equivalent" in power to the unrestricted settingabove. This follows from the fact that any (non-monotone) function can be e�ciently simulated by monotonefunctions using the idea of \slice functions" [4]. In general, many seemingly restrictive families can capturelarge classes of functions via e�cient simulation. Observe that even when restricting to some simple functionfamilies F , many evasive properties are now expressible as a single cell function that takes as input the entiregraph. Consider the following evasive property P : Is G an empty graph? Let F be simply the family of ORfunctions. Clearly, a single OR can express the property on a given G. On the other hand, a cell storing anOR of all the edges in the graph is of no use in determining whether an induced subgraph GX satis�es P .Intuitively speaking, the cells that are sensitive to \many" edges are useful for answering only very few queries,while \short" cells might be good for many queries but we need to read many of them to answer a \large"query. Indeed, we prove that if F is restricted to only AND and OR functions, TF ;s(P) =
(n2= log2 s) forany evasive property P . Moreover, for many natural properties we show that the bound is tight. We thennon-trivially extend this result to �-CNF, �-DNF (for constant �) and symmetric function families and showthat TF ;s(P) =
(n2=polylog(s)) for any evasive proeprty P . We also study the following curious question:What is the time complexity of induced subgraph problem for a property P when the data structure can onlycontain answers about whether an induced subgraph of the input graph has property P . The interest in thisquestion arises from the observation that indeed many properties can be e�ciently computed on an entire graphby simply evaluating the property on various subgraphs. While any single query can now be answered in oneprobe, we show
(n2= log2 s) bound for any non-trivial \uniform" monotone property. The central techniqueused in our results is a probabilistic argument which shows that for any data structuring strategy, there existsan input graph G such that (a) it \stabilizes" the value of any cell that is sensitive to many variables (where9

\many" will depend on space s), and (b) still leaves a large subset X \untouched" such that one can reveal theedges of GX via an evasive strategy.2 Since the evasive game is now only sensitive to cells with small numberof variables, we get our desired bounds. A variation of this technique has been used by Hellerstein et al [4] tostudy graph reachability problem on bipartite graphs. An important distinguishing aspect of their problem isthat output to a query comprises of n bits rather than a single bit of information.Unrestricted Space, Restricted Function Families: At this end of the spectrum, our study essentiallyreduces to the following question: \how e�ciently a graph property P (on the entire graph) can be expressedusing primitives from a function family F ?" In other words, what is the decision tree complexity of P whenthe nodes of the tree store functions from F? We denote this measure as TF (P). Hajnal et al [3] studied themeasure Tor for speci�c graph properties such as connectivity and bipartiteness. We derive lower bounds on themeasure TF(P) when F is the family AND, OR or the family of small degree polynomials, and P is a non-trivialmonotone property. Specifcally, we initiate our study in an algebraic framework where we determine the leastdegree of a multinomial over Z2 that expresses a given monotone property P . Building on ideas presented inthe classic paper by Rivest and Vuillemin [13], we establish the following general result. For any transitivefunction3 f on m = pk variables s.t. f(�0) 6= f(�1), the degree of the (unique) multilinear polynomial Q over Zpthat computes f , is m. An implication of this result is that every non-trivial monotone graph property requiresa multinomial of degree
(n2) over Z2, implying the AKR conjecture to within a constant factor. Thus if eachfunction in a family F can be represented by a multinomial of degree at most d, we show TF (P) =
(n2=d),e.g. Txor(P) =
(n2) for the XOR family. On the other hand, this approach does not work for the two mostnatural extensions of the AKR setup, namely the AND and OR function families, since the degree of thesefunctions can be as large as
(n2). We develop general techniques for studying these families by essentiallyreducing their decision tree complexity to a certain measure of standard decision trees. We then develop severaltechniques to lower bound this measure and obtain
(n2) bound for many properties. These techniques involveexamining the combinatorial structure of \graph certi�cates" and design of general answering strategies formonotone graph properties. One of the techniques that we examine in detail is based on the analysis of twogreedy strategies for playing decision games in the AKR setup, namely, answer \no" (\yes") unless forced tosay \yes" (\no"). Our study of these strategies might be of independent interest. As an aside, we demonstratethe exponential gap between adaptive and oblivious complexities of computing the parity function using thefamily of threshold functions.Upper Bound Results: So far we saw that near-quadratic lower bounds can be shown under certain re-strictions | in line with our belief that polynomial preprocessing space does not yield signi�cant speedups. Wenow approach the induced subgraph problem from an algorithmic viewpoint in an e�ort to improve upon thenaive O(n2) bound. As our lower bound results might already suggest, it is unlikely to achieve speedups betterthan a polylog(s) factor. However, as we shall see, even achieving small speedups requires non-trivial new ideas.Our approach here is to develop canonical techniques for improving upon the trivial bounds. To begin with,we develop a representation scheme, called the standard graph representation which allows us to \e�ciently"4perform useful operations on the graph induced by any query set. The basic idea of this respresentation isto partition the graph into small clusters and exhaustively store information within each cluster. To con-struct information about any given induced subgraph, we simply combine together relevant pieces from withineach cluster. As an example, our representation scheme can be used to speed up construction of breadth-�rst(depth-�rst) forests | an integral part of many graph algorithms. We also develop a more e�cient algorithmto compute the transitive closure of an induced subgraph; this allows us to e�ciently compute properties suchas connecivity and bipartiteness. Finally, we de�ne the notion of \speedup preserving" reductions for induced2An answering strategy that forces any probing algorithm to read all the edges of the graph3See Section 5.1.1 for de�nition4Here \e�cient" and \speedup" signify only modest polylog(s) factor improvements.10

subgraph problem which enable us to transform an e�cient algorithm for one property to one for another. Aninteresting aspect of our results is that simple function families such as AND, OR and threshold functions, seemto be all that one can use for a broad range of properties. We note here that a clustering based representationscheme has also been used by Hellerstein et al [4] for a static data structure problem on bipartite graphs.The (s; t)-Spanning Set Problem: Finally, we examine space-time tradeo�s in the following abstract settingthat is interesting in its own right and further highlights the combinatorial structure underlying our problem.Assume that we are given a set M of pm elements with some operation ? and M has some \basis" B of size m,i.e. every element of M is uniquely \expressible" using elements of B. B is the smallest set that can expressevery \query" element in M{ possibly using all m elements in the process. Now suppose that we are willingto store more than m elements in B and seek to express any element of M using at most t << m elementsdrawn from B. If we �nd such B of size s, this B is called a (s; t)-spanning set for M . More generally, wewill be interested in (s; t)-spanning set for some subset W � M . The question as usual is what is the optimaltradeo� between s and t. We start our study by establishing some general bounds. In particular, we show thatt = �(m= logp s) when W =M , that is, only logarithmic speedup is possible using a polynomial size spanningset. Also, for any randomW �M with jW j = pn, we show that almost certainly t = �(m= logp s) for s = o(pn),i.e. asymptotically we cannot do better than building a spanning set for entire M . Next we focus on the casewhen the set M = f0; 1gm and is equipped with the union operation. We show that for any monotone functionf , the non-deterministic as well as oblivious complexity of evaluating f using AND/ OR function families, canbe characterized in terms of (s; t)-spanning set. This characterization is then used to obtain lower bounds on thenon-deterministic and oblivious variants of Tand;s(P)=Tor;s(P) and Tand(P)=Tor(P) for a monotone propertyP . For many properties, including connectivity and bipartiteness, we show near-quadratic bounds even whennon-determinism is allowed. As an aside, we obtain a separation between adaptive versus oblivious algorithmsfor AND/ OR-restricted data structures.Organization: Chapter 2 gives notation and preliminaries, while chapters 3 through 7 correspond to thepreceding paragraphs in order.

11

Chapter 2Notation and PreliminariesLet f : Y �Q 7! f0; 1g be a function we are trying to compute, y 2 Y , q 2 Q, jyj = m, jqj = n and n � m.2.1 Generalized Cell Probe ModelThe general cell probe model model of computation is the following. We pre-process the static input y bycomputing s pre-speci�ed functions g1; : : : ; gs : Y 7! f0; 1gb. The results we store in s cells of our database D.Given a dynamic input q we compute f(y; q) by adaptively reading the cells D trying to minimize the numberof probes we make. Thus, the time w.r.t. to a given D is the worst case number of probes we have make overall dynamic inputs. Unless otherwise stated, we will assume that the cell size b = 1. Let F be some functionfamily.De�nition 1 (F-restricted Data Structure) An F -restricted Data Structure is a database D where everycell corresponds to an application of some function in F to an ordered subset of bits from the static input.We will talk about F -restricted data structures for a variety of families of F . Some examples of functionfamilies that we study include AND, OR, XOR and �-CNF/�-DNF (i.e. every clause in the formula has at most� literals) families. For instance, the family AND consists of functions fgigi�1 where gi denotes conjunction ofi variables. F consisting solely of the identity function is called trivial. We will also talk about the family ofthreshold or symmetric monotone functions. A threshold function Tp;q (Fpq) is a function on p variables thatis true i� at least (less than) q out of p input variables are set to true. Clearly, Fpq = Tp;q, so we can w.l.o.g.restrict our attention to \upward" functions Tp;q when talking about the family of threshold functions.Thus, given a family F and space s, the task is to �nd the F -restricted data structure with the smallestquery time over all the dynamic inputs. This measure is denoted TF ;s(f).Deterministic and Non-deterministic Computation: In the model described above the algorithm de-ciding which probe to make next is deterministic. We can also talk about non-deterministic models whenthe probing scheme is allowed to make guesses. Since the complexity measure is just the number of probesmade, the only non-determinism is in guessing the right cells to read. There are 3 related non-deterministicmodels: verifying f = 1 (analog of NP), verifying f = 0 (analog of coNP) and guessing and verifying f (analogof NP\coNP). In verifying f = 1 (0) the probing scheme has to reject all the guesses when f = 0 (1) andaccept at least once when f = 1 (0). The time complexity is the maximum number of cells read along anynon-deterministic branch. Guessing and verifying f can be thought as making guesses and outputting 0, 1 orfailed. When f = z, all non-failed branches should output z and there should be at least one such branch. Itis easy to see that the time to guess and verify f is the maximum of the time to verify f = 1 and f = 0. In12

general, we will use T to refer to deterministic time measures and NT - to non-deterministic. When talkingabout verifying f = 1 (0) we use superscript 1 (0), e.g. NT 1F ;s(f).Oblivious Computation: Rather than letting the probing scheme determine the next cell to read based onthe values of the previous cells (this computation is called adaptive), we can talk about oblivious computation.In this model, given a query q, the algorithm has to specify in advance all t cells that it will read from thedatabase D. The time, as usual, is the number of cells read. We remark that obliviousness is only a limitationfor deterministic computation, since a non-deterministic probing algorithm can (obliviously) make all possibleguesses and reject the ones that it did not like at the end. We use superscript obl when talking about oblivioustime measures, e.g. T oblF ;s(f).Classical Data Structure Problem (Unrestricted F): When the function family F is unrestricted, wecan store absolutely arbitrary information about our static input and the problem of computing f becomesthe classical data structure problem introduced by Yao [15]. This is the hardest case for proving strong lowerbounds. We omit the subscript F when the function family is unrestricted, e.g. Ts(f), NT 1s (f).2.2 Decision Tree Complexity (Unrestricted s)When the space s is unrestricted, we can probe at any moment the value g(y) for any g 2 F .De�nition 2 (Decision Tree) Let h(y1; : : : ; ym) : f0; 1gm 7! f0; 1g be any function and F be a family offunctions from f0; 1gm 7! f0; 1g. A decision tree T for h with respect to F is a binary tree where the leaves arelabeled by 0 or 1, each internal node is labeled by some function from F and has two outgoing edges labeled by 0and 1. Given an input y = y1 : : : ym we traverse T starting from the root and being at an internal node labeledby g 2 F we always take an outgoing edge labeled by the value of g(y). For every input y the value of the leafwe reach has to be h(y). The (deterministic) decision tree complexity of h w.r.t. F , TF (h) is the minimumdepth of a decision tree w.r.t. F that computes h.It is easy to see that when the space is unrestricted, the time to compute f is the decision tree complexityw.r.t. indicated family F of computing f jq=q0 for the worst-case query q0. We will usually abuse the notationand simply talk about decision tree complexity of f itself, identifying f with its restriction to the worst-casequery. Thus, we still use the notation TF (f) to measure time when the space is unrestricted. The reader isencouraged to view f as a function of a single variable y in such cases.The non-deterministic and oblivious computation still make sense for unrestricted space: we can view thedatabase as consisting of all possible functions in F applied to all possible subsets of input bits. We also omitthe subscript s in such cases, e.g. NTF (f), T oblF (f).Simple Decision Trees, Certi�cates and Evasive Functions: A simple decision tree is a decision treew.r.t. to trivial F , i.e. every node is labeled by some input bit of y. The measures TF ();NTF ();NT zF ()are denoted simply by D(); N(); N z() in this case, and are called decision tree complexity, non-deterministicdecision tree complexity, z-non-deterministic decision tree complexity (i.e. reference to F is omitted), wherez 2 f0; 1g. When we talk about a decision tree without mentioning F explicitly, we refer the trivial F .De�nition 3 (Evasive Function) A function h(y1; : : : ; ym) : f0; 1gm 7! f0; 1g is called (almost) evasive, ifD(f) = m (
(m)).Evasive function has the property that any decision tree computing it has a long computational path, wherean adversary can always force the probing scheme to ask about all the input bits of y. Such adversarial strategy13

is called an evasive strategy and the whole interaction between the adversary and any probing algorithm | anevasive game. Sometimes we loosely use the terms evasive strategy/game even for almost evasive functions,corresponding to the strategy/game that forces to read almost all the input bits. More generally, D(h) isthe value of the decision game between the algorithm that tries to compute h by asking the adversary aboutindividual bits of y.N z(h) also has an alternative natural meaning.De�nition 4 (Certi�cate) A z-certi�cate Cz for h is a partial assignment that already �xes the value of hto z. If no smaller partial assignment is a z-certi�cate, then the Cz is called min-z-certi�cate. The size jCzj ofCz is the number of variables it sets.If we let Cz be the collection of all min-z-certi�cate for h, then it immediately follows that N z(h) =maxCz2Cz jCzj, i.e. the z-non-deterministic decision tree complexity of h is the size of the largest min-z-certi�cate of h, which is also the largest number of bits of y that is necessary to guess in order to verify thath(y) = z.We will only talk about certi�cates for upward monotone f , in which case a min-z-certi�cate always consistsof a (minimal) subset of variables set to z that force the function to z. We will often identify this certi�catewith the corresponding subset of variables, since all the variables in this subset are set to z anyway.The following is a folklore result:Theorem 1 For any h, D(h) � N0(h)N1(h) � (N(h))2.Thus, in the world of simple decision trees, \P = NP \ coNP".2.3 Communication Complexity ModelThe two-party communication complexity model was introduced in a seminal paper by Yao [16]. Again, wewant to compute f : Y � Q 7! f0; 1g, but instead of static input y 2 D and dynamic input q 2 Q, we havetwo parties Alice and Bob who are given y and q resp. They engage in a protocol, where they send each othersome messages about their inputs, until both of them are able to compute f(y; q). The protocol proceeds inrounds where at each round Alice sends a message to Bob and vice versa. There is no space limitation involvedand the only measure of complexity is the total number of bits t that they sent to each other. The messagesare arbitrary length and are sent in adaptive fashion one after another. The smallest worst-case number of bitssu�cient to be exchanged in order to compute f , is the deterministic communication complexity Dc(f). Herethe trivial protocol would be for one player to send his entire input to the other one. If jyj = m, jqj = n, andm >> n, we clearly get Dc(f) � n + 1, corresponding to Bob sending Alice entire q and Alice replying with1 bit answer f(y; q). An equivalent way to view a protocol is to view it as a general decision tree where everyinternal node is labeled by an arbitrary function of either y only (Alice's turn) or q only (Bob's turn), and hastwo outgoing edges labeled by 0 and 1. The leaves are labeled by 0 and 1. An execution is simply the traversalof this tree until we reach a leaf | the value of f(y; q). The total number of bits exchanged worst-case is thedepth of the tree. The depth of the smallest depth protocol tree for f is exactly Dc(f). We can also de�ne non-deterministic communication complexities, where Alice and Bob can make non-deterministic guesses. However,this measures are easier to de�ne combinatorially.De�nition 5 Let z 2 f0; 1g. An input (y; q) s.t. f(y; q) = z is called a z-input. A rectangle is any set R = Y 0�Q0, where Y 0 � Y , Q0 � Q. R is z-monochromatic if it consists entirely of z-inputs. The z-cover number Cc;z(f)is the smallest number of z-monochromatic rectangles covering (possibly with intersections) all z-inputs of f .We de�ne z-non-deterministic communication complexity N c;z = logCc;z(f) and N c;f = log(Cc;0(f)+Cz;1(f)).Finally, we let the answer matrix Mf of f to be the jY j � jQj matrix with Mf (y; q) = f(y; q).14

An important observation in communication complexity is the fact that after each round of communicationthe set of pair (y; q) that could produce the current communication transcript always forms a rectangle R =Y 0 �Q0, where Y 0 is the set of y which are consistent with the messages that Alice sent to Bob and similarlyfor Q0. In particular, a leaf labeled by z 2 f0; 1g in the protocol tree must correspond to a z-monochromaticrectangle. This observation is a key to two basic and yet powerful techniques for showing lower bounds oncommunication complexity.The fooling-set technique says that if one can construct a set of input pairs H s.t. for all (y; q) 2 H,f(y; q) = z for some �xed z 2 f0; 1g, but for any distinct (y1; q1); (y2; q2) 2 H we have that at least one off(y1; q2) and f(y2; q1) is di�erent from z, then Dc(f) � N c;z(f) � log jHj. The reason is that no two points inF can be in the same z-monochromatic rectangle of f .The second technique, provably more powerful but generally harder to analyze, is the rank bound technique.It examines the structure of the answer matrix Mf . For any �eld F (typically, we take the largest possible, saythe reals), the rank bound states that Dc(f) � log(2 � rankF (Mf)� 1). The technique is so powerful that it isa major open problem in communication complexity of whether D(f) = (log(rankF (Mf))O(1) for any f .An analog of Theorem 1 holds for communication complexity as well.Theorem 2 For any f : Y �Q 7! f0; 1g, Dc(f) = O(N c;0(f)N c;1(f)) = O((N c(f))2).Asymmetric Communication Complexity: Miltersen et al [11] introduced a �ner notion of asymmetriccommunication complexity. Instead of measuring the total number of bits sent by both players, we mightmeasure the number of bits sent by each player. Assuming n << m, for example, it is true that Dc(f) � n+1since Bob can send all his n bits to Alice. What, if Bob only sends o(n) bits? Can we show that in this caseAlice has to send signi�cantly more than n bits? De�ne an [A;B]-protocol to be a protocol where Alice sendsBob at most A bits and Bob sends Alice at most B bits. An asymmetric complexity lower bound [A;B] meansthat either Alice has to send
(A) bits, or Bob has to send
(B) bits in order to compute f .One of the main techniques for showing lower bounds on the asymmetric complexity introduced by [11] isthe richness technique. As in the rank bound, we look at the answer matrix Mf of f . If at least u rows of Mfcontain v 1-entries each (this property is called (u; v)-richness), but there is no (u2A+B � v2A) 1-monochromaticrectangle for f , then there is no [A;B]-protocol for computing f . For example, to show [m;n] lower bound onasymmetric complexity, one needs to show that there are 2cm inputs y s.t. for each of them there are at least2dn inputs q making f(y; q) = 1. However, there is no rectangle in M consisting of all 1-entries of dimension2c0m � 2d0n, where 0 < c0 < c � 1, 0 < d0 < d � 1. For a much more detailed introduction to communicationcomplexity we refer the reader to [6].2.4 Graph Properties and the Induced Subgraph ProblemLet P be a graph property which means that P is a subset of n-vertex graphs invariant under relabelingof vertices, i.e. P (G) = 1 implies P (G0) = 1, for any G0 isomorphic to G. We usually denote a graph byG = (V;E). Given X � V , we let GX = (X;EX) be the subgraph of G induced by X and EdgesX be the set ofpossible edges between vertices in X. The induced subgraph problem is a function fP (G;X) = P (GX). Thus,the static input is the graph G of size m = �n2� and the dynamic input in X � V , it takes n bits to describeX, and the objective is to compute P on the induced subgraph GX . We slightly abuse the notation and applyour time complexity measures to P rather than to fP , e.g. TF ;s(P) rather than TF ;s(fP).We will more often than not talk about a very rich class monotone graph properties, which means thataddition of edges cannot make the property go from true to false. There are two trivial monotone propertiescorresponding to the property being always true/false. We will exclude these 2 trivial properties from ourconsideration, so the term \monotone property" always refers to a \non-trivial monotone property", whichmeans that P is false on the empty graph and true on the complete graph.15

As we observed, when the space s is unrestricted, we talk about decision tree complexity of computing theproperty P on the worst dynamic input. For the induced subgraph problem this means that we compute thetime to evaluate the property P on the entire graph G. Thus induced subgraphs come into play only when thespace is bounded.When F is trivial, we talk about simple decision tree complexity of a given graph property P . The famousAandrea-Karp-Rosenberg conjecture (or the AKR conjecture) states that every (non-trivial) monotone graphproperty P is evasive. The conjecture is proven to within a constant factor by Rivest and Vuillemin [13],i.e. every every monotone property is almost evasive. Kahn et al [5] proved exact evasiveness for n beinga prime power. A related result by Yao [17] states that every (non-trivial) monotone bipartite property isevasive. Here bipartite property means that it is de�ned only on bipartite graphs. Thus, the AKR conjectureprovides the \base" case for our study of the generalized cell probe complexity of the induced subgraph problem,demonstrating TF(P) =
(n2) for the trivial F for nay monotone P .Even though a lot of our results hold for general f : Y �Q 7! f0; 1g, we will apply them mainly to the inducedsubgraph problem. Thus, we will frequently refer to several common properties. These include connectivity,bipartite (G is bipartite), forest (G is acyclic), clique (G is a complete graph), non-empty (G has at leastone edge), no-isolated-vertex (G has no isolated vertices), parity (the parity of the number of edges ofthe graph), majority (G has more edges than non-edges), k-clique (G has a k-clique). Except for parity,all mentioned properties are monotone or anti-monotone (i.e. their negation is monotone).We use the notation Cz to refer to the set of all min-z-certi�cates of a graph property P on the entire vertexset. For example, for connectivity a min-0-certi�cate is a (missing) complete bipartite graph (this ensuresthat G is disconnected), so C0 is the set of complete bipartite graphs, N0(P) =
(n2). C1 is the set of alltrees, so N1(P) = n � 1. For no-isolated-vertex, any C0 2 C0 is a (missing) star (N0(P) = n� 1), whileC1 2 C1 is a union of mini-stars of size at least two each that partition the n vertices of G. Such union of starsis the \minimal" way to ensure that there are no isolated vertices, since removal of any edge creates an isolatedvertex. Thus, N1(P) = n�1 as well. For clique, C1 consists only of the complete graph (N0(P) = �n2�), whileC0 consists of �n2� single edge graphs (N1(P) = 1). For non-bipartite, C0 2 C0 is a union of two (missing)cliques that partition the vertex sets (N0(P) =
(n2)), while C1 2 C1 is any odd cycle, N1(P) � n.

16

Chapter 3Unrestricted Function Families3.1 Unconditional Lower BoundsWe start by giving lower bounds when the function family F is unrestricted, i.e. bounds on Ts(P). For no staticdata structure problem for an explicitly de�ned function, a bound better than
(nlog s) is known. Miltersen etal [11] showed that obtaining an !(n) bound for a function in NP would separate NP from read-twice branchingprograms | a long standing open problem. In contrast, we have the following counting result of Miltersen [8].For almost every random function, any scheme with space s � 2n�1 requires t =
(m) >> nlog s ; observe thatonly doubling the space to s = 2n yields t = 1. The result can be extended to non-deterministic computationas well.Lemma 1 [8] For a random function f : f0; 1gm�f0; 1gn 7! f0; 1g and for any s � 2n�1, with high probabilityTs(f) � m� loglog s� 1 >> m=2 and NTs(f) � NT 1s (f) � m�1log s .Proof: We use a counting argument. The number of databases c1; : : : ; cs : f0; 1gm 7! f0; 1g we can make is22ms. For each of 2n queries we can make a separate decision tree of depth t with vertices labeled by some ci.Number of such decision trees of depth t is at most s2t . Thus, the overall number of databases and computationswe can have is 22ms(s2t)2n . If we can compute all 22m+n functions with space s and time t, we must have22ms(s2t)2n � 22m+n () 2ms+ 2t+n log s � 2m+n () s2n + 2t�m log s � 1 (3.1)As s2n � 12 , the claim follows. The non-deterministic bound is identical except the number of non-deterministicdecision trees is 22t(st) � 2st rather than s2t , since we can non-deterministically read any of the �st� tuples ofcells and have 2t possible answers for the cells we read and 2 possible answers for each of these 2t�st� traces.Proceeding as before, the non-deterministic bound follows.So the best achievable lower bound with the current machinery is far from the correct bound in almostall cases. Moreover, as was observed in [11], essentially all lower bounds for the static data structure problemare obtainable via the connection between the cell probe model and the communication complexity model,discovered by [8]. For generality, we will talk about cell probe schemes with cell size b, i.e. each stored functionci : f0; 1gm 7! f0; 1gb. When making a probe, we read all b bits at once. Given any cell probe scheme forcomputing f with cell size b, space s and query time t, we can construct a communication protocol computingf where there are t rounds of communication, and in each round Bob (the probing scheme) sends log s bits(the index of the cell to be read) and Alice (the database) sends b bits (the content of a cell). We simply viewa probe as sending a log s bit index to the cell that we want to read and the value read as sending b bits back.17

Lemma 2 [8] Any cell probe scheme with space s, cell size b and time t for computing f yields a [tb; t log s]-protocol for computing f . For the case of b = 1, we have Dc(f) = O(t log s). Hence, Ts(f) =
(Dc(f)log s) andNTs(f) =
(Nc(f)log s)Since Dc(f) � n+1, the best possible data structure bound obtainable this way would be t =
(nlog s). Wenext show that such a lower bound can indeed be established for any non-trivial monotone graph property.Theorem 3 For any non-trivial monotone graph property P , Dc(P) � N c(P) =
(n). Thus Ts(P) �NTs(P) =
(nlog s)Proof: We use the fooling-set method; �x a non-trivial monotone property P . Let K[C;X] be the graph onthe vertex set X that solely consists of a clique C � X. We will slightly abuse the notation and use K[j;X]to denote an arbitrary member of the collection fK[C;X] j C � X; jCj = jg. Denote by T (P) the least isuch that any (n=2)-vertex graph consisting solely of an i-clique satis�es P . Fix V to be a set of n vertices.Now consider �rst the case j = T (P) � n=4. Take any A � V with jAj = n2 + j and let B = V nA, sojBj = n2 � j. For any C � A of size j, we de�ne a fooling-set pair hG = K[C; V];X = C [Bi. We observethat jXj = n2 and the size of our fooling-set F is �jAjj � = �n2+jj � � (1 + n2j)j � 2n=4, as j � n=4. To show F is afooling-set we check that P (GX) = P (K[C;X]) = 1, as jCj = j = T (P), and for any C1 6= C2, jC1j = jC2j = j,we have P (G2X1) = P (K[C1 \ C2;X1]) = 0, as jC1 \ C2j < j = T (P) (and similarly, P (G1X2) = 0). ThusN c;1(P) � log jF j � n=4, if j � n=4. We also observe that our fooling set induces an identity submatrix so therank bound could be used as well to get a bound on Dc(P).Otherwise, j = T (P) < n=4, and we look at the dual (non-trivial monotone) property ~P , which is true onG i� P is false on G. Since on any set X of n=2 vertcies, P (K[j;X]) = 1 we have ~P (K[j;X]) = 0 which bymonotonicity implies that ~P (K[n=2�j;X]) = 0, so T (~P) > n=2�j > n=4, so we get N c;0(P) = N c;1(~P) � n=4.Hence, N c(P) � max(N c;0(P); N c;1(P)) =
(n).The above result can also be established for a non-monotone property parity using an idea quite similar tothe one used in the known result for the inner product function [6]. LetM be the answer matrix for parity, i.e.M(G;X) = P (GX). Let M 0 = MTM . We have that rank(M) � rank(M 0). Let N be the total number of n-vertex graphs, i.e. N = 2n(n�1)=2. M 0(X1;X2) =PG P (GX1)P (GX2) = jfGjP (GX1) = P (GX2) = 1gj. Assumeboth X1 and X2 are non-empty. If X1 = X2 = X then exactly one half of the graphs will have parity 1 on X,so M 0(X;X) = N=2. If X1 6= X2 then we can assume w.l.o.g. that there is an edge e 2 EdgesX1nEdgesX2 .N=2 graphs with parity 1 on X2 can be partitioned into N=4 classes of size 2 where the two graphs in a classwill di�er in exactly the edge e. Exactly one of the graphs in each equivalence class will have parity 1 on X1,so M 0(X1;X2) = N=4. Since any K �K matrix with diagonal entries equal to a and o�-diagonal entries equalto b 6= a has full rank over the reals, we get rank(M) � rank(M 0) � 2n � 1, so Dc(parity) � n� 1 and henceTs(parity) =
(nlog s).3.2 Asymmetric ComplexityWe examine next the asymmetric communication complexity of the induced subgraph problem. Recall that an[A;B]-protocol is a protocol where Alice sends at most A bits and Bob sends at most B bits. An asymmetriccomplexity lower bound [A;B] means that either Alice has to send
(A) bits, or Bob has to send
(B) bits inorder to compute the function. Assume we have a lower bound [n2r(n) ; n] (r(n) � n) for some property P . Wesaw that a cell probe scheme with query time t, space s and cell size b produces a [tb; t log s]-protocol. Thus,applying this to P we get t �
(min(n2r(n)b ; nlog s)). This minimum is n= log s provided b � n log sr(n) . Thus, eventhough we got the same bound on the number of probes needed, we can extend this lower bound to schemes withcell size up to (n log s)=r(n). We note that the actual number of bits read is
(n2=r(n)), which is much closer18

to n2 especially if r(n) is small. Even r(n) = n (which we have by Theorem 3) lets us make b = log s � logn,but we would like to get r(n) = 1.Conjecture 1 For any evasive property P we have [n2; n] lower bound on asymmetric communication com-plexity for the induced subgraph problem.As the �rst step, we prove a slightly weaker [n2log n ; n] lower bound for parity, which already implies thatt =
(nlog s) even for b = n. We need the following lemma.Lemma 3 Let M be a vector space of all the n-vertex graphs under the � operation. Then any collection of knon-empty cliques has
(log2 k= loglog k) linearly independent cliques.Proof: Let KX denote a clique on X and let C be our collection of k cliques. We let T (k) the worst possiblerank of k non-empty cliques. We claim that for any 0 < � < 1T (k) � min(log((1� �)k) + T (�k); 12�) (3.2)Assuming (3.2), we pick � = 1log2 k (we observe, it means di�erent � at each level of recursion). It is easy toprove then by induction that T (k) =
(log2 k= loglog k). To show (3.2), take any �. Assume �rst that there is avertex v 2 V such that v belongs to r � (1��)k cliques KX1 ; : : : ;KXr in C. Let Hi be a star from v to Xinfvg.All Hi are distinct since all Xi are. Any collection of r vectors has rank at least log r. Say H1; : : : ;Hlog r arelinearly independent. It is easy to see then that any collection C0 of linearly independent cliques, each of whichdoes not contain v, can be augmented by KX1 ; : : : ;KXlog r to produce a still linearly independent collection.This is because each KXi contains Hi as a subgraph and no graph in C0 contains v. Thus, a linear combinationbeing 0 implies that no KXi are used, but this implies that no graphs in C0 can be used as well. Thus, byinductive assumption, the number of linearly independent graphs would be at least log r + T (k � r), which iseasily seen to be dominated by log((1� �)k) + T (�k), as r � (1� �)k.Otherwise, every v 2 V participates in more than (1 � �)k cliques in C. Thus every edge e = (v; w)participated in more than (1� 2�)k cliques in C. Take any edge e0 and let C1 to consist of all the cliques in Ccontaining e0. We then repeat the following process. Pick any clique Ki 2 Ci, which is not a complete graph(it exists if jCij > 1) and any edge ei 62 Ki. Let Ci+1 contain all the cliques in Ci that contain ei. Each timewe eliminate at most 2�k cliques by our assumption, so we can repeat at least 1=(2�) times. We claim thatKi produced are linearly independent. For assume not and there are some i1; : : : ; ij s.t. LKij = 0. Since allthe cliques Ki contain e0, we must have that j is even in order for e0 to cancel. But then, ei1 62 Ki1 , whileei1 2 Ki2 ; : : : ;Kij . Since ei1 has to cancel as well, we get that j has to be odd, a contradiction. Thus we obtain1=(2�) linearly independent cliques, and (3.2) follows.Theorem 4 parity has [n2log n ; n] lower bound on asymmetric communication complexity.Proof: We use the richness technique described earlier. Let M be the answer matrix for parity, where therows are the graphs and the columns are the subsets. First we show that parity is (2(n2) � 1; 2n�2)-rich. Takeany non-empty graph G = (V;E) and let e = (a; b) 2 E. We claim that at least 1=4 of the induced subgraphshave parity 1. Partition all the subsets of V into equivalence classes of size 4. Given any X 0 � V nfa; bg theequivalence class of X 0 consists of X 0, X 0 [fag, X 0 [fbg, X 0 [fa; bg. We claim that at least one one the fourinduced subgraphs in each equivalence class has parity 1. Indeed, the � of the four parities counts every edgeinside of GX0 four times, every edge from a (b) to X 0 { two times, and edge e { one time, so the sum of fourparities is 1, as e 2 E. Thus, at least 1=4 of the induced subgraphs have parity 1, if G is non-empty.Now we have to bound the size of the largest 1-monochromatic rectangle inM . Assume it has size 2a�2n=2.The 2n=2 subsets with parity 1 for their induced subgraphs de�ne 2n=2 linear equations. By Lemma 3, there19

are at least n2= log n linear independent equations in the system (for some > 0), so the number of solutions(graphs) can be at most 2(n2)�n2= log n, so a � �n2� � n2= log n. Thus parity does not have a [�n2� � (�n2� �n2= log n); n� 2� n=2] = [n2= log n; n=2� 2] protocol.We remark that improving the bound in Lemma 3 to
(log2 k) (easily seen to be the best possible) wouldgive us [n2; n] bound for parity.

20

Chapter 4Restricted Function Families withRestricted SpaceWe have thus far examined the inherent di�culties in obtaining unconditional super-linear lower bounds. Inthis section, we study the problem under some additional restrictions that would allow us to show much strongerlower bounds. Speci�cally, we seek to limit the power of functions that we are allowed to store in our datastructure by talking about F -restricted data structures and studying the TF ;s(P) measure. At one extreme,when we are allowed to store just the edges of the graph, it is the set-up of the AKR conjecture. For thissetting, we immediately obtain an
(n2) adaptive lower bound to compute any non-trivial monotone graphproperty even on a �xed query set, namely, the set V . Intuitively speaking, in this case the functions can note�ciently express the property even on a single query. At the other extreme, when the function family F iscompletely unrestricted, we obtain again the measure Ts(). Our goal here is to study TF ;s() when F is somenatural subclass of boolean functions whose expressive power lies somewhere in between these two extremes.As an elementary example, consider the OR family of functions. Any �xed query concerning (evasive) graphproperties such as connectivity and bipartiteness, can be answered in O(n log n) probes using the OR family [3].But can this family be used to signi�cantly speed-up the induced subgraph problem for these and other evasiveproperties? The answer, as we show for many such function families, is \no". We will show that irrespective ofthe e�ciency in answering any single query, this and many other function families, can not yield better than apoly-logarithmic speed-up.4.1 Stabilization TechniqueThe central technique used is what we call the stabilization technique. In order to explain the technique, weneed two de�nitions.De�nition 6 (Gadget Graph) An hn; q(n)i-gadget graph H(V;E) is a labeled clique on n vertices such that:(a) each edge is labeled 0 (missing), 1 (present), or � (unspeci�ed), and (b) there exists a subset Q � V withjQj = q(n), such that Q induces a clique with each edge labeled �. We refer to Q as the query set of H.De�nition 7 (Stabilizing Graph) Given an F-restricted data structure D of size s, a graph H is called anhn; q(n); g(s)i-stabilizing graph for D if: (a) H is a hn; q(n)i-gadget graph, and (b) every cell in D reduces tobeing a function of at most g(s) edge variables on the partial assignment speci�ed by H.Now suppose for a function family F we want to show TF ;s(P) =
(q2(n)=g(s)) for every evasive propertyP . We start by showing existence of a hn; q(n); g(s)i-stabilizing graph GD for every F -restricted data structureD. Thus when GD is presented as the static input, every cell in D reduces to be a function of at most g(s)21

edge variables. At the same time, we have access to a query set Q whose every edge is unspeci�ed as yet.We present this set Q as the dynamic input to the scheme and play the evasive game for property P on thesubgraph induced by Q. Since each cell probe can reveal at most g(s) edge variables, we obtain the desired
(q2(n)=g(s)) lower bound. The following theorem summarizes this argument.Theorem 5 If every F-restricted data structure of size s has a hn; q(n); g(s)i-stabilizing graph, then for anyevasive property P , we have TF ;s(P) =
(q2(n)=g(s)).Thus the heart of our approach is showing the existence of a hn; q(n); g(s)i-stabilizing graph with suitableparameters. In the remainder of this section, we show existence of such stabilizing graphs for many functionfamilies. The families that we study include AND, OR, �-CNF, �-DNF and symmetric monotone functions.For each of these families, we show the existence of stabilizing graphs with typically q(n) =
(n) and g(s) =polylog(s). In other words, we show near-quadratic lower bounds for each of these families. We observe herethat these parameters are essentially the best possible in general since many evasive graph properties canactually be sped-up by a polylog(s) factor using these function families. We also study the following question:What is the time complexity of induced subgraph problem for a property P when the data structure is restrictedto contain only answers about which induced subgraphs of the input graph have property P . The interest inthis question arises from the observation that indeed many properties can be e�ciently computed on an entiregraph by simply evaluating the property on various subgraphs. While any single query can now be answeredin one probe, we show an
(n2= log2 s) lower bound for the induced subgraph variant of the problem, for anynon-trivial \uniform" monotone property. This bound is in fact tight for several evasive properties.The common theme in obtaining the lower bounds for various families F is the use of the probabilisticmethod to show existence of stabilizing graphs. We start by establishing a simple lemma and its corollary thatwe invoke frequently in our analysis. The lemma shows that for any \large enough" set of edges, a randombalanced partition of the vertex set yields a balanced partition of the set of edges. We need the followingnotation. Given a set S � V , we denote by ES�V the set of edge variables with at least one end-point in S.Also, let E(ci) denote the set of edge variables that appear in the function stored in cell ci of a given datastructure D.Lemma 4 Let S be a random subset of V constructed by choosing every vertex in V with probability 1/2.Then there are constants �1; �2 such that for any set of edge variables Z such that jZj � �1 log2 s, we havePr[jZ \ES�V j � �2jZj] � 1� log s=s2.Proof: Let H denote the subgraph de�ned by the edges in Z and let z = jZj. We choose �1 = 212 and�2 = 1=16. We denote by Ai the set of vertices in H with degree at least 2i and at most 2i+1� 1. De�ne J1(J2)to be the set of indices i such that jAij � pz=2 (2i � pz=2). An edge (u; v) in H is called bad if u 2 Ai1 andv 2 Ai2 such that neither i1 nor i2 occurs either in J1 or J2. The total number of bad edges is upper boundedby the summation below: 12 0@ Xi 62J1;i 62J2 jAij2i+11A � 12 0@pz2 log(pz=2)Xi=0 2i+11A � z2 :We will show that w.h.p. S gets a constant fraction of non-bad edges i.e. the edges in Z n Z0. Speci�cally,we show that (a) for every i such that jAij � pz=2, w.h.p. at least 1=4-fraction of these vertices belongs to S,and (b) for every i such that 2i � pz=2, w.h.p. at least 1=4-fraction of this neighborhood belongs to S.To show (a) and (b), we use Cherno� bounds. Observe that since pz=2 � 32 log s, using union bounds, weconclude that the probability that for some i 2 J1 [J2, we fail to get the desired 1=4-fraction is bounded by22

log n(1=s2) < log s=s2. Thus, the number of edges guaranteed to be in S with probability at least 1� log s=s2is at least 12 Pi2J1[J2 jAij2i4 ! � 12 � jZ n Z0j4 � � 18 �z2� = z16The following is an immediate corollary; the existence of the desired S is shown by simply using the unionbounds over all cells and observing that jSj � n=2 with probability at least 1/2.Corollary 5 For any data structure D, there exists a subset S of at most size n=2 such that for every ci withjE(ci)j � �1 log2 s, we have jE(ci) \ES�V j � �2jE(ci)j for some constants �1 and �2.Finally, we de�ne the notion of a partial assignment that �xes the value of a function.De�nition 8 (Stabilizing Assignment) A partial assignment to the variables of a boolean function is calledstabilizing if it determines the value of the function to be true or false, irrespective of the value that is assignedto the unspeci�ed variables.4.2 AND and OR FamiliesWe start our study with AND and OR function families which in some sense constitute the most simple andnatural extension of the AKR conjecture model.Lemma 6 Let F be the family of AND and OR functions. Then every F-restricted data structure D has ahn; n=2; O(log2 s)i-stabilizing graph.Proof: By Corollary 5, we know that there exists a set S of size at most n=2 such that jE(ci)\ES�V j � log2 sfor every ci with at least � log2 s edges, for some constant �. Set each edge variable in ES�V to be 0/1 uniformlyat random. There is exactly one assignment that fails to stabilize any AND or OR function. Using the unionbound, the probability that some ci with jE(ci)j � � log2 s is not stabilized by the random assignment is o(1).The result follows.Combining Theorem 5 with Lemma 6, we obtain the following theorem.Theorem 6 For any evasive graph property P , Tfand;org;s(P) =
(n2= log2 s).This result is the strongest possible general result; Chapter 6 shows that for many evasive properties,Tfand;org;s(P) = O(n2= log2 s) indeed.4.3 �-CNF and �-DNF FamiliesWe now extend the results of the previous section to a much richer class of functions, namely, the �-CNF andthe �-DNF formulas for any constant �. The AND/OR families studied above correspond to the special caseof � = 1. Our approach relies on the following structural dichotomy of �-DNF formulas, which may be ofindependent interest.Lemma 7 Let f be an �-DNF formula on N variables and let 0 < r < 1 be a positive real. Then� either f has a decomposition of the form l0f0+ l1f1+ :::+ lp�1fp�1 where li's are literals, fi's are (��1)-DNF formulas, and p � ln(�2�N�)=r, or 23

� f has at least q = (1=2�r) pairwise disjoint (i.e. no common variables) terms.Proof: Let k denote the number of terms in f ; clearly k is at most �2�N�. A literal l in f is called frequentif it occurs in at least an r-fraction of the terms in the formula. Consider the sequence ffigi�0 of formulasderived from f in the following iterative manner: f0 = f , and fi+1 is derived from fi by �nding a frequentliteral li in fi and deleting the set of all terms, say �i, in which li occurs. The process terminates when thereare no more frequent variables; let fp denote the �nal formula in this sequence. Since at each iteration we looseat least r-fraction of the terms, it is easy to see that p � ln(k)=r � ln(�2�N�)=r:If fp is an empty formula, then we are done. Otherwise, suppose that fp contains q terms. We build acollection C of pairwise disjoint terms as follows. Pick any term � in fp; each of its literals appears in at mostrq terms. Thus there are at most (2�rq � 1) terms that share any variables with it. Add � to C, delete allterms that share a variable with it, and reiterate. Clearly, we can construct at least 1=2�r pairwise disjointterms in this manner. This completes the proof of the lemma.Intuitively speaking, the lemma above says that either f has a certain \compact" decomposition or it hasa \large" number of pairwise disjoint terms. The next lemma shows that it is easy to stabilize �-DNF formulaswith large number of pairwise disjoint terms.Lemma 8 Let f be an �-DNF formula with 4�224� log2 s terms such that each variable of f occurs in exactlyone term in f . Let S be a subset of vertices constructed by choosing each vertex in V with probability 1=2. Thenassigning the value 0/1 uniformly at random to each edge variable in S�V stabilizes f with probability at least1� 1=s2.Proof: A set of vertices X is called the hitting set of a term t in f if every edge variable of t occurs in theset X � V of edge variables and that X is a minimal such set. Observe that a term can have many hittingsets, a fact critical to our analysis. Also observe that any hitting set contains at most � vertices since we areworking with �-DNF formulas. We claim that f contains at least k = 22�+1 log s terms, say t1; t2; :::; tk suchthat one can assign a hitting set Xi to each ti with the property that Xi \Xj = ; for i 6= j. We build such acollection iteratively. Suppose we have picked i such terms so far and let Z denote the union of their hittingsets. The total number of vertices in the hitting sets corresponding to these terms can be at most �i. A termt in f is ruled out from being added to this collection if and only if it contains an edge variable whose bothend points are contained in Z. Since X de�nes at most (�2i2)=2 such edge variables (and each variable occursin 1 term), at most so many terms can be ruled out. Thus the process can not terminate before k iterationswhere k + (k2�2)=2 � 4�224� log2 s; implying that k must at least 22�+1 log s. Now f 0 is satis�ed if Xi � S forsome 1 � i � k and the (at most) � edge variables corresponding to its term are assigned the unique satisfyingassignment; let �i denote this event. Observe that by our construction, �1; :::;�k are all independent eventsand that Pr[�i] � (1=2�)2 since each of the two events comprising �i has a probability of success at least 1=2�.Thus Pr[^i:�i] � 1=s2, giving the desired result.Theorem 7 For any evasive property P and constant �, Tf��CNF;��DNFg;s(P) =
(n2log��1 n log2� s).Proof: First observe that it su�ces to show the claimed lower bound for �-DNF formulas only, since any �-CNF formula can be implicitly stored as an �-DNF formula, namely, by storing its complement. By Theorem 5,it is enough to show the existence of a hn; n=2; O(log��1 n log2� s)i-stabilizing graph for every �-DNF - restricteddata structure D. Towards this end, we will show that if S is a random subset, constructed by choosing eachvertex of V with probability 1/2, then setting each edge variables in S � V to 0/1 uniformly at random eitherstabilizes any �-DNF formula or reduces it to be a function of O(log��1 n log2� s) edge variables, with probability1� o(1).Consider any �-DNF formula f in a given data structure scheme D. De�ne r(�) = 1=�324�+3 log2 s. ByLemma 7, either f has 4�224� log2 s pairwise disjoint terms or it has a representation of the form l0f0 + l1f1+24

:::+ lp�1fp�1 where p � pmax = ln(�n2�)=r(�) = O(log��1 n log2� s). In case of the �rst scenario, we know byLemma 8 that f will be stabilized \almost certainly". Otherwise, using the compact decomposition of f andinduction on �, we argue that almost certainly f will have no more than h(�) = O(log��1 n log2� s) variables.The case � = 1 follows from the preceding section. Assume inductively that any �0-DNF formula with �0 � ��1almost certainly reduces to a function of at most h(�� 1) variables. Since each fi in the decomposition of f isan (�� 1)-DNF formula, by inductive assumption, it almost certainly contains no more than h(�� 1) distinctvariables. Thus the following recurrence is satis�ed:h(�) � pmaxh(� � 1) + pmax � (pmax)��1h(1) + ��1Xi=1 (pmax)i:Using h(1) = O(log2 s), it is easy to verify that h(�) = O(log��1 n log2� s).Probability Analysis: There are two distinct ways a failure can occur. One if the probability that S is largerthan n=2, and other, if the �-DNF formula f is left with more than h(�) distinct variables. The probabilityof the �rst event is easily seen to be bounded by 1=2. To analyze the second probability, denote by P (�) theprobability that a given �-DNF formula does not reduce to a function of at most h(�) distinct variables. Thenusing Lemma 8, we have P (�) � pmaxP (�� 1) + 1s2Scaling h(1) by a suitably large constant, it is easy to see that P (�) can be bounded by o(1=s) for anyconstant �. Since there are at most s �-DNF formulas to be considered, the overall probability of failure isbounded by s[o(1=s)] + 1=2 < 1.4.4 Symmetric Monotone FunctionsThe symmetric nature of AND and OR functions enabled us to obtain strong lower bounds relatively easily.In contrast, the results of the preceding section illustrate the di�culty in obtaining strong lower bounds whenF contains \unstructured" functions. In this section, we continue on to general threshold functions and showhow symmetry makes it easy to obtain strong lower bounds. Recall, a threshold function Tp;q (Fp;q) is true ifand only if at least (less than) q of its p inputs are set to true. Since Fp;q = Tp;q, we focus on Tp;q only fromnow on. Our main result here is a
(n2= log2 s) lower bound when F only contains threshold functions withq � (1 � �)p. Notice that in order to express such functions as �-DNF or �-CNF formulas we need � =
(p)which can be
(n2) in our set-up. Yet, due to the symmetric nature of these functions, we can obtain resultsthat are much stronger than ones obtainable for arbitrary �-CNF and �-DNF formulas.Theorem 8 Let F be the family of all threshold functions Tp;q with \threshold ratio" bounded away from 1,i.e. q � (1� �)p. Then for any evasive property P , TF ;s(P) =
(n2= log2 s).Proof: It su�ces to show that there exists a hn;
(n); O(log2 s)i-stabilizing graph G for every F -restricteddata structure. We construct a sequence of sets S1 � V; S2 � V nS1; : : : ; S� � V n[��1i=1 Si by repeatedly applyingCorollary 5; let S = [�i=1Si, jSj � (1� 2��)n. At each round every formula which still has more than �1 log2 sedges gets a constant fraction of its edges inside Si�V . Here � = O(log(1=�)) is a su�ciently large constant toensure that every threshold function with
(log2 s) edge variables has a (1 � �)-fraction of its edges in S � V .The stabilizing graph G is created by inserting all edges in S�V ; this clearly stabilizes every threshold functionwith
(log2 s) edges, leaving a query set of size at least n=2� =
(n).
25

4.5 Computing P Using PDe�nition 9 (Type-0 / Type-1) A monotone graph property P de�ned over the space of n-vertex graphs iscalled type-0 (type-1) if every 0-certi�cate (1-certi�cate) touches at least n=2 vertices. P is uniform if P istype-0 (type-1) for every n.For instance, connectivity is both type-0 and type-1, while clique is type-1 but not type-0. It is easy tosee that for each n, a monotone property is either of type-0 or type-1, since otherwise we can put two oppositecerti�cates on two halves of V . Uniformity naturally requires that the type does not change excluding arti�cialproperties like \Does G have at least (n=2) + (�1)n(n=3) non-isolated vertices". Suppose we are given a datastructure scheme D such that each cell ci 2 D corresponds to evaluating P on some induced subgraph G0 ofthe static input G. While any �xed query can now be answered in a single probe we show this does not helpmuch for the induced subgraph problem. We have already addressed this question for some speci�c graphproperties, such as clique and majority. Now, we study this question for the class of \uniform" monotonegraph properties We will not only allow to store answers about uniform P of type-0 (type-1) on subgraphs GXinduced by some X � V , but will also allow to �x any collection of edges of GX to true (false) and store theanswer to this restricted property. We let P0 (P1) be the class of all uniform properties of type-0 (type-1).Theorem 9 Let P be a type-0 (type-1) non-trivial uniform property and let P be the class P0 (P1). ThenTP;s(P) =
(n2log2 s).Proof: We show existence of a hn;
(n);
(log2 s)i-stabilizing graph G as follows. Consider a set S constructedby picking at random vertices from V with probability 2=3 each. Using Cherno� bounds, it is easy to see that\almost certainly" any particular subgraph induced by
(log s) vertices has half of its vertices in S. Now, ifP (and hence P) is type-0 then set to true all edge variables in S � V and set them to false otherwise. Thisstabilizes the answer on every
(log s) size induced subgraph stored in the data structure | a \yes" if P istype-0 and a \no" otherwise, so all \surviving" function depend on O(log2 s) edges. The results now follows bypresenting Q = V n S as the query set and playing an evasive game on this query.4.6 Small Degree PolynomialsThe stabilization technique has its limitations as illustrated by the family of L functions. Given any partialassignment specifying k out of l variables of an L function, we get back a function that is sensitive to eachone of the remaining l�k variables. The implication of this fact is that stabilizing graphs, cannot reduce every\large" L function to an L function on \small" number of variables. On the other hand, functions like Lhave a very nice structural property, namely, they can be expressed as a small degree polynomial over Z2. Wedevelop an algebraic approach to study such function families Section 5.1.

26

Chapter 5Restricted Function Families withUnrestricted SpaceWe now turn our attention to the other extreme when the space s is unrestricted and only the function familyF is restricted, that is, to the measure TF (). Since the space is not an issue, TF (f) measures the decision treecomplexity of computing a function f w.r.t. F . In case of induced subgraph problem, TF (P) is the decisiontree complexity w.r.t. F of computing P on the entire vertex set V . When F contains merely the identityfunction, it is the setting of the AKR conjecture and
(n2) lower bound is known for any non-trivial monotoneP [13, 5]. In this section we examine what happens when we allow more powerful functions in F such as AND,OR (more generally, threshold functions), and XOR (more generally, low degree polynomials). Observe thatsince the space is not an issue, even these seemingly simple function families e�ciently capture many evasiveproperties. For example, Tand(all-neighbors) = n, Tor(connectivity) = �(n log n) [3], Txor(parity) = 1.Yet, we will show that for a large class of evasive properties, these families are no more powerful than the trivialidentity function.We will also examine the e�ect of obliviousness, i.e. when the algorithm has to specify in all T oblF (P) functionsfrom F in advance. As a motivating example we show that if F is a family of all threshold functions, we getTF (parity) = log �n2�, while T oblF (parity) = �n2� (even TF ;s(parity) = O(n2log2 s loglog s), see Corollary 26),justifying the fact that obliviousness is a severe limitation. Later in Chapter 7 we will study in detail T obland andT oblor measures, where we will again get adaptive/oblivious separation for many properties.5.1 Low Degree PolynomialsWe start by examining the (non-monotone) family Fdeg�k of all multivariate polynomials over Z2 of degreeat most k; the special case k = 1 gives the XOR family. We obtain the strongest possible general bound byshowing that for any monotone property P , we have TFdeg�k(P) =
(n2k), e.g. Txor(P) =
(n2). Thus, smalldegree polynomials do not bring any signi�cant computational advantage. In particular, having access to 2mpossible XORs on the edges of a graph, do not bring any advantage over the setting when we have access onlyto the edges of the graph. Our approach for establishing this bound is to study the degree of a multi-linearpolynomial q computing a boolean function f over some ring R with identity, i.e. f(x) = q(x), 8x 2 f0; 1gm.Denote by degR(f) the degree of this q. When R = Zr, we simply denote it by degr(f), where 2 � r � 1 (hereZ= Z1). The following lemma justi�es this de�nition and states some elementary facts that we will use.Lemma 9� For any f there is a unique multi-linear polynomial over R computing it, and its degree is at most D(f).27

� Let the characteristic char(R) of R be the smallest i 2 Z, i > 1 s.t. i � 1 = 0 (if no such i exists,char(R) = 1). Then degR(f) = degchar(R)(f), so the only interesting rings to consider are Zr for2 � r � 1.� For any 2 � r; s � 1, degr(f) � degrs(f).Proof: Given A � [m] we denote by MA a monomial Qi2A xi and by 1A, a 0=1 characteristic vector of A.Assume q1 and q2 are 2 distinct multi-linear polynomials computing f . Then q = q1 � q2 computes the zerofunction and has some monomial with a non-zero coe�cient. Let MA be any such monomial of smallest degreewith coe�cient c 6= 0. Then q(1A) = c 6= 0, because 1A sets all other monomials to 0, a contradiction.To show the existence, we take any decision tree T for f (for example, a complete binary tree of depth m).Let xi(a) = xi if a = 1 and 1� xi if a = 0. For every leaf l with the value of f equal to bl and values xij = aj(1 � j � depth(l)) along the path to l, we let ql(x) = bl �Qxij (aj) and q = Pl ql. Then q is a multi-linearpolynomial that agrees everywhere with f , since given any x, the only contributing ql corresponds to the leafl arrived when traversing T on x, and ql = f(x). Since we started from an arbitrary T , we immediately getdegR(f) � D(f).Let R0 = fi� 1ji 2 Zg. Then R0 is a subring of R. Moreover, R0 � Zchar(R). From the explicit constructionof the polynomial from any decision tree for f , we see that all the coe�cients of q are in fact in R0, sodegR(f) = degR0(f) = degchar(R)(f).If q =PA�[m]CAMA 2 Zrs[x] computes f , then it is easy to see that q0 =PA�[m](CA mod r)MA 2 Zr[x]also computes f , so degr(f) � degrs(f).Nisan and Szegedy [12] showed that D(f) � 16 deg8Z(f) for any f . For monotone graph properties, weobtain a much stronger tight relation:Theorem 10 For any non-trivial monotone graph property P on n-vertex graphs, deg2(P) =
(n2).The theorem is quite surprising, since any multi-linear polynomial over Z2 which is invariant under relabeling ofvertices (including the ones of very small degree) computes some valid graph property. For example, (evasive)property parity is computed by a polynomial of degree 1. The theorem asserts that for a monotone propertythe degree has to be large even over Z2. It is worthwhile to note that the above theorem essentially gives astronger version of the AKR conjecture. As a simple consequence, we getCorollary 10 For any non-trivial monotone graph property P , TFdeg�k(P) =
(n2k). In particular, Txor(P) =
(n2).Proof: We only need to show that deg2(P) � kTFdeg�k(P). Consider a decision tree T of depth d thatcomputes f w.r.t. Fdeg�k. We will use T to obtain a polynomial of degree at most kd that computes f . Theconstruction is the same as in Lemma 9. For any polynomial p we let p0 = 1� p, p1 = p, and let bl be the valueof leaf l. Now for each leaf l, construct a polynomial ql as follows. Let p1; : : : ; pd be the polynomials that werequeried along the path from root to l and let ai be the answer given by pi. De�ne ql = blQ paii , and let q bethe sum of all such leaf polynomials. Clearly, q is a multinomial that computes f and has degree at most kd.The bound is best possible in general, for example, TFdeg�k(clique) = �(n2k). Thus, we only need to proveTheorem 10.5.1.1 Transitive Functions and Their DegreeTo establish Theorem 10, we follow the approach used by Rivest and Vuillemin [13] in resolving the AKRconjecture. Let Sm be the set of permutations on m elements. Given a monomial e = cMA, � 2 Sm and asubgroup � � Sm, we let �A = f�(i)ji 2 Ag, �e = cM�A, e� = f�ej� 2 �g, and w(e) = jAj = deg e. e� iscalled the orbit of e. 28

De�nition 10 For a function f on m inputs we let the stabilizer subgroup �(f) = f� 2 Smj8a 2 f0; 1gmf(a) =f(�a)g. A group � � Sm is transitive if 8i; j 2 [m] 9� 2 � s.t. �(i) = j. f is called transitive if �(f) istransitive.Let p be a prime. Rivest and Vuillemin [13] proved that any transitive function f on m = pk variabless.t. f(~0) 6= f(~1) is evasive. We strengthen this result (Theorem 11) by following a similar, but more direct,argument which shows that in fact degp(f) = m.Lemma 11 If q is a multi-linear polynomial over R computing f and e is a monomial in q, then q containsall the monomials in e�(f).Proof: Let e0 = �e for � 2 �(f) and let q0(x) = q(�x). We have for any a 2 f0; 1gm that q(a) =f(a) = f(�a) = q(�a) = q0(a). By the uniqueness of polynomial computing f (Lemma 9) we must have thatq(x) � q0(x), and since q0 has e0, so does q.Lemma 12 If � is transitive, then for any monomial e we havew(e) � je�j = m � jfe0 2 e�je0 contains x1gj (5.1)In particular, m divides w(e) � je�j.Proof: Let M denote the je�j by m matrix whose rows are the characteristic vectors of monomials in e�. Wecount the number of ones in M by rows and by columns. The left side of (5.1) counts the ones by rows (eachrow has the same number of ones as w(e) = w(�e)), the right | by columns, taking the number of ones in the�rst column. Transitivity of � ensures that each column contains the same number of ones (for any i; j 2 [m]there is � 2 � s.t. �(i) = j which produces a bijection between all the monomials in e� containing xi and theones containing xj).We are now ready to prove the main theorem.Theorem 11 If f is transitive, f(~0) 6= f(~1) and m = pk, then degp(f) = m.Proof: Let q be the (unique) multi-linear polynomial over Zp computing f . Assume deg q < m and lete0 be free term (zero degree monomial) of q. Then f(~0) = e0. For any monomial e, we have by Lemma 12that m = pk divides w(e) � je�(f)j, so unless w(e) = 0 or w(e) = m, we must have that p divides je�(f)j. Inparticular, since by assumption q does not have a monomial of degree m, for any monomial e of q other thane0 we must have p j je�(f)j. We now apply Lemma 11 and divide the monomials of q into disjoint orbits of theform e�(f). We then compute f(~1) = q(~1) on an orbit by orbit basis. If e 6= e0 has coe�cient c(e) 2 Zp then theorbit of e contributes c(e) � je�(f)j mod p = 0 mod p, as p j je�(f)j. Hence we get that f(~1) = q(~1) = e0 = f(~0),a contradiction. Thus, degp(f) =m.We observe that every condition in Theorem 11 is crucial. For example, it is easy to see that MOD-pfunction which is 0 i� the number of true variables is divisible by p has degp(f) = p� 1 << m. But it does notsatisfy f(~0) 6= f(~1) when m = pk, and does satisfy it for any m not divisible by p. This example also showsthat we cannot expect to bound D(f) by some function of degp(f), since MOD-p is evasive (have to look atall the inputs given the all-zero input).Rivest and Vuillemin [13] applied their analog of Theorem 11 to show the AKR conjecture by reducing itto evasiveness of certain non-trivial transitive function on 2k edges of the graph (which was a certain restrictionof the given graph property P). The identical reduction works in the case of degrees as well, as the degree ofthe restricted function can be at most the degree of the original one. This completes the proof of Theorem 10.29

5.2 \Small Threshold" FamilyThe techniques of the preceding section do not apply to perhaps the most natural extensions of the setup ofAKR conjecture, namely, how e�ciently can graph properties be computed when we are allowed to store anAND (OR) of any subset of edges. The breakdown occurs because polynomial representations of AND and ORfunctions require up-to
(n2) degree. In fact, many monotone properties have Tand(P) much smaller thann2, for instance, Tand(clique) = 1 and Tand(all-neighbors) = n. On the other hand, there are manyother properties for which we have Tand(P) =
(n2); examples include (as we will show) connectivity andbipartite. The goal of this subsection is to develop characterizations of properties for which the AND and ORfunction families do not bring additional computational advantage. Our approach is to reduce the question oflower bounding Tand() and Tor() to a certain measure of simple decision tree complexity. We then developseveral general techniques to bound this measure from below. Since the technique we describe holds for anyfunction f , we present our results here in this more general framework. Assume throughout that z ranges overf0; 1g.De�nition 11 Given a decision tree T , let d(T) denote the depth of T . De�ne the z-depth of T , dz(T) to bethe maximum number of edges labeled by z on a root-leaf path. Given a function f , its simple z-decision treecomplexity is the minimum of dz(T) over all decision trees T computing f . For a function family F , D(F)(resp. Dz(f)) is the maximum of D(g) (resp. Dz(g)) over g 2 F .The standard relation TF (f) � D(f)=D(F) can be extended as followsLemma 13 For any function family F , TF(f) � Dz(f)Dz(F) where z 2 f0; 1g.Proof: Consider an optimal decision tree T w.r.t. F that computes f in depth TF(f). Replace every nodev of T labeled by some g 2 F by the optimal simple decision tree of z-depth Dz(g) � Dz(F). The resultingsimple decision tree computes f and has z-depth at most TF (f)Dz(F). Hence, Dz(f) � TF(f)Dz(F).The measures D0, D1 will allow us to get strong lower bounds not only for AND and OR, but more generally,for threshold functions with a \small threshold".Corollary 14 Let Fk;1 = fTp;q j q � kg, Fk;0 = fTp;q j p � q < kg. Then TFk;z(f) � Dz(f)k where z 2 f0; 1g.In particular, the case k = 1 yields Tand(f) � D0(f), Tor(f) � D1(f).Proof: For any Tp;q 2 Fk;0, D0(Tp;q) = q � p+ 1 � k, so D0(Fk;0) = k. Similarly, D1(Fk;1) = k.The next lemma shows that for AND and OR function families, the converse is also almost true.Lemma 15 For any f , Tand(f) � D0(f) logm, Tor(f) � D1(f) logm. For monotone f , Tand(f) � (D0(f)�1) logm+ 1, Tor(f) � (D1(f)� 1) logm+ 1.Proof: We focus on AND functions; an analogous argument applies to OR functions. Given a simple decisiontree Tk for f of 0-depth k, we show how to build an AND decision tree T 0k for f of depth at most k logm((k � 1) logm+ 1 for monotone f). We �rst look at the all 1 path in Tk. We make a binary search tree usingANDs in T 0k of depth at most logm that would either tell us that all the variables along the path are true, orwill give the �rst place where some xi is false. In the �rst case, we just output the answer, in the second, weonly have to deal with a simple decision tree of 0-depth (k � 1) (the left subtree of xi), so by induction we getthat d(T 0k) � (k � 1) logm+ d(T 01). For general f , we can only bound d(T 01) by logm by again doing a binarysearch. For monotone f , the only simple decision tree of 0-depth 1 is the one computing some AND function,so a single AND will su�ce. 30

Thus, to get optimal/near-optimal lower bounds on Tand or Tor, it su�ces to develop techniques to get goodbounds on Dz. For this it is useful to look at an equivalent de�nition of Dz(f) as a value of the simple decisiongame where the adversary A tries to maximize the number of z-answers that he is able to give (rather thenthe number of questions he is asked). So to show Dz � b we only have to give a strategy for A allowing him toalways give at least b answers equal to z. In the remainder of this section, we study three technqiues that willallow us to lower bound Dz in this manner. We will only concentrate on monotone f (and graph properties P)in our study.5.2.1 \Dense Certi�cate" TechniqueThis is the most elementary technique | it uses the simple fact that Dz(f) must be at least as large as anyminimal z-certi�cate of f .Lemma 16 For any monotone function f ,Tand(f) � D0(f) � N0(f) = NT 0and(f) and Tor(f) � D1(f) � N1(f) = NT 1or(f):Proof: The answering strategy consistent with the largest min-z-certi�cate of f would force at least N z(f)z-answers before deciding f = z. Since our answering strategy is non-adaptive, it's gives a non-deterministiclower bound.We can apply this to various monotone graph properties: Tand(connectivity) � N0(P) = n2=4, Tor(k-clique) �N1(P) � �k2� =
(n2) if k =
(n). For some properties, however, the bound is too weak. For example,P =no-isolated-vertex has N0(P) = n � 1, even though we will see that D0(P) =
(n2). This is notsurprising, since we already observed that the bound is non-deterministic.5.2.2 Evasive Path TechniqueThe next answering strategy we examine applies to evasive f only. Since f is evasive, there is an evasivestrategy A that would always force to ask all m inputs of f . Using A as our answering startegy, we get thatDz(f) is greater than the least number of z answers produced by A over all m! question orderings. We applythis to various monotone graph properties. An important point to note here is that the AKR conjecture isproven only for n being a prime power. This, however, is su�cient for the induced subgraph problem since wecan take the largest subset X � V with a prime power of elements and work on X.For P =non-bipartite, every min-0-certi�cate has �a2� + �n�a2 � � 2�n=22 � edges and thus D0(P) =
(n2).For P =no-isolated-vertex, it is readily seen that the graph G produced by A after m� 1 questions has tobe acyclic and hence D0(P) � �n2� � n. To show that G cannot have a cycle, we can look at the last edge eof this cycle queried. Querying of e is useless for no-isolated-vertex, as we already know that none of thevertices of the cycle is isolated. Thus an optimal querying strategy will never query e and decide P in at mostm� 1 queries, contradicting the evasiveness of P under A.Even though potentially powerful, the evasive path technique is not easy to use since it is hard to explicitlycharacterize evasive strategies. Thus, for instance, while we know every non-trivial monotone graph property isevasive when n is a prime power, for only a handful of properties we have an explict evasive answering strategy.In such cases, we have to �nd some structural property or invariant of the evasive strategy (like G is acyclic)that would let us conclude something without actually knowing the strategy. For many properties, however,this argument is hard to �nd (e.g. D1(triangle), where triangle is true if G has a 3-clique).5.2.3 \YES/NO unless cannot" TechniqueWe now examine in detail two simple yet quite powerful answering strategies that would often produce optimalbounds for a monotone function f . We �nd the exact measure of how well they perform (including when they31

are evasive strategies) and then translate the results into lower bounds for D0(f) and D1(f). The symmetricstrategies in question which we call \YES/NO unless cannot" are, naturally, \YES unless cannot" and \NOunless cannot". As the name suggests, \NO unless cannot" would try to answer \no" unless it is forced to say\yes", i.e. answering \no" in conjunction with all the previous answers would force the monotone function to 0.Only in such cases we answer \yes". By de�nition, at the end of the game under \NO unless cannot" strategy,the answer is always going to be that f is 1. The picture is symmetric for the case of \YES unless cannot".We begin with the notion of a hitting set.De�nition 12 (hitting set) For a family H of subsets we call a set H a hitting set for H if H intersects(\hits") all members of H.Let us view any 0-certi�cate (1-certi�cate) of a monotone f as a subset of variable set to 0 (1). In this view,any min-0-certi�cate for f is a minimal hitting set for C1 (all min-1-certi�cates for f) and vice versa. We nextde�ne a concept related to certi�cates that would be central to our characterization of the e�cacy of \YES/NOunless cannot" strategies.De�nition 13 For a monotone function f and a min-1-certi�cate C1 of f we call a subset of variables Lleave-1-certi�cate for C1 if it is a hitting set for C1nfC1g and L \ C1 = ;. L is minimal leave-1-certi�cate forC1 if no proper subset of L is a leave-1-certi�cate. We let leave(C1) be the (minimal) leave-1-certi�cate for C1of smallest size. We similarly de�ne the concepts of leave-0-certi�cate for C0, minimal leave-0-certi�cate forC0, leave(C0) for a min-0-certi�cate C0.If we set the variables of some leave-1-certi�cate L for C1 to false, we \eliminate" all the min-1-certi�catesexcept C1. So we almost force the value of f to be 0 | the only way to force f to be 1 now is by setting allthe variables in C1 to be true. The subset leave(C1) is a minimum collection of variables that would \kill" allmin-1-certi�cates except C1. We contrast a minimal leave-1-certi�cate L for C1 with a min-0-certi�cate C0: C0hits all the min-1-certi�cates while L hits all the min-1-certi�cates except for a given C1. Naturally, adding anyvariable of C1 to L is a 0-certi�cate, so minC0 jC0j � minC1 jleave(C1)j+1. For example, for connectivity wehave minC02C0 jC0j = n � 1 (missing star), but for any spanning tree C1, the only leave-1-certi�cate L for C1is all edges outside of C1. Indeed, if L does not contain a single edge e 62 C1, then we can add e to C1, deletesome other edge e0 of the created cycle getting another spanning tree C 0 6= C that is not hit by L. Hence,jleave(C1)j = �n2�� (n� 1).Theorem 12 For any monotone function f , if we use the answering strategy \NO unless cannot", then� for any C1 2 C1 there is a questioning (probing) strategy that asks jleave(C1)j + jC1j questions and getsexactly jleave(C1)j \no" asnwers.� for any questioning (probing) strategy there is C1 2 C1 s.t. the number of questions is at least jleave(C1)j+jC1j, the number of \no" answers is at least jleave(C1)j and the number of \yes" answers is at least jC1j.In particular, the smallest number of questions possible is minC1(jleave(C1)j+ jC1j), and the minimum numberof 0 answers possible is minC1 jleave(C1)j. A similar result holds for \YES unless cannot".Proof: Take any C1. Ask about all the variables in leave(C1), getting all \no" answers. Then ask aboutthe variables in C1, getting all the \yes" answers as C1 is the only min-1-certi�cate left. For the converse westart from an arbitrary question startegy. Let x1 : : : xj be the variables that were answered to be 1. Sinceonce the variable is forced to 1 (i.e. setting it to 0 forces f to 0), it remains forced to 1, we can safely ask thequestions about x1 : : : xj after we get all the 0 answers. Since at the end we decide that f = 1, it means thatx1 : : : xj contain some min-1-certi�cate C1 of f . So we can only reduce the number of questions and ask about32

the variables in this C1 after we get all our 0 answers. Now, why would all the variables of C1 be forced to1? It must be the case that the 0 answers contain a minimal leave-1-certi�cate L for C1, since if at least onemin-1-certi�cate C 01 6= C1 is not hit, any variable xi with i 2 C1nC 01 is not forced to 1, as C 01 is still a possibility.Moreover, we do not need to ask the \no" questions outside of L, since L already forces all the variables in C1to 1.The following is an immediate corollary.Corollary 17 For any monotone f , Tand(f) � D0(f) � L0(f) and Tor(f) � D1(f) � L1(f) where L0(f) =minC12C1 jleave(C1)j and L1(f) = minC02C0 jleave(C0)j.Theorem 12 also allows us to characterize the class of functions for which \YES/NO unless cannot" givesan evasive strategy.Corollary 18 For any monotone function f� \NO unless cannot" is an evasive strategy i� 8x s.t. f(x) = 1 and 8i s.t. xi = 0 9j s.t. xj = 1 andmaking x0 = x except swapping xi = 1, xj = 0, still leaves f(x0) = 1.� \YES unless cannot" is an evasive strategy i� 8x s.t. f(x) = 0 and 8i s.t. xi = 1 9j s.t. xj = 0 andmaking x0 = x except swapping xi = 0, xj = 1, still leaves f(x0) = 0.Proof: We focus on \NO unless cannot"; an analogous argument holds for \YES unless cannot". Assume\NO unless cannot" is evasive for f . Clearly, it is su�cient to look only at x being some min-1-certi�catefor f . So let x = xC1 (meaning xk = 1 i� k 2 C1) and let xi = 0. By Theorem 12, the optimal questionstrategy takes time minC012C1(jleave(C 01)j+ jC 01j). Hence, by evasiveness, for every min-1-certi�cate C 01 we havejleave(C 01)j + jC 01j = m, including C1. As i 2 �C1 = L, there is a min-0-certi�cate C 01 � C1 [fig with somej 2 C1nC 01. This j satis�es the claim, as min-1-certi�cate C 01 � C1 [fignfjg. The converse is similar.As an example, we see that \NO unless cannot" is evasive for connectivity, since when adding an edgeto a spanning tree we can always remove some other edge of the cycle and still have a spanning tree left. Wemight hope that for any non-trivial monotone property either \NO unless cannot" or \YES unless cannot"forces
(n2) questions. However, it is not hard to see that for pn�clique both minC12C1(jleave(C1)j+ jC1j)and minC02C0(jleave(C0)j+ jC0j) are O(n3=2).As a non-trivial illustration of Corollary 17, we apply it to no-isolated-vertex. Take any C1, that is aunion of stars on subsets X1; : : : ;Xk partitioning V . We claim that at most �k2� edges outside of C1 do nothave have to be in leave(C1). Thus, jleave(C1)j � �n2�� (n� k)� �k2� � 3n2=8� 3n=4 =
(n2), since k � n=2.To show the claim, we let ci be the vertex that is the center of the star on Xi (if jXij = 2 both verticesare the centers). We look at every edge e = (a; b) (where a 2 Xi, b 2 Xj) outside of C1 and argue whiche have to be in leave(C1). The argument has a format that \if this e 62 leave(C1) then there is some othermin-1-certi�cate C 01 � C1 [feg which is a contradiction". This reduces to the case analysis. (see Figure 5-1).� Case 1: i = j, jXij > 3 (then both a 6= ci, b 6= ci). We delete a; b form Xi and let them form a separatecomponent using e. As we had jXij > 3, we still leave at least 2 vertices in Xi.� Case 2: i = j, jXij = 3 (then both a 6= ci, b 6= ci). Leave Xi the same but make a (or b) a new centerinstead of the third vertex ci, thus adding only e as a new edge.� Case 3: i 6= j, jXij > 2, jXj j > 2, a 6= ci, b 6= cj . We delete a and b from Xi and Xj , resp., and makea new component Xk+1 on a and b with edge e. As we had jXij > 2, jXj j > 2 we still leave at least 2vertices in Xi and Xj . 33

� Case 4: i 6= j, jXij > 2, a 6= ci, b = cj (when jXj j = 2 the condition b = cj is satis�ed). We simply switcha from Xi to Xj where we add e to connect cj = b to a. As we had jXij > 2, we still leave at least 2vertices in Xi.� Case 5: i 6= j, jXij > 2, jXj j > 2, a = ci, b = cj . We don't know what to do with such edges.� Case 6: i 6= j, jXj j = 2, a = ci (includes case jXij = 2). Let Xj = fb; b0g. Again, e = (a; b) does not haveto be in leave(C1), but at least one of (a; b) and (a; b0) does, as otherwise we can move both b and b0 toXi.� Case 7: i 6= j, jXij = jXj j = 2. Let Xi = fa; a0g, Xj = fb; b0g. Again, e = (a; b) does not have to be inleave(C1), but at least one of (a; b), (a0; b0) does, as otherwise (a; b) and (a0; b0) can form two new stars.Together with Case 6, this shows that at most 1 out of 4 edges between Xi and Xj may be missing inleave(C1).
a b a b

b b

a

Case 6

b

a

b

b’b’b’a

a

a’

Case 7

b’ b’

b a b

a’

a b a b

Case 1

a b a b

a

Case 4

Case 2 Case 3

Figure 5-1: Various Cases for no-isolated-vertexThis shows that at most one edge between every pair of Xi and Xj (i 6= j) can be missing from leave(C1),so at most �k2� edges overall.Remark 1 The \Dense Certi�cate" and \YES/NO unless cannot" techniques are in general orthogonal. Wesaw that for P =no-isolated-vertex, L0(P) =
(n2), N0(P) = n � 1. For P = pn-clique, on the otherhand, L0(P) = O(n3=2), while N0(P) � �n�pn2 � =
(n2).5.3 Oblivious versus Adaptive BoundsWe conclude by briey examining the limiting e�ects of obliviousness. It is clear that for any f and F ,T oblF (f) � 2TF (f), because we can take all the functions in an optimal decision tree for f w.r.t. F as ouroblivious collection of functions. We now show that for certain scenarios this is the best that one can do, i.e.there is an exponential gap between adaptive and oblivious decision tree complexities.Lemma 19 Let F be the family of all the threshold functions. Let f be the parity function on m variables.Then TF (f) = logm while T oblF (f) = m.Proof: For the adaptive bound, we only need to use threshold functions of the form Tm; . We simply performa binary search and count exactly how many variables are set to true. Taking this number mod 2 yields theresult in logm questions. The lower bound follows from the oblivious bound below and TF (f) � log T oblF (f).34

For the oblivious bound we proceed by an induction on m. Let g1; : : : ; gk be the threshold functionsused by the oblivious algorithm. We claim that at least one of these functions must have threshold 1. Forotherwise, these functions would not let us distinguish between the all zero input (of parity 0) and any inputwith a single one (of parity 1). Assume, gk is the function with threshold 1. Take any variable in gk, sayit is xm, and �x its value to true. This �xes gk to true and makes it redundant in obtaining any furtherinformation. The functions g1; : : : ; gk�1 now project down to threshold functions h1; : : : ; hk�1. Now to computex1L : : :Lxm�1Lxm = (x1L : : :Lxm�1)L 1 we need to compute x1L : : :Lxm�1 using h1; : : : ; hk�1. Bythe inductive assumption, k � 1 � m� 1, so k �m.

35

Chapter 6Upper Bounds Techniques and ResultsUntil now we have focused on obtaining lower bounds for induced subgraph problem under a variety of di�erentmeasures. We have seen that despite the inherent di�culties in showing super-linear lower bounds in general,it is possible to show near-quadratic lower bounds under certain restrictions | in line with our belief thatpolynomial preprocessing space does not yield signi�cant speedups. We now approach the induced subgraphproblem from an algorithmic viewpoint. For which properties can we improve upon the trivial O(n2) upperbound? As our lower bound results might already suggest, it is unlikely to achieve speedups better thana polylog(s) factor. However, as we shall see, for many fundamental properties such as connectivity andbipartiteness, even achieving small speedups requires non-trivial new ideas. Our approach here is to developcanonical techniques for improving upon the trivial bounds. To begin with, we develop a representation scheme,called the standard graph representation which allows us to \e�ciently" 1 perform useful operations on the graphinduced by any query set. The basic idea of this representation is to partition the graph into small clustersand to exhaustively store some information within each cluster. To construct information about any giveninduced subgraph, we simply combine together relevant pieces from within each cluster. A clustering basedrepresentation scheme has also been used by Hellerstein et al [4] for a static data structure problem on bipartitegraphs. We show that several classes of graph properties can be sped up as an immediate consequence of thisrepresentation scheme. To capture some other properties such as connectivity and bipartiteness, we developan e�cient algorithm to compute transitive closure of an induced subgraph. Finally, we de�ne the notionof \speedup preserving" reductions for induced subgraph problem which enable us to transform an e�cientalgorithm for one property to one for another. An interesting aspect of our results is that simple functionfamilies such as OR, AND and threshold functions, seem to be all that one can use for a broad range ofproperties. In the remainder of this section, we assume that the space s is super-linear (
(m1+�)) in the sizem of the static input, and that it is sub-exponential (2n� , � < 1=3) in the size n of the dynamic input. Forexample, log sm = �(logs), O(n2= log2 s+ n log s) = O(n2= log2 s).6.1 Standard RepresentationsAs a �rst step towards designing our algorithms, we develop a useful representation scheme for graphs.6.1.1 Standard Variable Representation (SVR)Suppose we are given a set U of m boolean variables as a static input and a set B � U of k boolean variablesas dynamic input. Let A � B denote the subset of variables in B which are set to true, jAj = a. We wish to1In this section, words such as \e�cient" and \speedup" signify only a modest polylog(s) factor improvements.36

determine A or perhaps some element v 2 A, in an e�cient manner. Our goal is to design a data structureusing space s that allows us to do that. Let us �rst do so for a �xed dynamic input B.De�nition 14 (Simple Standard Variable Representation (SVR))An OR-restricted data structure scheme is called simple SVR of B if its cells correspond to the nodes of abinary tree constructed in the following manner. The root corresponds to an OR of all k variables of B. Thetwo subtrees attached to the root correspond to recursing this construction on a partition of variables into twoequal halves.Lemma 20 Simple SVR can determine A in time t � 2a(1 + log ka) + 1 using space s = 2k � 1.Proof: Traverse the underlying tree in a depth-�rst manner stopping any time we see a node with value 0.In the worst case we end up examining completely the �rst log a levels and then traversing at most a pathsdown, each being of length log ka . An easy computation gives the claimed bound; the space bound follows fromthe fact that the tree has 2k � 1 nodes.The following corollary is an easy consequence.Corollary 21 Using simple SVR we can1. �nd some true variable in A (if A 6= ;) in at most 1 + log k steps;2. for any �xed j determine either that j > a or �nd some j true variables in time O(j log k);3. if a = o(k), we can completely determine A in o(k) time.Now we would like to extend this approach to e�ciently determine A = A(B) for arbitrary dynamic inputB, given our space constraints.De�nition 15 (Standard Variable Representation (SVR))An OR-restricted data structure is called a SVR of U if its cells correspond to the following representation.Partition U arbitrarily into l = m=p clusters C1; : : : ; Cl of size p = log(s=m) = �(log s) each. For everynon-empty subset S of any cluster, we store an OR of variables in S. Total space used is bounded by l2p < s.Now given any subset B � U , we can use SVR to determine its subset of true variables A = A(B) asfollows. First determine for each i 2 [l], the ith projection Pi = Ci \ B. De�ne �m(B) = min(m=p; jBj) =O(min(m= log s; jBj)); it clearly upper bounds the number of non-empty projections. Since we have a simpleSVR for each Pi, we can use the preceding algorithm to determine the set Ai of true variables in Pi. If we letai = jA \ Pij, the total time taken to determine each Ai is O(1 + ai log p). Thus A(B) can be determined intime �m(B) +O(a loglog s). The lemma below summarizes these observations.Lemma 22 With space s, SVR can be used1. to determine for any �xed j either that j > a or �nd some j true variables in B in time �m(B) +O(j loglog s), which is O(mlog s) when j = O(mlog s loglog s). In particular, we can determine whether A(B) = ;in �m(B) = O(mlog s) oblivious probes;2. to determine A(B) (and a) in time �m(B) +O(a loglog s), which is O(mlog s) when a = O(mlog s loglog s).
37

6.1.2 Standard Graph Representation (SGR)We now turn our attention to how these representation schemes may be applied to e�ciently storing a graphG for the induced subgraph problem. Using m = �n2�, we can directly use SVR as our representation scheme.But observe that our concern is only subsets of edges generated by induced subgraphs. This observation allowsus to design what we call standard graph representation (SGR) which would allow us to save a log s factor overthe previous scheme. The basic idea is that now instead of partition edges into clusters, we partition verticesinto clusters. As a building block, we need the following representation scheme that applies to a �xed bipartitegraph.Simple SGR for bipartite graphs: Let H(U;W;EH) be a bipartite graph. We now construct a binarytree in a manner analogous to the simple SVR. The root contain an OR of edges in EH . If either jU j or jW j isgreater than one, say U , we split it into two equal-sized partitions U1 and U2, and recursively proceed on thegraphs H1(U1;W;EH1) and H2(U2;W;EH2) where EHi = (EH) \ (Ui �W) for i = f1; 2g. The two subtreesconstructed above are attached to the root. Clearly, the total space used is 2jU jjW j � 1.SGR for general graphs: We now show how to construct SGR of a graph G(V;E) using space s. PartitionV into l = n=p clusters V1; :::; Vl where each Vi contains p = (1=2) log(s=n2) = �(log s) vertices. First, for everysubset U of each cluster, store a simple SVR for the edge variables in the graph induced by U . Next considerany pair of clusters, say Vi and Vj. For every Ui � Vi and Wj � Vj , store a simple SGR for the bipartite graphinduced by Ui and Wj. The total space used is s = p22p + 22pn2=p2 < s.As an illustration of how SGR can be used, consider the non-empty property. Let Xi = X \ Vi be theith projection and let �(X) = min(jXj; n=p) denote the upper bound on the number of non-empty projections.For every non-empty projection Xi, we use the simple SVR to check for the presence of an edge inside EXi in1 probe. Next, for every pair (Xi;Xj) of non-empty projections, we do the same using the simple SGR storedfor the bipartite graph induced by Xi and Xj . Total time taken is bounded by �(X) + ��(X)2 � = O(n2= log2 s).The following lemma summarizes some properties of SGR.Lemma 23 Let X be a subset of V , GX = (X;EX) be the subgraph of G induced by X and a = jEX j. UsingSGR we can1. for any �xed j determine either that j > a or �nd some j edges in EX in time O(�2(X) + j loglog s +�(X) log2 s), which is O(n2log2 s) when j = O(n2log2 s loglog s).2. determine EX (and a) in time O(�2(X)+a loglog s+�(X) log2 s), which is O(n2log2 s) when a = O(n2log2 s loglog s).6.1.3 Some ExtensionsWe conclude our discussion of these representations by indicating some useful extensions.Representing Vertex Neighborhoods: In some applications, we will be interested in studying the neigh-borhood of a vertex v within a given query set X; let NX(v) denote this neighborhood. Observe that thestandard graph representation contains almost all the information that we need to e�ciently determine NX(v).The only information that we lack concerns the neighborhood of v within its cluster Cv. So we augment SGRas follows: for each vertex v and subset S � Cv, store an OR of edges between v and S. It is easy to see thatthis augmentation requires only a slight increase in space, namely n2p = o(s). We refer to this neighborhoodinformation as the vertex SVR of v. 38

Generalizing to arbitrary functions: Instead of storing an OR of some variables in our representation, wecan apply some function g : f0; 1g� 7! R to this subset of variables and store the result. The resulting (simple)SVR (SGR) is called a (simple) SVR (SGR) w.r.t. g (if we do not specify g, we assume it is OR). We observethat we do not require g to be boolean, so the output of g might take more than 1 bit to describe (however, itis less than the number of variables to which this g is applied). For example, g can be integer addition, whereboth SGR and SVR will need cell size O(loglog s). It is easy to see that the space (overall number of bits)required by a SGR (SVR) w.r.t. g is still bounded by s, however. When talking about a \probe" we meanreading the whole output of g, but the time is still the overall number of bits read. The useful examples offunctions g aside from OR and addition are AND and XOR.6.2 Optimality of SGR/SVRIn this section, we try to give some intuition on why SGR and SVR only use clusters of size O(log s). For that,let us look at a class of representations where some function g : f0; 1g� 7! R is applied to certain s subsets ofthe static input. And let us identify every cell in such a representation with the subset of variables to whichg is applied. SGR and SVR are two examples of such representations. We address two natural conditions onsuch representations and show that SGR and SVR are optimal in terms of meeting these conditions.We already noticed that SGR (SVR) allows us to \store" s subsets and to partition every induced subgraph(every subset) of our static input into at most O(n2log2 s) (O(m= log s)) disjoint subsets that are \stored" in ourrepresentation. Such partitioning of the induced subgraph (subset) into disjoint \clusters" seems quite useful.For example, this seems to be the most natural way to compute splittable functions (see Theorem 13) overinduced subgraphs (over subsets). We would like to address the question of whether SGR (SVR) produces themost e�cient way to make such a partition, given the space constraint s. In other words, what is the minimalt s.t. one can �nd s subsets of the static input allowing to partition every induced subgraph (every subset) intoat most t disjoint subsets. This is the (s; t)-spanning set question studied in Chapter 7, where we can evenrelax the requirement that the subsets are disjoint (i.e. we look at covers rather than partitions). We show inTheorem 17 (with p = 2 and the union operation) that to represent every subset of an m-element set we musthave t =
(m= log s), so SVR is optimal in this respect. Similarly, by Corollary 32, to represent every inducedsubgraph we need t =
(n2log2 s), so SGR is optimal in this respect as well.We also observe another property of SGR (SVR). Together with every subgraph H of G (subset B of U)that it \stores", it also stores all distinct non-empty induced subgraphs of H (all non-empty subsets of B). Thisalso seems like a useful thing to do. For example, when partitioning the induced subgraphs into a union of\stored" subsets, we had one such partition E1; : : : ; Et (t = O(n2log2 s)) for the whole edge set, and every inducedsubgraph had a partition where we simply projected each Ei onto this induced subgraph. Of course, we wouldlike to have large subgraphs Ei so that t would be small. Thus we examine what is the largest size of H (B)s.t. there are less than s distinct non-empty induced subgraphs H 0 of H (subsets B0 of B). The subset questionis very easy, the number of B0 is 2jBj � 1, so the largest B has size jBj = O(log s). Thus, to cover any subsetof
(m) size by such subsets B, one would need
(m= log s) \stored" subsets, and SVR exactly achieves that.For the SGR we showProposition 24 If H has 2k non-isolated vertices than it has at least 2k � 1 distinct non-empty inducedsubgraphs.Proof: It is easy to see that every graph with 2k non-isolated vertices has a vertex cover F of size at mostk. Then any subset of these 2k vertices that properly contains F forms a non-empty induced subgraph, whereall these subgraphs are distinct, since every a 62 F has an edge to F . The number of such subsets of vertices is22k�jF j � 1 � 2k � 1. 39

Hence, H can touch at most O(log s) vertices, so it has O(log2 s) edges. Thus, to cover any subgraphinduced by a subset of size
(n) one would need
(n2log2 s) \stored" subgraphs, and SGR achieves this.6.3 Applications of SGRSGR and its variants are extremely useful in getting non-trivial upper bounds for various evasive graph prop-erties. We now present some generic examples as well as some problem-speci�c techniques.6.3.1 Computing Splittable FunctionsDe�nition 16 (Splittable Function) A function g : f0; 1g� 7! R is called splittable if for any m and x 2f0; 1gm, for any partition of them variables of x into subsets A1; : : : ; Ak we have that g(x) = h((g(xA1); : : : ; g(xAk)); (A1; : : : ; Ak)),for some function h.In other words, we can reconstruct g(x) by knowing the values of g on an arbitrary partition of x. Someexamples of splittable functions are AND, OR, XOR, addition.Theorem 13 Let g be a splittable function.� Using SVR w.r.t. g and given a static input x of length m, we can compute g applied to an arbitrarysubset B of variables of x in �m(B) = O(m= log s) oblivious probes.� Using SGR w.r.t. g and given a graph G as a static input, we can compute g applied to a subgraph inducedby X in �2(X) = O(n2log2 s) oblivious probes.Proof: SVR w.r.t. g stores g applied to at most �m(B) non-empty projections of x. Reading the value ofg applied to those projections and using splittability of g, the result follows. SGR w.r.t. g stores g applied toat most �(X) subgraphs induced by non-empty projections of X and to at most ��(X)2 � bipartite subgraphsinduced by pairs of non-empty projections of X. This partitions GX into at most �2(X) subgraphs. Readingthe value of g applied to these subgraphs and using splittability of g, the result follows as well. Notice, bothschemes are oblivious, since the projections are known in advance.Corollary 25T oblor;s(non-empty), T obland;s(clique), T oblxor;s(parity) are all O(n2log2 s).T oblor;s(no-isolated-vertex) and T obland;s(all-neighbors) are O(n2log s).Proof: Bounds for non-empty, clique and parity are immediate using splittability of OR, AND and XOR.For no-isolated-vertex, we check for every vertex of v 2 X that it is not isolated using the vertex SVR ofv w.r.t. OR in O(nlog s) probes, a total of O(n2log s) oblivious probes. Similarly, for all-neighbors.Corollary 26 Using the family of threshold functions we can (adaptively) compute the number of edges jEX jfor any X in O(n2log2 s loglog s) time. In particular, majority and parity can be solved in this time usingthreshold functions.Proof: Storing k + 1 threshold functions Tk; and performing a binary search, we can compute the numberof true variables among k variables x1; : : : ; xk in 1 + log k probes. On the other hand, we can compute jEX jin O(n2log2 s) oblivious probes of O(loglog s) bits each, by using SGR w.r.t. addition. Each probe returns thenumber of edges in a small subgraph of O(log2 s) edges. We simply replace each O(loglog s)-bit cell of the SGRcontaining the number of edges with O(log2 s) threshold functions. This still uses space at most s as is easily40

seen. When we need the number of edges in some subgraph, we perform the binary search using thresholdfunctions in O(loglog s) steps.It is interesting to observe that by Lemma 19, for the family F of threshold functions, T oblF (parity) = �n2�,so adaptivity is crucial.6.3.2 Edge-Separated PropertiesDe�nition 17 A property P is called g(n)-edge separated if jEj � g(n) �xes the property to true or false.For example, tree, forest, k-matching, k-vertex cover (for constant k) are O(n)-edge separatedproperties. Using Lemma 23, we can either recognize that jEX j is more than g(n) or obtain EX in timeO(n2= log2 s+g(n) loglog s). This clearly su�ces to determine any g(n)-edge separated property. Thus we havethe following theorem.Theorem 14 For any g(n)-edge separated P , Tor;s(P) = O(n2log2 s + g(n) loglog s).6.3.3 Computing BFS/DFS ForestComputing BFS/DFS forest is often an integral part of many graph algorithms. Here we show how they canbe sped up using SGR.Theorem 15 Using SGR (w.r.t. OR) we can compute a BFS or DFS forest of GX in time O(n2log s).Proof: We just follow the standard BFS/DFS algorithm of greedily discovering new vertices. Let us concen-trate for BFS, for concreteness. Having a current set of vertices Y � X in the forest and the frontier F , we lookat each v 2 F and �nd all its neighbors to XnY . Using the vertex SVR of v, this takes at most nlog s+nv loglog ssteps, where nv is the number of new neighbors discovered. Summing over all the vertices and using the factthat Pnv � jXj � n we get O(n2log s) algorithm. Similarly, for DFS.6.3.4 Transitive Closure ComputationThe ability to e�ciently compute transitive closure of a subgraph induced by a subset of vertices is a usefulprimitive for many graph properties (e.g. connectivity). And among other things, BFS/DFS forest gives us thetransitive closure of GX . On the other hand, if we do not need the extra structure of the BFS/DFS forest, itturns out that we can �nd the transitive closure faster by searching not vertex by vertex but cluster by cluster!Theorem 16 For any X � V , we can compute some spanning forest (and thus the transitive closure) of GXin time O(n2log2 s loglog s).Proof: Let c � n= log s be the number of non-empty projections of X, which we call X1; : : : ;Xc. We letGi be the subgraphs induced by Xi and Hij - the bipartite graph induced by Xi and Xj. First, we read onebe one all the edges inside Gi, at most cp2 = O(n log s) = o(n2= log2 s) of them. Then we �nd connectedcomponents (including their spanning trees) of each Gi, initializing our spanning forest F to be the union ofall these spanning trees T1; : : : ; Tt. The only possible connections between Tk's that might contract our forestare now inside Hij, i 6= j. In the procedure below, we will continue to �nd an edge between two currentlydistinct trees in F (such edge is called a contracting edge), thus contracting those two trees together, until nomore contracting edges exist. We will look for contracting edges by examining edges in all Hij's in the orderi = 1 : : : (c� 1), j = (i+1) : : : c. We continue examining the current Hij until it has no new contracting edges.We strees that we update F whenever a new contracting edge is found, so at most n � 1 contractions are41

possible. The correctness of this algorithm is clear, we only have to describe how to look for a contracting edgein Hij given the current state of F . Assuming for a second that we know how to �nd a contracting edge in Hij(if it exists) in O(loglog s) steps, it is easy to justify the running time. There will be at most n � 1 succesfulsearches overall and at most one unsuccessful search for every Hij, a total of O(n + c2) = O(n2log2 s) searches,proving O(n2log2 s loglog s) running time.Thus, it remains to describe how to �nd a contracting edge. Assume w.l.o.g. that i = 1, j = 2. We observethat for every Y � X1 and Z � X2, our SGR stores the information on whether there is an edge between Yand Z. Let F consist of trees T1; : : : ; Tt, and Ck (Dk) be the set of vertices of Tk inside X1 (X2). Also letL = fkjCk 6= ;g be the set on non-empty trees in X1, R = fkjDk 6= ;g - in X2. Clearly, both L and R have atmost O(log s) trees. The set of contracting edges is exactly the set of edges between Ck1 and Dk2 for k1 6= k2,k1 2 L, k2 2 R. We observe that there might or might not be an edge between Ck and Dk, but we reallydo not care since they are not contracting. We can clearly \identify" all the vertices of non-empty Ck (Dk)into a \single vertex", since they are parts of the same tree already. Thus, every probe we are going to makecan be thought as testing 2 disjoint subsets A � L and B � R, corresponding to making Y = YA = [k2ACk,Z = ZB = [k2BDk. We require A \ B = ;, since we do not want to include the same tree on both sides.We call such a probe [A;B]. Once we get any such probe returning true, we can use the simple SGR forthe bipartite graph (YA; ZB), make a binary search and �nd the contracting edge in O(loglog s) steps. So wecan just describe how to partition all possible contracting edges into few complete bipartite graphs (YA; ZB),A \B = ;.First, we make two probes [L;RnL] and [LnR;R] which test for a contracting edge between the trees presentin X1 but not X2 and all the trees in X2, and vice versa. If any of them is true, we are done. Otherwise, ifwe let U = L\R (notice jU j = O(log s)), the only possible contracting edges are exactly between \points" Ck1and Dk2 for k1; k2 2 U , k1 6= k2. Thus, the queries we make will be of the form [A;UnA], where A � U , and weneed to �nd a sequence of queries A1; : : : ; Aq, Ai � U , s.t. Ai � (UnAi) cover every point (k1; k2) for k1 6= k2,k1; k2 2 U . Hence, our problem reduces to �nding a small q s.t. there are sets A1; : : : ; Aq � U s.t. for anyk1; k2 2 U , k1 6= k2, there is Ai s.t. k1 2 Ai, but k2 62 Ai. Such a collection A1; : : : ; Aq is called a separatingfamily of U .Lemma 27 A set U of size r has a separating family of size 2dlog re = O(log r).Proof: Let � = dlog re. We can write any z 2 U in binary z = z(1); : : : ; z(�). We let Ki = fzjz(i) = 0g,Ni = fzjz(i) = 1g, i 2 [�]. We claim that K1; : : : ;K�; N1; : : : ; N� is a separating family forM . Take any a 6= b.There is a bit position i where they di�er. Assume a(i) = 0, b(i) = 1. Then Ki separates a from b, as a 2 Ki,b 62 Ki. Similarly, when a(i) = 1, b(i) = 0 we get that Ni separates a from b, as a 2 Ni, b 62 Ni.In our case r = jU j = O(log s), so there is a separating family for U of size O(loglog s). Testing [A;UnA]for A in the separating family will complete testing for a contracting edge in O(loglog s) steps.Corollary 28Tor;s(connectivity), Tor;s(no-isolated-vertex), Tand;s(all-neighbors) are all O(n2log2 s loglog s).Proof: Transitive closure of GX is clearly su�cient for deciding connectivity and no-isolated-vertex.To deal with all-neighbors, we compute transitive closure of GX using AND instead of OR.We observe by Corollary 25 that T oblor;s(no-isolated-vertex) = O(n2log s). We will come back to that inChapter 7.6.3.5 Speedup-Preserving ReductionsWhile the class of properties we were able to speed-up might seem too small, we now develop the notion ofspeedup-preserving reductions will allow us to capture many properties via the above framework. Speedup42

preserving reduction allows us to apply e�cient algorithms developed for one property to the other.De�nition 18 (Speedup-Preserving Reduction (S-Reduction)) A property P is said to be S-reducibleto a property P 0, denoted P /S P 0, if there are maps g; h and a constant c such that� g takes as input a graph G(V;E) and outputs a graph G0(V 0; E0) with jV 0j � cjV j, and� h : 2V ! 2V 0 is such that such that for any X � V , P (GX)() P 0(G0h(X)) (or P (GX)() P 0(G0h(X))).If P /S P 0, then it is readily seen (as jV 0j = O(jV j)) that Ts(P) = O(Ts(P 0)).As an example of an S-reduction, we sketch a reduction from graph bipartiteness to graph connectivity. Forany static input G, we construct a transform as follows. De�ne a graph G0 = (V 0; E0), where V 0 = V � f0; 1g,and E0 only contains edges that connect the \0-side" to the \1-side" as speci�ed by E0([v; 0]; [w; 1]) = E(v; w);notice that G0 is bipartite. The map h is given by h(X) = X � f0; 1g. We claim now that GX is not bipartite(has an odd cycle) if and only if for some [v; 0] 2 V 0, there is a path connecting [v; 0] to [v; 1]. To see this,consider an odd cycle (v1; : : : ; v2k+1) in GX . Then G0h(X) contains the path[v1; 0]! [v2; 1] : : :! [v2k+1; 0]! [v1; 1]:Conversely, stripping the second component from any path from [v; 0] to [v; 1] produces an odd cycle in GX .Thus graph bipartiteness S-reduces to graph connectivity. Moreover, since edges of G0 are just some edges ofG, we can say that Tor;s(non-bipartite) = O(Tor;s(connectivity)) = O(n2log2 s loglog s). It is interesting toobserve that the two \more direct" algorithms for bipartiteness run in O(n2log s) time: one using DFS forest andthen trying to detect an odd cycle by checking back edges, the other - using BFS forest and checking for anedge between two vertices on the same level.

43

Chapter 7(s; t)-Spanning SetIn this section we study an abstract problem that highlights the issue of space-time tradeo�s and is interestingin its own right. Here is the approximate description of the problem. Suppose we are given a set M with someoperation ? and M has some \spanning set" B of size m i.e. every element of M is \expressible" using someelements of B. Minimal such B is usually called a basis. What a basis allows us to accomplish is to \store"fewest possible elements needed to express every possible \query" element, by possibly using all m elements ofB. Assume now that we are willing to store more than m elements in B but seek to express any element of Musing at most t elements of B, where t << m. If we �nd such a B of size s, we call it a (s; t)-spanning set forM . More generally, we can talk about an (s; t)-spanning set for some subset W �M . The question is what isthe optimal tradeo� between s and t. After obtaining some general bounds for the (s; t)-spanning set question,we �nd how a particular version of it connects to non-deterministic and oblivious cell probe complexity underthe families of AND and OR functions. This will allow us to give purely combinatorial descriptions of suchmeasures as NT 0or;s(f), T oblor;s(f), T oblor (f) (similarly, for the AND family). We then apply these results to theinduced subgraph problem.7.1 Basic Setup and General ResultsLet F be some set equipped with two operations: addition + and multiplication �. Assume that addition iscommutative, associative and has an additive identity 0, while multiplication is associative and has an identityelement u 2 F . We also assume the left distributive law a � (b + c) = (a � b) + (b � c) holds. We let M = Fmbe the mth power of F , i.e. M = f(a1; : : : ; am)jai 2 Fg. We de�ne addition (a1; : : : ; am) + (b1; : : : ; bm) =(a1 + b1; : : : ; am + bm) and multiplication by a scalar a � (b1; : : : ; bm) = (a � b1; : : : ; a � bm). When F is a �eld,for example, M is just an m-dimensional vector space over F , but we will not restrict ourselves to this case. Wesay that v 2M is expressible in terms of v1; : : : ; vk 2M , if there are a1; : : : ; ak 2 F s.t. v = a1 �v1+ : : :+ak �vk.We observe that M has a basis B of m elements, i.e. every v 2M is uniquely expressible in terms of elementsof B. An example of B is the canonical basis, where \unit" vector ui 2 M has 0 in all positions other than iwhere it has u, and v = (a1; : : : ; am) =P ai � ui.De�nition 19 An (s; t)-spanning set for W � M is a collection S of s elements of M with the property thatfor any v 2 W , v is expressible in terms of at most t elements of S (then we call v t-expressible in terms ofS). When s = t we call S simply a spanning set of W . S is minimum (s; t)-spanning set for W if s is optimalgiven t.The canonical basis of M is a (minimum) (m;m)-spanning set for M . Let jF j = p, so jM j = pm. We start witha sharp bound for s when W =M .Theorem 17 Any minimum (s; t)-spanning set for M satis�es:44

� If mp�1p < t < m and F is a group under addition, then s = m+ 1.� If 1 � t � mp�1p then 1e(p� 1) tpm=t � s � t(pm=t � 1)In particular, s = �(tpm=t), t = �(mlogp s). For F being a �eld, the upper bound can be improved tos � t(pm=t � 1)=(p � 1).Proof: Let mp�1p < t < m and F be a group under addition. Let S = fu1; : : : ; um; b = u1 + : : : + umg,jSj = m + 1. Take any v 2 M , v = (a1; : : : ; am). Since jF j = p, at least mp of ai's are the same, say,a1 = a2 = : : : = am=p = a. Then v = a � b + (am=p+1 � a) � um=p+1 + : : : + (am=p+1 � a) � um=p+1 (we cansubtract a as F is a group). Since t < m, it is impossible to have jSj = m, so S in minimum indeed. Let1 � t � mp�1p . For the upper bound we construct the following (s; t)-spanning set. Divide canonical basis Binto t blocks of size mt each. For each block store in S all possible vectors expressible in terms of the elementsof the block (except u). This gives a total of t(pm=t � 1) elements in S. Then clearly every element of M is(uniquely) expressible in terms of at most t of elements in S: simply take the normal representation of v interms of B and replace all basis vectors of each block by a single vector. In the case when F is a �eld, we cansplit each block into equivalence classes consisting of p � 1 vectors obtainable from each other by a non-zeroscalar multiplication, and store only 1 vector from each equivalence class.For the lower bound, using the known inequality for the partial binomial sum (see [7], pp. 55), the totalpossible number of elements expressible in terms of t out of some s elements is at most (all logarithms beloware base p) : k=tXk=0(p� 1)k�sk� � pt log(p�1)+s log s�t log t�(s�t) log(s�t) = A (7.1)We must have A � jM j = pm, since we want to express all elements of M . Hence we needlogA = t log(p� 1) + s log s� t log t� (s� t) log(s� t) � m (7.2)Assume, s = at � pm=t, where a = 1e(p�1) . We will show then that (7.2) is not satis�ed. Indeed,logA = t log(p� 1) + atpm=t log(atpm=t)� t log t�t(apm=t � 1)(log t+ log(apm=t � 1))= t log(p� 1) + pm=tat(mt + log a) + pm=tat log t� t log t(apm=t)�t(apm=t � 1) log(apm=t � 1))= t log(p� 1) + pm=t(am+ at log a) + t log(apm=t � 1)�tapm=t log(apm=t � 1)= t log(p� 1) + t log(apm=t � 1) + pm=t(am+ at log a� at(mt + log a)�at log(1� 1apm=t))< t log(p� 1) + t(log a+ mt)� pm=tat log(1� 1apm=t)< t log(p� 1) +m+ t log a+ pm=t(at 1apm=t) log e= m+ t log(p� 1) + t log a+ t log e = m+ t log(ae(p� 1)) = m45

Hence, we cannot save more than log s factor in time by allowing more space. Notice, in the lower boundproof, the only fact we used about M was that jM j = pm. So we get in the same wayCorollary 29 For t � mp�1p , any (s; t)-spanning set for W � M with n = logp jW j satis�es s � 1e(p�1) tpn=t,i.e. t =
(nlogp s).The bound in Corollary 29 is the best possible generic lower bound for W , since we can take W to be thesubspace spanned by u1; : : : ; un and apply to it the upper bound in Theorem 17. On the other hand, there are2 trivial (s; t)-spanning sets for any W : for t = 1 we can take s = jW j = pn by storing all the elements in W ,or we can use the (s; t)-spanning set for the whole M as described in Theorem 17, getting s = �(tpm=t). Whatwe show is that for a vast majority of W �M , logp jW j = n, one of these two extremes is essentially optimal,so the lower bound of t =
(n= log s) is unachievable when n << m.Theorem 18 For a random W �M , jW j = pn, with high probability, for any (s; t)-spanning set for W ,� If t = O(mn), then s =
(jW j) =
(pn) (i.e. to get \small" t the trivial scheme with s = jW j, t = 1 isnearly optimal).� If t =
(mn) then s =
(tp
(m)=t) (i.e. it is nearly optimal to take the (s; t)-spanning set for the wholeM). Thus t =
(mlogp s).Proof: When n > m2 , the bound in Corollary 29 already gives us the desired result for all W , so let n � m2 .There are �pms � possible collections S of s vectors, each of them is capable of t-representing at most A vectors,as de�ned in (7.1). Those A vectors contain at most �Apn� possible subsets W of size pn. Hence, using spaces, the total number of subsets W with an (s; t)-spanning set is at most �pms ��Apn� � pmsApn . On the otherhand, the total number of W 's is �pmpn� � (pmpn)pn � pm2 pn , as n � m2 . Thus, if space s would be su�cient forall W of size pn, we must have pmsApn � pm2 pn , i.e. ms + pn logpA � m2 pn or spn + logpAm � 12 . Hence, eithers =
(pn) =
(jW j), or logpA =
(m). In the second case, carrying out the same computation as in the proofof Theorem 17, we would get s =
(tp
(m)=t), as required. The threshold between these two space bounds ist = �(mn). High probability part follows easily from above.The result should not come as a surprise, since if W is irregular and unstructured, we should not expect tohave an \e�cient" (s; t)-spanning set forW , other than 2 extremes: storeW directly, or store an (s; t)-spanningset for the whole M . This raises a question of getting optimal (s; t)-spanning set for some explicit M and W .We will do it soon in connection with graph properties.7.2 Computing Monotone Functions Using AND/OR FamiliesWe now describe how (s; t)-spanning set gives a combinatorial characterization of non-deterministic and oblivi-ous computations for evaluating a monotone function f , under AND/OR-restricted data structures. From hereon, we focus on (s; t)-spanning set for M = Fm where F = f0; 1g (i.e. p = 2), \addition" is the OR operationand \multiplication" is the AND operation. Unwinding the de�nition, M is simply the power set of [m] withthe union operation on it. An (s; t)-spanning set for some W � M is a collection S of s subsets of [m] suchthat every set A 2 W is a union of at most t sets in S; we say that S (s; t)-covers W . When s = t we simplysay that S covers W . Let f : Y � Q 7! f0; 1g be a monotone (in y for any �xed q) function that we wish tocompute using an AND-restricted data structure D = fc1; : : : ; csg. Let E(ci) be the set of variables that occurin ci, and S(D) = fE(c1); : : : ; E(cs)g be the collection of subsets of f0; 1gm resulting from D.46

De�nition 20 For a function g : f0; 1gm 7! f0; 1g, let C1[g] be the set of all min-1-certi�cates for g viewed assubsets of [m]. Given a query q0 2 Q, we let C1(q0) = C1[f jq=q0] and Wand = Sq2Q C1(q). Analogous de�nitionscan be made for OR case by replacing min-1-certi�cates with min-0-certi�cates.Lemma 30 Let D be any AND-restricted (OR-restricted) data structure scheme of size s, and let f(y; q) andg(y) be two monotone functions. Then� D can be used to non-deterministically check f(y; q) = 1 (0) in t probes for any query q 2 Q if and onlyif S(D) (s; t)-covers Wand (Wor).� D obliviously computes g(y) if and only if S(D) covers C1[g] (C0[g]).Proof: Suppose D can be used to non-deterministically verify f(y; q) = 1. Take any q0 2 Q, C1 2 C1(q) andlet y0 = yC1 (i.e. just the variables in C1 are set to true), so f(y0; q0) = 1. Assume c1; : : : ; ct are the cells weguessed that let us verify f(y0; q0) = 1. The value of ci is 1 if and only if E(ci) � C1. Assume such ci's arec1; : : : ; ck, k � t. Let A = [ki=1E(ci), so A � C1 and y = yA is consistent with the answers we got. If A 6= Cthen f(yA; q0) = 0, so we could not have concluded that f = 1, so A = C, and S(D) is an (s; t)-spanning setfor Wand. Conversely, if S(D) is an (s; t)-spanning set for Wand, given any q0 we can guess C1 2 C1(q0) thatmakes f = 1 (if one exist) and read the at most t cells that cover it in S(D). We accept if and only if we getall 1 answers. Clearly, this correctly non-deterministically veri�es that f = 1. The oblivious case is essentiallythe same as above.As an immediate corollary we get the desired combinatorial description of non-deterministic and obliviouscell probe complexities.Theorem 19 For any monotone function f ,� NT 1and;s(f) (NT 0or;s(f)) is a smallest t s.t. there is an (s; t)-spanning set for Wand (Wor).� T obland;s(f) (T oblor;s(f)) is a smallest t s.t. there are s sets containing a spanning set of size t for every C1(q)(C0(q)) where q 2 Q.� T obland(g) (T oblor (g)) is the size of the minimum spanning set for C1[g] (C0[g]).An interpretation of this theorem is that when the computation needs to verify all min-1-certi�cates (min-0-certi�cates), then the amount of work needed to be done can be characterized combinatorially.7.3 Applications To Graph PropertiesWe now apply Theorem 19 to the induced subgraph problem. We already saw in Theorem 6 that for anyevasive property, Tor(P) =
(n2= log2 s); this was shown using the stabilization technique. The same techniquealso yields NT 0or(P) =
(N0(P)= log2 s) for any property P . For any non-trivial monotone property, we nowre-establish this result via a very di�erent approach, namely, by using (s; t)-spanning set. One advantage ofthis approach over the stabilization technique is that it applies to arbitrary functions and not only inducedsubgraph problem. We will also show T oblor (P) =
(n2) bounds for many natural properties P . Some ofthese properties, e.g. connectivity, have Tor(P) = �(n log n) [3] or even Tor;s(P) = O(n2log2 s loglog s).Thus, such properties are speedable adaptively using OR but not obliviously. Hence, we once again obtaina separation between adaptive and oblivious computation, this time for AND/OR-restricted function families.We conclude the section by showing that for P = no-isolated-vertex we get T oblor;s(P) = �(n2log s) whileTor;s(P) = O(n2log2 s loglog s). So this property is speedable both adaptively and obliviously, but one does betteradaptively. This will involve both stabilization technique and estimating the size of a certain spanning set. In47

the sequel we will also develop general techniques on how to show bounds on the size of the (s; t)-spanning setunder the union operation. In particular, we show how to get tight bounds on the (s; t)-spanning set for theset of graphs isomorphic to a given one, which is of independent interest. The bounds we obtain are tight andare generally better than the counting results of Corollary 29.We now have m = �n2� and M is the set of all n-vertex graphs. In this case Cz(X) is a collection ofmin-z-certi�cates for P on X, Wand = SX C1(X), Wor = SX C0(X). We let Cz = Cz(V).De�nition 21 For a graph G = (V;E) we let I(G) be the set of all graphs isomorphic to G (under relabelingof vertices of V). We call the set of non-isolated vertices in G an active set and its cardinality - a touchingnumber of G.Because of invariance of any graph property under relabeling of vertices, we have that if G 2 Wand, thenI(G) � Wand (same for Wor). Also, G 2 Cz implies I(G) � Cz. Above observations suggest that we shoulddevelop technique on �nding an optimal (s; t)-spanning set for W = I(G). We also observe the special propertyof the union operation: the only graphs H that can be useful in representing G are subgraphs of G. Thus, weexpect that a \large" graph should be useful for (is a subgraph of) only for a very small fraction of graphs inI(G). As an example, we let G be an n2 -clique. Then any graph H touching k vertices is a subgraph of exactlyall the n2 -cliques whose active set contains the active set set of H, which forms a � n�kn=2�k�=� nn=2� � 2�k fractionof n2 -cliques. In fact, similar bound turns out to be true for a much larger class of graphs, but not for all, as isillustrated by the following example. Let G be the complement of an n2 -clique. Then the \star" on n-verticeswith touching number n is nevertheless useful for � n�1n=2�1�=� nn=2� = 12 fraction of graphs in W = I(G)! In fact,n star graphs form an (n; n=2)-spanning set for I(G). As we will see, the problem with this G is the fact thatit has vertices of large degree.Lemma 31 If G has maximum degree at most cn, for c < 1, then any graph H touching k vertices occurs asa subgraph in at most 2�
(k) fraction of graphs in I(G).Proof: Let p be the fraction in question. Let H 0 be a graph on k (ordered) vertices equal to H restricted toits k non-isolated vertices. As H 0 has no isolated vertices, it has l � k=2 edges e1 : : : el in its spanning forestF . We can assume w.l.o.g. that H 0 (and H) has no other edges except for e1; : : : ; el, as the fewer edges H has,the more graphs it can be a subgraph of. We also choose a convenient order on ei's and on vertices in H 0 byordering them in the depth �rst search order: each time we traverse an edge of F in the DFS, we add this edgeto the list of edges and add the new endpoint to the list of vertices. When we go to a new component, we justadd the �rst vertex of this component to the list of vertices. Let Aut(G) � Sn be the set of automorphisms ofG (� 2 Sn s.t. �(G) = G). Consider �rst the case k � 1�c2 n. We have:p = PrG02I(G)(H � G0) = jfG0 2 I(G)jH � G0gjjI(G)j = jfG0 2 I(G)jH � G0gj � jAut(G)jjI(G)j � jAut(G)j= jf� 2 SnjH � �(G)gjn! = Pr�2Sn(H � �(G)) = Pr�2Sn(��1(H) � G)= Pr�2Sn(�(H) � G) = PrX�V;jXj=k(H 0 � GX) = PrX�V;jXj=k(e1; : : : ; el 2 EX)= lYi=1 PrX�V;jXj=k(ei 2 EX je1; : : : ; ei�1 2 EX) � (maxa2V degree(a)n� k + 1)l� (cnn� k)l � (2c1 + c)k=2 = 2�
(k)Let us elaborate on the above sequence of inequalities. Picking a random G0 2 I(G) and testing it has H asits subgraph, is equivalent to picking a random isomorphism � of vertices and testing that H is a subgraph48

of �(G), since jfG0 2 I(G)jH � G0gj � jAut(G)j = jf�jH � �(G)gj, and jI(G)j � jAut(G)j = jSnj = n!. ButH � �(G) () ��1(H) � G. Since � is random, so is ��1, and applying a random permutation to H touchingk vertices is the same as choosing k (ordered) random vertices in V forming a subset X, looking at the inducedsubgraph GX , and testing H 0 � GX , i.e. all ei 2 EX , which we then rewrite using the conditional probability.Next comes the crucial observation. Since X is ordered, we can view a random choice of X as choosing the kvertices of X one by one in the same DFS order as the vertices of H 0 occur, and whenever H 0 had a new edge eiin its forest, we check that we get a corresponding edge in G. Thus, the conditional probability estimates thefollowing. Assume we already chose some r < k vertices in V and we know the presence of some edges betweenthem. Let a be some special vertex among those r vertices. We now choose a random b out of the remainingn� r � n� k + 1 vertices and ask the probability that (a; b) form an edge in G. If we did not know anythingabout the previous edges, this probability would be clearly bounded by degree(a)n�r � degree(a)n�k+1 . But the presenceof some edges adjacent to a among the r previously selected vertices only decreases the needed probability, soour probability is indeed bounded by degree(a)n�k+1 . Since we do not know what a is, we have to take the worstpossible choice of a 2 V . The remaining computations are clear, they use the facts that k � 1�c2 n, l � k=2,and c < 1.To get the desired bound for arbitrary k > 1�c2 n, we simply let ~H be the subgraph of H induced by the�rst (1� c)n=2 vertices in the DFS traversal of H. Clearly, ~H touches f or f � 1 vertices and is a subgraph ofH, where f = (1�c)n2 � (1�c)k2 . Since a subgraph of H can be a subgraph of only more graphs in I(G), we getby the preceding analysis that ~H, and thus H, is useful for at most 2�
(f) � 2�
((1�c)k=2) = 2�
(k) fraction ofgraphs in I(G).The above lemma serves as a powerful tool for obtaining strong bounds for (s; t)-spanning set when Gsatis�es a simple restriction.Theorem 20 If G = (V;E) has maximum degree at most cn, for c < 1, then� any (s; t)-spanning set S for W = I(G) has t =
(jEjlog2 s).� any spanning set S for W = I(G) has s = t =
(jEj).Proof: Take any G0 2 I(G). Since it has jEj edges and is the union of at most t graphs in S, some graphH 2 S has at least jEj=t edges, and thus it touches at least pjEj=t vertices. By Lemma 31, such a graph H isuseful for at most 2�
(pjEj=t) fraction of graphs in I(G). Deleting all these graphs from I(G) and repeating theprocess we get H 0 2 S that is di�erent from H and is useful for at most 2�
(pjEj=t) fraction of graphs in I(G).Continuing this way, jSj = s � 2
(pjEj=t), i.e. t =
(jEjlog2 s). For a smallest spanning set, one way to get someresults is to use the above bound with s = t. Assuming jEj =
(n�), we get s = t =
(jEjlog2 n). However, thisbounds seems non-optimal, as in the proof we did not count all \small" graphs in S, and this is too wastefulwhen s = t. In fact, we will show that s = t =
(jEj). Let te be the number of graphs in some spanning set SforW which have e edges, so t =Pme=1 te. Pick a random G0 2 I(G). For any H having e edges, since it touchesat least pe vertices and using Lemma 31, we have Pr(H is useful for G0) = 2�
(pe), so E(number of edges ofG0 that H covers) = e � Pr(H is useful for G0) = O(e2�
(pe)) = O(1). Summing over all H in our spanning setand counting covered edges with repetitions, E(number of edges of G0 covered by all H) = PH E(number ofedges of G0 that H covers) =Pk tkO(1) = O(Pk tk) = O(t). On the other hand, the above expectation has tobe at least jEj, because if it is less than jEj, there is some G0 2 I(G), not all of whose jEj edges are covered bysome t sets in our spanning set, which is a contradiction. Hence jEj � O(t), so t =
(jEj).A useful corollary is as follows.Corollary 32 The minimum (s; t)-spanning set for the collection of 2n clique graphs has t = �(n2log2 s).49

Proof: The lower bound comes from Theorem 20 by applying it to an n2 -clique while the upper bound followsfrom Corollary 25.We are now ready to combine Theorem 19 and Theorem 20 in order to obtain our main result.Theorem 21 For any monotone property P ,� NT 1and;s(P) =
(N1(P)log2 s) and NT 0or;s(P) =
(N0(P)log2 s).Thus, NT 1and;s(P) = NT 0or;s(P) =
(n2= log2 s) when N1(P) = N0(P) =
(n2).� If there is a min-1-certi�cate C1 2 C1 with maximum degree cn and
(n2) edges, then T obland(P) =
(n2).Similarly, if there is a min-0-certi�cate C0 2 C0 s.t. C0 is of maximum degree cn and has
(n2) edges,then T obland(P) =
(n2).Proof: Let N1(P) = r(n). Take any X of size n=2 and let C1 be the min-1-certi�cate for P on X with thelargest number of edges (equal r(n=2) =
(r(n)) =
(N1(P)))1. Since G has maximum degree at most n=2(it is a certi�cate on a subset size n=2), we can apply Theorem 20 and conclude that any (s; t)-spanning setfor I(G) � Wand has t =
(N1(P)log2 s). The result follows by Theorem 19. The oblivious result is an immediatecorollary of Theorems 19 and 20.As an example, on the non-deterministic front, we get NT 0or;s(P) =
(n2log2 s) for such P as connectivity,non-bipartite, non-empty and not-forest. On the side of oblivious bounds, we can apply it to P =connectivity, since a (missing) complete bipartite graph on n=2 vertices has maximum degree n=2 and n2=4edges and hence T oblor (P) =
(n2). As Tor(P) = �(n logn), this is an example of limitation of obliviousness forthe OR family. An identical result also holds for bipartite.We conclude by showing how to apply Theorem 19 to get an optomal bound on T oblor;s(P) for P beingno-isolated-vertex.Lemma 33 For P=no-isolated-vertex, T oblor;s(P) = �(n2log s), while Tor;s(P) = O(n2log2 s loglog s).Proof: The oblivious O(n2log s) upper bound follows from Corollary 25. To show the lower bound we �rst applystabilization. We claim that there exists a subset X of size n2 s.t. if we set all the edges outside of X to 1, we�x to 1 all the ORs whose edges touch
(log s) vertices of V . This is a slightly stronger version of Lemma 6.If we pick X by picking every vertex of V with probability 1=2, any H touching k � 2 log s vertices will bestabilized with probability 1 � 1=s2, as only when all k vertices touched by H fall inside the query subset X,the OR de�ned by H is not going to be stabilized. Using the union bound and the fact that jXj � n=2 withprobability at least 1=2, the needed X exists. We work on X as our query set and apply Theorem 19 to X.C0(X) is n2 (missing) stars on X (each star connects v 2 X to Xnfvg). Any H in the spanning set S for C0(X)must be a subgraph of a star on X (otherwise it is useless), and since H touches O(log s) vertices of a stargraph, it must have O(log s) edges, i.e. jHj = O(log s). Since the union of all the stars in C0(X) is EdgesXand S covers all the graphs in C0(X), the union of graphs in S covers �jXj2 � =
(n2) edges of EdgesX . Sinceeach graph in S has O(log s) edges, jSj = t =
(n2log s).
1We assume that P is \regular", so above holds. 50

Bibliography[1] M. Ajtai. A lower bound for �nding predecessors in Yao's cell probe model. In Combinatorica, 8:235{247,1988.[2] P. Elias, R.A. Flower. The complexity of some simple retrieval problems. In J. Assoc. Comput. Mach.,22:367{379, 1975.[3] A. Hajnal, W. Maass and G. Turan. On the communication complexity of graph properties. In Proc.20th ASM Symp. on Theory of Computing (STOC), pp. 186{191, 1988.[4] L. Hellerstein, P. Klein, R. Wilber. On the Time-Space Complexity of Reachability Queries for Prepro-cessed Graphs. In Information Processing Letters, 27:261{267, 1990.[5] J. Kahn, M. Saks, D. Sturtevant. A topological approach to evasiveness. In Proc. 24th Annual Symposiumon Foundations of Computer Science (FOCS), pp. 31{39, 1983.[6] E. Kushilevitz, N. Nisan. Communication Complexity. Cambridge University Press, 1997.[7] J. Van Lint. Introduction to Coding Theory. Springer Verlag, 1992.[8] P.B. Miltersen. The bit probe complexity measure revisited. In Proc. 10th Symp. on Theoretical Aspectsof Computer Science (STACS), pp. 662{671, 1993.[9] P.B. Miltersen. Lower bounds for union-split-�nd related problems on random access machines. In Proc.26th ASM Symp. on Theory of Computing (STOC), pp. 625{634, 1994.[10] P.B. Miltersen. On cell probe complexity of polynomial evaluation. In Theoretical Computer Science,143:167{174, 1995.[11] P. Miltersen, N. Nisan, S. Safra, A. Wigderson. On Data Structures and Asymmetric CommunicationComlexity. In In Proc. 27th ASM Symp. on Theory of Computing (STOC), pp. 103{111, 1995.[12] N. Nisan, M. Szegedy. On the Degree of Boolean Functions as Real Polynomials. In ComputationalComplexity, 4:301{313, 1994.[13] R. Rivest, J. Vuillemin. On recognizing graph properties from adjecency matrices. In TheoreticalComputer Science, 3:371{384, 1976.[14] B. Xiao. New bounds in cell probe model. Ph.D. thesis, UC San Diego, 1992.[15] A.C. Yao. Should tables be sorted. In J. Assoc. Comput. Mach., 28:615{628, 1981.[16] A.C. Yao. Some complexity questions related to distributed computing. In Proc. 11th ASM Symp. onTheory of Computing (STOC), pp. 209{213, 1979.51

[17] A.C. Yao. Monotone bipartite graph properties are evasive. In SIAM Journal on Computing, 17(3):517{520, 1988.

52

