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Abstract

In this work we revisit the question of basing cryptography on imperfect randomness. Bosley
and Dodis (TCC’07) showed that if a source of randomness R is “good enough” to generate a
secret key capable of encrypting k bits, then one can deterministically extract nearly k almost
uniform bits from R, suggesting that traditional privacy notions (namely, indistinguishability of
encryption) requires an “extractable” source of randomness. Other, even stronger impossibility
results are known for achieving privacy under specific “non-extractable” sources of randomness,
such as the γ-Santha-Vazirani (SV) source, where each next bit has fresh entropy, but is allowed
to have a small bias γ < 1 (possibly depending on prior bits).

We ask whether similar negative results also hold for a more recent notion of privacy called
differential privacy (Dwork et al., TCC’06), concentrating, in particular, on achieving differential
privacy with the Santha-Vazirani source. We show that the answer is no. Specifically, we give a
differentially private mechanism for approximating arbitrary “low sensitivity” functions that works
even with randomness coming from a γ-Santha-Vazirani source, for any γ < 1. This provides a
somewhat surprising “separation” between traditional privacy and differential privacy with respect
to imperfect randomness.

Interestingly, the design of our mechanism is quite different from the traditional “additive-
noise” mechanisms (e.g., Laplace mechanism) successfully utilized to achieve differential privacy
with perfect randomness. Indeed, we show that any (accurate and private) “SV-robust” mechanism
for our problem requires a demanding property called consistent sampling, which is strictly stronger
than differential privacy, and cannot be satisfied by any additive-noise mechanism.
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1 Introduction

Most cryptographic algorithms require randomness (for example, to generate their keys, probabilisti-
cally encrypt messages, etc.). Usually, one assumes that perfect randomness is available, but in many
situations this assumption is problematic, and one has to deal with more realistic, “imperfect” sources
of randomness R. Of course, if one can (deterministically) extract nearly perfect randomness from
R, then one can easily implement traditional cryptographic schemes with R. Unfortunately, many
natural sources are not extractable [SV86,CG88,Zuc96]. The simplest example of such a source is the
Santha-Vazirani (SV) source [SV86], which produces an infinite sequence of (possibly correlated) bits
x = x1, x2, . . ., with the property that Pr[xi = 0 | x1 . . . xi−1] ∈ [12(1 − γ), 1

2(1 + γ)], for any setting
of the prior bits x1 . . . xi−1. Namely, each bit has almost one bit of fresh entropy, but can have a
small bias γ < 1 (possibly dependent on the prior bits). Yet, the result of Santha and Vazirani [SV86]
showed that there exists no deterministic extractor Ext : {0, 1}n → {0, 1} capable of extracting even a
single bit of bias strictly less than γ from the γ-SV source, irrespective of how many SV bits x1 . . . xn

it is willing to wait for. In particular, outputting the first bit is already optimal in terms of traditional
extraction.

Despite this pessimistic result, ruling out the “black-box compiler” from perfect to imperfect (e.g.,
SV) randomness for all applications, one may still hope that specific “non-extractable” sources, such as
SV-sources, might be sufficient for concrete applications, such as simulating probabilistic algorithms or
cryptography. Indeed, a series of results [VV85,SV86,CG88,Zuc96,ACRT99] showed that very “weak”
sources (including SV-sources and much more) are sufficient for simulating probabilistic polynomial-
time algorithms; namely, for problems which do not inherently need randomness, but which could
potentially be sped up using randomization. Moreover, even in the area of cryptography — where
randomness is essential (e.g., for key generation) — it turns out that many “non-extractable” sources
(again, including SV sources and more) are sufficient for authentication applications, such as the
designs of MACs [MW97,DKRS06] and even signature schemes [DOPS04] (under appropriate hardness
assumptions). Intuitively, the reason for the latter “success story” is that authentication applications
only require that it is hard for the attacker to completely guess (i.e., “forge”) some long string, so
having (min-)entropy in our source R should be sufficient to achieve this goal.

Privacy with Imperfect Randomness? In contrast, the situation appears to be much less bright
when dealing with privacy applications, such as encryption, commitment, zero-knowledge, etc. First,
McInnes and Pinkas [MP90] showed that unconditionally secure symmetric encryption cannot be
based on SV sources, even if one is restricted to encrypting a single bit. This result was subsequently
strengthened by Dodis et al. [DOPS04], who showed that SV sources are not sufficient for building even
computationally secure encryption (again, even of a single bit), and, if fact, essentially any other cryp-
tographic task involving “privacy” (e.g., commitment, zero-knowledge, secret sharing, etc.). Finally,
Bosley and Dodis [BD07] showed an even more general result: if a source of randomness R is “good
enough” to generate a secret key capable of encrypting k bits, then one can deterministically extract
nearly k almost uniform bits from R, suggesting that traditional privacy requires an “extractable”
source of randomness. 1

In this work we ask the question if similar pessimistic conclusions also hold for a more recent, but
already very influential variant of privacy called differential privacy (DP), introduced by Dwork et
al. [DMNS06], concentrating in particular on achieving differential privacy with the simple Santha-
Vazirani source.

Main Question: Is it possible to achieve (non-trivial) differential privacy with SV-sources?

1On the positive side, [DS02], [BD07] showed that extractable sources are not strictly necessary for encrypting a “very
small” number of bits. Still, for natural “non-extractable” sources, such as SV sources, it is known that encrypting even
a single bit is impossible [SV86,DOPS04].
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As our main result, we give a positive answer to this question, showing a somewhat surprising
“separation” between traditional privacy and differential privacy. But, first, let us examine the above
question more closely, gradually explaining the path towards our solution.

Differential Privacy. Differential privacy was introduced for the purposes of allowing the owner
of a sensitive database D to securely release some “aggregate statistics” f(D) while protecting the
privacy of individual users whose data is in D. Unfortunately, revealing f(D) by itself might violate
the privacy of some individual records, especially if the attacker has a some partial information about
D. Instead, we wish to design a randomized mechanism M(D; r) which will approximate f(D) with
relatively high accuracy, but will use its randomness r to “add enough noise” to the true answer f(D)
to protect the privacy of the individual records of D. For simplicity, we will restrict our attention to
real-valued queries f , so that we can define the utility ρ of M as the expected value (over uniform r,
for now) of |f(D)−M(D; r)|, which we want to minimize. For example, f might be a counting query,
where f(D) is the number of records in D satisfying som predicate π, in which case we seek to achieve
utility o(|D|) or even independent of |D|. More interestingly, we want M to satisfy the following very
strong notion called ε-differential privacy: for any neighboring databases D1 and D2 (i.e. D1 and D2

differ on a single record) and for any potential output z, Prr[M(D1; r) = z]/ Prr[M(D2; r) = z] is
between e−ε ≈ 1 − ε and eε ≈ 1 + ε (assuming ε is close to 0). This definition shows one difference
between standard privacy, which holds between all pairs of databases D1 and D2, and differential
privacy, which only holds for neighboring databases. Related to the above, one cannot achieve any
useful utility ρ if ε is required to be negligibly small (as then one can gradually transfer any D1 to any
other D2 without noticeably changing the answers given by M). Instead, the one typically assumes
that ε is a small constant which can be pushed arbitrarily close to 0, possibly at the expense of worse
utility ρ. Motivated by these considerations, we will say that f admits a class of accurate and private

mechanisms M = {Mε | ε > 0} if there exists some fixed function g(·) s.t., for all ε > 0, Mε is ε-DP
and has utility g(ε), independent of the size of the database D.

Additive-Noise Mechanisms. The simplest class of accurate and private mechanisms (with per-
fect randomness) are the so called additive-noise mechanisms [DMNS06,GRS09,HT10], introduced in
the original work of [DN03,DN04,BDMN05,DMNS06]. These mechanisms have the form M(D; r) =
f(D) + X(r), where X is an appropriately chosen “noise” distribution added to guarantee ε-DP. For
example, for counting queries (and more general “low-sensitivity” queries where |f(D1) − f(D2)| is
bounded on all neighboring databases D1 and D2), the right distribution is the Laplace distribution
with standard deviation Θ(1/ε) [DMNS06], giving the (additive-noise) Laplace mechanism for such
functions, which is private and accurate (in fact, essentially optimal for a wide range of loss func-
tions [GRS09]). One perceived advantage of additive-noise mechanisms comes from the fact that
the noise is oblivious to the input, and it is natural to ask if it is possible to design additive-noise
mechanisms which would be accurate and private even if the noise distribution is generated using
the Santha-Vazirani source. For example, perhaps one can generate a “good enough” sample of the
Laplace distribution even with SV sources? Unfortunately, we show that this is not the case. In
fact, any accurate and private additive-noise mechanism for a source R implies the existence of a
randomness extractor for R, essentially collapsing the notion of differential privacy to that of tradi-
tional privacy, and showing the impossibility of accurate and private additive-noise mechanisms for
SV sources.

Need for Consistent Sampling. In fact, the main reason why additive-noise mechanisms fail to
handle SV sources comes from the fact that such algorithms use disjoint sets of coins to produce the
same “noisy answer” on two databases having different “real answers”. More formally, if f(D1) 6=
f(D2) and Ti(z) is the set of coins r where M(Di; r) = z, an additive-noise mechanism must satisfy
T1(z) ∩ T2(z) = ∅. On the other hand, ε-DP requires that Pr[r ∈ T1(z)]/ Pr[r ∈ T2(z)] ≤ 1 + ε. For
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the uniform distribution, this simply means that |T1| ≈ |T2|. Since T1 and T2 are disjoint, the SV
adversary can try to bias the coins r so as simultaneously increase (or, at least maintain) the odds
of hitting T1, while decreasing the odds of hitting T2. Indeed, in Lemma 2.4 we show that an SV
adversary can always succeed in amplifying the ratio Pr[r ∈ T1]/ Pr[r ∈ T2] (and, hence, violate the
differential privacy of our mechanism) whenever T1 and T2 have small intersection (e.g., are disjoint).

In fact, in Lemma 3.2 we prove that any “SV-robust” mechanism should strive to produce iden-

tical outputs on neighboring databases for a majority of random tapes; in particular, for any z,
|T1(z) ∩ T2(z)| ≈ |T1(z)| ≈ |T2(z)| (see Definition 4.1 for the exact quantitative formulation). This
general property, which we call consistent sampling (CS), is closely related to the “consistent sam-
pling” methodology that has found applications in web search [BGMZ97] and parallel repetition the-
orems [Hol07], among others. Moreover, we show that ε-consistent sampling implies ε-differential
privacy, but the converse is false.

Our Main Result. The lower bound above suggests a path forward toward building SV-robust
mechanisms, which starts with the design of consistently samplable mechanisms. For example, the
classical Laplace mechanism for low sensitivity functions could be viewed as sampling some noise x
of expected magnitude ρ = O(1/ε), and adding it to the exact solution y = f(D). Being additive-
noise, this mechanism is not CS. But, imagine a new mechanism which further rounds the answer
z = y + x to the nearest multiple z′ of 1/ε. Clearly, the expected utility has gone from ρ to at most
ρ′ = ρ + 1/ε = O(ρ). Yet, it turns out that the new mechanism is now ε-CS, since, informally, the
rounded answers on neighboring databases are only distinct on an ε-fraction of coins r (see Section 5).

Still, designing CS mechanisms was only a necessary condition for building SV-robust, differentially
private mechanisms. For example, the basic notion of consistency ignores the binary representations of
random coins r defining the needed pre-image sets T1 and T2, which are (intuitively) very important for
handling SV sources since their randomness properties are bit-by-bit. Indeed, we show that consistency
alone is not enough for SV-robustness, and we need an additional (fortunately, simply stated) property
of our sampling to guarantee the latter. (As expected, this property asks something quite natural about
the binary representations of the coins inside T1 and T2.) We call the resulting notion SV-consistent

sampling (SVCS; Definition 4.3). Building an accurate and private mechanism satisfying this condition
formed the main technical bulk of our work.

In particular, starting with the “rounded” Laplace mechanism, we show a careful implementation
of this CS mechanism, so that the resulting mechanism is actually SVCS (with appropriate parameters
guaranteeing ε-DP of the final mechanism against γ-SV sources). The details of this technical step,
which uses properties of arithmetic coding (see [MNW98, WNC87]) applied to the specific Laplace
distribution, are explained in Section 5. This gives us our main result (Theorem 5.3) and an affirmative
answer to our Main Question: an accurate and private class of SV-robust mechanisms for counting
queries and arbitrary low-sensitivity functions.

To maintain a clear presentation, we defer more technical proofs to Appendix A.

2 Random Sources and Differential Privacy

Notation. For a positive integer n, we use the notation [n] to denote the set {1, 2, . . . , n}. We use
⌊·⌉ to denote the nearest integer function. For a distribution or random variable R, we write r ← R to
denote the operation of sampling a random r according to R. For a randomized function h, we write
h(x ; r) to denote the unique output of f on input x with random coins r. When the distribution of
random coins R is understood from context, we write h(x) to denote the random variable h(x ; r) for
r ← R. Finally, we denote a sequence of bits using boldface, e.g. x = x1, x2, . . .

We use calligraphic letters to denote families of the corresponding letter. For example, F denotes
a family of functions f , R denotes a family of distributions R. We see a distribution over {0, 1}∗ as
continuously outputting (possibly correlated) bits. In particular, we let U be the distribution over
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{0, 1}∗ that samples each bit independently and uniformly at random. When U is truncated after n
bits, the result is the distribution Un, which is the uniform distribution over {0, 1}n, the bit-strings of
length n.

2.1 Random Sources

We call a family R of distributions over {0, 1}∗ a source. In this work, we model perfect randomness
with the uniform source and imperfect randomness with the γ-Santha-Vazirani source [SV86], arguably

the simplest type of a “non-extractable” source. The uniform source U def
= {U} is the set containing

only the distribution U on {0, 1}∗ that samples each bit uniformly at random. We define γ-Santha-
Vazirani sources below.

Definition 2.1 (γ-Santha-Vazirani Source [SV86]). Let γ ∈ [0, 1]. A probability distribution X =
(X1, X2, . . .) over {0, 1}∗ is a γ-Santha-Vazirani distribution if for all i ∈ Z

+ and x1 . . . xi−1 ∈ {0, 1}i−1,

it holds that
1

2
(1− γ) ≤ Pr[Xi = 0 | X1 = x1, . . .Xi−1 = xi−1] ≤

1

2
(1 + γ).

We define the γ-Santha-Vazirani source SV(γ) to be the set of all γ-Santha-Vazirani distributions.

Finally, for a distribution SV(γ) ∈ SV(γ), we let SV(γ, n) be the distribution SV(γ) restricted to the

first n coins (X1, . . . ,Xn). We let SV(γ, n) be the set of all distributions SV(γ, n).

We now define γ-biased semi-flat sources, which were introduced by [RVW04] (see also [DOPS04],
where they were referred to as γ-biased halfspace sources).

Definition 2.2 (γ-Biased Semi-Flat Source). For S ⊂ {0, 1}n of size |S| = 2n−1, and γ ∈ [0, 1], the

distribution HS(γ, n) over {0, 1}n is defined as follows: for all x ∈ S, Prx←HS(γ,n)[x] = (1 + γ) · 2−n,

and for all x /∈ S, Prx←HS(γ,n)[x] = (1− γ) · 2−n. We define the γ-biased semi-flat source H(γ, n) to

be the set of all distributions HS(γ, n) for all |S| = 2n−1.

Lemma 2.3 ([RVW04,DOPS04]). For any n ∈ Z
+ and γ ∈ [0, 1], H(γ, n) ⊂ SV(γ, n).

We prove a general lemma about γ-semi-flat sources, which will be very useful in later sections.

Lemma 2.4. Let G, B ⊆ {0, 1}n such that |G| ≥ |B| > 0, and let σ
def
= |B\G|

|B| ∈ [0, 1]. Then there

exists S ⊆ {0, 1}n of size |S| = 2n−1 such that

Pr
r←HS(γ,n)[r ∈ G]

Pr
r←HS(γ,n)[r ∈ B]

≥ (1 + γσ) · |G||B| .

Proof. Let G′
def
= G\B, B′

def
= B\G, and N

def
= G ∩ B. Let α

def
= |G′|, β def

= |B′|, and λ
def
= |N |. We

consider two cases: 1. α ≤ 2n−1, and 2. α > 2n−1

Case 1: First suppose that α ≤ 2n−1, which means also β ≤ 2n−1 since we assume |G| ≥ |B|. Then

pick any S ⊂ {0, 1}n of size |S| = 2n−1 such that G′ ⊆ S and B′ ∩ S = ∅. Let λ0
def
= |S ∩N | and

λ1
def
= λ− λ0. Then

Prx←HS(γ,n)[x ∈ G]

Prx←HS(γ,n)[x ∈ B]
=

(1 + γ)α + (1 + γ)λ0 + (1− γ)λ1

(1− γ)β + (1 + γ)λ0 + (1− γ)λ1

≥ (1 + γ)α + (1 + γ)λ

(1− γ)β + (1 + γ)λ

=
α + λ

β + λ


 β + λ(

1−γ
1+γ

)
β + λ


 =

α + λ

β + λ
· 1

∆
, (2.1)
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where ∆
def
=

“
1−γ
1+γ

”
β+λ

β+λ . We have,

∆ =

(
1−γ
1+γ

)
β + λ

β + λ
= 1−

(
2γ

1+γ

)
β

β + λ
= 1− 2γσ

1 + γ
=

1 + γ − 2γσ

1 + γ
.

Then, plugging in this value of ∆ in (2.1), we have

Prx←HS(γ,n)[x ∈ G]

Prx←HS(γ,n)[x ∈ B]
≥ α + λ

β + λ

(
1 + γ

1 + γ − 2γσ

)
=

α + λ

β + λ

(
1 +

2γσ

1 + γ − 2γσ

)

≥ α + λ

β + λ
(1 + γσ) ,

where the last inequality follows from σ < 1.

Case 2: Now assume that α > 2n−1. Then pick any S ⊂ {0, 1}n of size |S| = 2n−1 such that S ⊆ G′.

Let α0
def
= |S ∩G′| = 2n−1 and α1

def
= α− α0. Then

Prx←HS(γ,n)[x ∈ G]

Prx←HS(γ,n)[x ∈ B]
=

(1 + γ)α0 + (1− γ)α1 + (1− γ)λ

(1− γ)β + (1− γ)λ

=

(
1+γ
1−γ

)
α0 + α1 + λ

β + λ
=

α0 + α1 + λ

β + λ
+

(
2γ

1−γ

)
α0

β + λ

≥ α0 + α1 + λ

β + λ

(
1 +

(
2γ

1− γ

)
1

2

)
=

α + λ

β + λ

(
1 +

γ

1− γ

)

≥ α + λ

β + λ
· (1 + γ)

≥ α + λ

β + λ
· (1 + σγ).

2.2 Differential Privacy and Utility

We start by briefly recalling the notion of differential privacy. Given a database containing confidential
information, we wish to allow learning of statistical information about the contents of the database
without violating the privacy of any of its individual entries. The standard cryptographic notion of
privacy where negligible information is revealed, is not appropriate in this setting as it does not allow
to learn even one bit of “global” information about the contents of the database. Therefore, a new
privacy definition is needed for this setting, in particular, one that allows a better trade-off between
privacy and utility. This is precisely what differential privacy achieves.

The Model. We model a statistical database as an array of rows from some countable set, and say
that two databases are neighboring if they differ in exactly one row. Throughout the paper, we let D
be the space of all databases. We consider the interactive setting, in which interested parties submit
queries, modeled as functions f : D → Z, where Z is a specified range. In this paper, we are only
concerned with queries with range Z = Z, and henceforth only consider this case. A mechanism M is
a probabilistic algorithm that takes as input a database D ∈ D and a query f : D → Z, and outputs
a value z ∈ Z. We assume that M ’s random tape is in {0, 1}∗, that is, that M has at its disposal a
possibly infinite number of random bits, but for a fixed outcome z ∈ Z, M needs only a finite number
of coins n = n(D, f, z) to determine whether M(D, f) = z. Furthermore, we assume that if r ∈ {0, 1}n
is a prefix of r′ ∈ {0, 1}n′ and M(D, f ; r) = z is already determined from r, then M(D, f ; r′) = z
also. In other words, providing M with extra coins does not change its output.
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Definitions. Informally, we wish z = M(D, f) to approximate the true answer f(D) without re-
vealing too much information. We say a mechanism is differentially private for a class F of queries if
for all queries f ∈ F , replacing a real entry in the database with one containing fake information only
changes the output distribution of the mechanism by a small amount. In other words, evaluating the
mechanism on the same query f ∈ F , on two neighboring databases, does not change the outcome
distribution by much. On the other hand, we define its utility to be the expected difference between
the true answer f(D) and the output of the mechanism. Since the purpose of this work is to analyze
mechanisms with respect to their sources of randomness, the following definitions of privacy and utility
explicitly take the source of randomness R into account.

Definition 2.5 ((ε,R)-Differential Privacy). Let ε ≥ 0, R be a source, and F = {f : D → Z} be a

class of functions. A mechanism M is (ε,R)-differentially private for F if for any pair D1, D2 ∈ D
of neighboring databases, all f ∈ F , all possible outputs z ∈ Z of M , and all R ∈ R:

Prr←R[M(D1, f ; r) = z]

Prr←R[M(D2, f ; r) = z]
≤ 1 + ε.

This is a very strong definition. Not only does it give a statistical guarantee, making it independent
of the computation power of any adversary, but it is also strictly stronger than the requirement that
the statistical distance between M(D1, f) and M(D2, f) is at most ε (for example, the latter allows
some low-probability outcomes of M(D1, f) to never occur under M(D2, f)). We also note that,
traditionally, differential privacy has been defined by having the ratio of probabilities be bounded by
eε. We instead bound it by 1+ε, since this formulation makes some of our calculations slightly cleaner.
This is fine since we always have 1 + ε ≤ eε, and, when ε ∈ [0, 1] (which is the main range of interest),
we anyway have eε ≈ 1 + ε.

If a mechanism M is (ε,R)-differentially private for some randomness source R, then a mechanism
M ′ that runs M as a black box and then performs some post-processing on the output, is also (ε,R)-
differentially private. Intuitively, this is because given only z = M(D, f), M ′ cannot reveal more
information about D than z itself. In our work we only consider the case where M ′ evaluates a
deterministic function h of z = M(D, f), so that M and h do not have to “share” the random source
R.

Lemma 2.6. Let M be a (ε,R)-differentially private mechanism, and let h be any function. Define

M ′(D, f)
def
= h(M(D, f)). Then M ′ is (ε,R)-differentially private.

Definition 2.7 ((ρ,R)-Utility). Let ρ > 0, let R be a source, and let F = {f : D → Z} be a class

of functions. We say a mechanism M has (ρ,R)-utility for F if for all databases D ∈ D, all queries

f ∈ F , and all distributions R ∈ R,

Er←R[|f(D)−M(D, f ; r)|] ≤ ρ.

For example, in the case where F is the class of counting queries, where f ∈ F is the number of
records in D satisfying some predicate π, we seek to achieve utility ρ = o(|D|) or even independent of
|D|.

At the extremes, a mechanism that always outputs 0 is (0,R)-differentially private, while a mech-
anism that outputs the true answer f(D) has (0,R)-utility. Neither of these mechanisms is very
interesting—the first gives no utility, while the second provides no privacy. Instead, we wish to find
mechanisms that achieve a good trade-off between privacy and utility. This motivates the following
definition.

Definition 2.8 (Accurate and Private Mechanisms). We say a function family F admits accurate
and private mechanisms w.r.t. R if there exists a function g(·) such that for all ε > 0 there exists

a mechanism Mε that is (ε,R)-differentially private and has (g(ε),R)-utility. We call M = {Mε} a

class of accurate and private mechanisms for F w.r.t. R.
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We make a few remarks regarding this definition. First, we require that the utility ρ = g(ε) is
independent of |D|. Second, we note that satisfying this definition implies that we can achieve (ε,R)-
differential privacy for any ε > 0 (possibly at the expense of utility). E.g., when R = SV(γ), we
should be able to achieve ε ≪ γ, which is below the “extraction barrier” for SV-sources. Finally, we
note that for the purpose of satisfying this definition, we can assume w.l.o.g. that ε ≤ 1, which is
anyway the case of most interest. Moreover, we can assume that 1/ε is an integer, since otherwise we
can simply take a slightly smaller ε for which this is the case.

Infinite-Precision Mechanisms. As we will see shortly, it is sometimes easier to describe mech-
anisms using samples from some continuous random variable X, instead of using a (discrete) random
tape in {0, 1}∗. Moreover, the notions of privacy and utility definitions can be analogously defined
for this case as well (which we omit for brevity). Of course, to actually “implement” such abstract
mechanisms in practice, one must specify how to approximate them using a “finite precision” random
tape in {0, 1}∗, without significantly affecting their privacy and/or utility. When perfect randomness
U is available, this is typically quite easy (and usually not spelled out in most differential privacy
papers), by simply approximating a continuous sample from X within some “good enough” finite pre-
cision. In contrast, our mechanisms will have to deal with imperfect randomness SV(γ), so rounding
a given “continuous” mechanism into a “discrete” mechanism will be non-trivial and require utmost
care. In particular, we will have to design quite special “infinite-precision” mechanisms which will be
“SV-friendly” toward appropriate “finite-precision rounding”.

Additive Noise Mechanisms. One type of accurate and private mechanisms follow the following
blueprint: first, they sample data-independent noise x from some (discrete or continuous) distribution
X, calculate the true answer f(D), and output z = f(D)+x. We call such mechanisms, additive-noise

mechanisms (examples of additive-noises mechanisms include the Laplacian mechanism [DMNS06],
the geometric mechanism [GRS09], and the K-norm mechanism for multiple linear queries [HT10]). If
E[|X|] is bounded, then the mechanism has good utility. However, to argue that such bounded “noise”
X is sufficient to ensure the differential privacy of such mechanisms, we must first restrict our query
class F . In particular, it turns out that additive-noise mechanisms achieve differential privacy for a
pretty large class of useful functions, called bounded sensitivity functions.

Definition 2.9 (Sensitivity). For f : D → Z, the sensitivity of f is defined as

∆f
def
= max

D1,D2

‖f(D1)− f(D2)‖

for all neighboring databases D1, D2 ∈ D. For d ∈ Z
+, we define Fd = {f : D → Z | ∆f ≤ d} to be

the class of functions with sensitivity at most d.

As an example, counting queries are in F1. Intuitively, low sensitivity functions do not change too
much on neighboring databases, which suggests that relatively small noise can “mask” the difference
between f(D1) and f(D2). The particular (continuous) distribution turns out to be the Laplacian
distribution, defined below.

Definition 2.10 (Laplacian Distribution). The Laplacian distribution with mean µ and standard

deviation
√

2b, denoted Lapµ,b, has probability density function Lapµ,b(x) = (1/2b) · e−|x−µ|/b. The

cumulative distribution function is CDF
Lap
µ,b (x) = (1/2b) · (1 + sgn(x) · (1− e|x−µ|/b)).

We also define the distribution obtained from sampling the Laplacian distribution Lapµ,b and round-

ing to the nearest integer ⌊Lapµ,b⌉. We call this the “rounded” Laplacian distribution and denote it by

RLapµ,b.
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In particular, for any sensitivity bound d, Dwork et al. [DMNS06] showed the following class of

(infinite-precision) additive-noise mechanisms MLap = {MLap
ε } is accurate and private for Fd. Given

a database D ∈ D, a query f ∈ Fd and the target value of ε, the mechanism MLap
ε computes f(D)

and adds noise from the Laplacian distribution with mean 0 and standard deviation (
√

2 · d)/ε; i.e.

MLap
ε (D, f)

def
= f(D)+Lap0,d/ε. Equivalently, we can also view this mechanism as computing y = f(D)

and outputting a sample from the distribution Lapy,d/ε. Moreover, it is easy to see that this infinite-
precision mechanism achieves O(d/ε)-utility.

In order to ensure that the output of the mechanism of [DMNS06] is an integer, the result can
be rounded to the nearest integer. Since this is post-processing, by Lemma 2.6, the result has the
same privacy guarantees. Furthermore, since f(D) ∈ Z, we have ⌊f(D) + Lap0,d/ε⌉ = y + ⌊Lap0,d/ε⌉.
In particular, for queries of integer range, the mechanism of [DMNS06] can be seen as computing
y = f(D) and outputting z = RLapy,d/ε. We denote this (still infinite-precision, but now integer

range) variant by MRLap
ε . Clearly, it still has utility O(d/ε).

Finally, we must describe how to approximate this mechanism family MRLap by a finite precision

family MRLap
w.r.t. U , without significantly affecting privacy or utility. As it turns out, a good

enough approximation can be accomplished by sampling each value z ∈ Z with precision roughly
proportional to Pr[z] (under MRLap

ε ), which requires n(z) = O(|z| log(d/ε)) (truly random) coins
Un(z), and increases both ε and ρ by at most a constant factor. Since we will not use the resulting
(finite-precision) mechanism in this paper 2, we state the end result without further justification.

Lemma 2.11 ([DMNS06]). For any d ∈ Z
+, there exists a family MRLap

= {MRLap

ε } of accurate and

private mechanisms for Fd w.r.t. the uniform source U , with utility function gRLap(ε) = O(d/ε).

Our Question. Lemma 2.11 shows that for all d ∈ Z
+ there exists a class of accurate and private

mechanisms for Fd w.r.t. U . The main goal of this work is to determine if this is also true for other
randomness sources, in particular, for the γ-Santha-Vazirani sources.

Main Question (Restated): Does there exist a class M = {Mε} of accurate and private mecha-
nisms for Fd w.r.t. SV(γ) for all γ ∈ [0, 1)? If so, can they be additive-noise mechanisms?

For clarity, from now we will focus on the case d = 1; however, all our results extend to any sensitivity
bound d (with utility scaled by a factor of d). We will prove that accurate and private mechanisms
for F1 w.r.t. SV(γ) cannot be additive noise, answering the second question in the negative. Despite
this, however, we will answer the first question positively by displaying a classM = {Mε} of accurate
and private (non-additive-noise) mechanisms for F1 w.r.t. SV(γ).

3 Naive Approaches and a Lower Bound

We will start by showing a few naive approaches that will explain the intuition behind why accurate
and private mechanisms for F1 w.r.t. SV(γ) cannot be additive noise. Moreover, we will prove a
general lower bound restricting the type of mechanisms “friendly” to SV-sources, which will motivate
a very special type of mechanisms that we will introduce in Section 4.

First Attempt. A first approach to answer our main question would be to prove that any class of
accurate and private mechanisms for F1 w.r.t. U is also accurate and private w.r.t. SV(γ). This turns
out to be far too optimistic. To see this, take any mechanism M w.r.t. U , and assume that with high
probability M needs at most n random coins. Define (artificial) mechanism M ′ as follows. Whenever
M needs a fresh coin bi, M ′ samples k coins bi1 . . . bik and simply sets bi = majk(bi1, . . . , bik), where
majk(·) is the majority of k bits. Clearly, M ′ has the same differential privacy and utility guarantees
as M w.r.t. U , since majority of perfectly random bits is perfectly random. On the other hand, by

2Indeed, we will see in Lemma 3.1 that no additive-noise mechanism can be accurate and private w.r.t. SV(γ).
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biasing each bit towards 0 (resp. 1), a Santha-Vazirani adversary can fix each k-bit majority function
to 0 (resp. 1) with probability at least (1 − e−γ2k/2), which means that he can fix all n coins of M
to any desired outcome with probability at least (1− ne−γ2k/2) ≈ 1 for k = O(log n/γ2). Hence, the
Santha-Vazirani adversary for M ′ can effectively fix the random tape of M , making it deterministic
(with probability arbitrarily close to 1). On the other hand, it is easy to see that no deterministic
mechanism having non-trivial utility (i.e., giving distinct answers on some two neighboring databases)
can be differentially private.

Hence, accurate and private mechanisms w.r.t. the uniform source U are not necessarily accurate
and private w.r.t. γ-Santha-Vazirani sources SV(γ).

Second Attempt. A seemingly less naive idea would be to prove that any class of accurate and
private mechanisms for F1 w.r.t. U is also accurate and private w.r.t. SV(γ) if we first run some
randomness extractor Ext on the randomness. More precisely, suppose M = {Mε} is accurate and
private w.r.t. U and suppose Mε uses n coins. Can we construct a deterministic extractor Ext :

{0, 1}m → {0, 1}n (for some sufficiently large m ≫ n) and let M ′
ε

def
= Mε(D, f ; Ext(r)), such that

M′ = {M ′
ε} is accurate and private w.r.t. SV(γ) wheneverM = {Mε} is accurate and private w.r.t. U?

More generally, one can define an analogous “extractor conjecture” for any imperfect source R in place
of SV(γ). Unfortunately, we show that this naive approach does not work for any “non-extractable”
source R, such as SV(γ). To show this, we look at the family of additive-noise mechanisms for the
family F1 of sensitivity-1 functions given by Lemma 2.11, and observe that applying an extractor
to any additive-noise mechanism is still an additive-noise mechanism. Then, we show a more general
statement that any accurate and private additive-noise mechanism for F1 underR implies the existence
of a bit extractor for R, which is impossible for non-extractable R, such as SV(γ).

Lemma 3.1. Assume R is a source andM = {Mε} is a family of additive-noise mechanisms for F1,

where each Mε is (ε,R)-differentially private. Then, for all ε > 0, one can deterministically extract

an ε-biased bit from R. In particular, there does not exist a class M = {Mε} of accurate and private

additive-noise mechanisms for F1 w.r.t. any “non-extractable” R, such as SV(γ).

Proof. Given any class M = {Mε} of additive-noise mechanisms for F1, define a new class M′ =
{M ′

ε} of binary-output mechanisms, where M ′
ε(D, f ; r) = Mε(D, f ; r) mod 2. Notice, if Mε is (ε,R)-

differentially private, then so is M ′
ε by Lemma 2.6 (since mod 2 is a deterministic post-processing

function). Also, since Mε is additive-noise, we can write Mε(D, f ; r) = f(D)+x, where x = Extε(r) for
some function Extε : {0, 1}∗ → Z. Thus, if we let Ext′ε(r) = Extε(r) mod 2, we can write M ′

ε(D, f ; r) =
(f(D) mod 2)⊕ Ext′ε(r), where ⊕ is the exclusive-or operator on one bit.

Now fix any two neighboring databases D0 and D1 and any f ∈ F1 s.t. |f(D0)−f(D1)| = 1. In fact,
by swapping D0 and D1, if necessary, we can assume that f(Db) mod 2 = b, for b ∈ {0, 1}. This means
that M ′

ε(Db, f ; r) = (Db(f) mod 2)⊕Ext′ε(r) = b⊕Ext′ε(r). By (ε,R)-differential privacy of M ′
ε applied

to D0 and D1, this means that for any R ∈ R, we must have Pr[Ext′ε(R) = 0] ∈ [12(1 − ε), 1
2(1 + ε)],

which would mean that Ext′ε defines an ε-biased one-bit extractor for R.

General Lower Bound. The failure of our naive approaches suggests that one cannot take any
accurate and private mechanism w.r.t. uniform randomness U , and apply some simple transformation
to its randomness to derive an accurate and private mechanism w.r.t. SV(γ). Indeed, we will show
that any accurate and private mechanism w.r.t. SV(γ) must in fact satisfy a fairly restrictive condition
with respect to the uniform source. In particular, this condition (later called consistent-sampling) is
never satisfied by additive-noise mechanisms.

First, we need some important notation. Consider a mechanism M with randomness space {0, 1}∗,
and let D ∈ D. We define the set T (D, f, z)

def
= {r ∈ {0, 1}n | z = M(D, f ; r)} to be the set of

random coins r ∈ {0, 1}∗ such that M outputs z when run on database D, query f , and random coins
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r. We remark that since we assume that only n = n(f, z, D) coins need to be sampled to determine if
M(D, f) = z, we can assume w.l.o.g. that T (f, z, D) ⊆ {0, 1}n. In the interest of clarity, we simply
write T when f, D, and z are understood from context.

Without loss of generality, we assume that the function family F is by itself non-trivial, meaning
that there exist two neighboring databases D1, D2 and a query f such that f(D1) 6= f(D2). We also

let T1
def
= T (D1, f, z) and T2

def
= T (D2, f, z). Fix z ∈ Z, f ∈ F , R ∈ R. To show that M is (ε,R)-

differentially private for F w.r.t. randomness source R, we are concerned with bounding the following
ratio by 1 + ε:

Prr←R[M(D1, f ; r) = z]

Prr←R[M(D2, f ; r) = z]
=

Prr←R[r ∈ T1]

Prr←R[r ∈ T2]

As we show below, bounding the above ratio for all Santha-Vazirani sources introduces a non-trivial
constraint on M . For illustration, let us first look at any additive-noise mechanism M and re-derive
the conclusion of Lemma 3.1 directly. If z = M(D1, f ; r1) = M(D2, f ; r2) then z = f(D1) + x1 =
f(D2)+x2 for x1, x2 ← X. Since we assumed f(D1) 6= f(D2) then x1 6= x2, which means that r1 6= r2.
Thus, T1∩T2 = ∅. Furthermore, we can assume w.l.o.g. that |T1| ≥ |T2| since otherwise we can switch
D1 and D2. Using Lemma 2.4 with G = T1 and B = T2, taking n = max(n(f, z, D1), n(f, z, D2)), and
using the fact that H(γ, n) ⊂ SV(γ, n), we have that there exists SV(γ) ∈ SV(γ) such that

Pr
r←SV(γ)[M(D1, f ; r) = z]

Pr
r←SV(γ)[M(D2, f ; r) = z]

≥ (1 + γ) · |T1|
|T2|
≥ 1 + γ,

which is the same conclusion as the one obtained in the proof of Lemma 3.1.
More generally, coming back to arbitrary mechanisms, since Lemma 2.4 works even when G∩B 6= ∅,

we get the following much stronger result. Suppose σ
def
= |T2\T1|/|T2| ∈ [0, 1]. Then there exists

SV(γ) ∈ SV(γ) such that
Pr

r←SV(γ)[M(D1, f ; r) = z]

Pr
r←SV(γ)[M(D2, f ; r) = z]

≥ 1 + γσ.

This shows that a necessary condition to achieve (ε,SV(γ))-differential privacy is that σ ≤ ε/γ = O(ε).
We summarize this in the following lemma.

Lemma 3.2. Assume γ > 0 and M is (ε,SV(γ))-differentially private mechanism for some class

F . Fix any z ∈ Z, f ∈ F , and any neighboring databases D1, D2 ∈ D s.t. f(D1) 6= f(D2). Let

T1
def
= T (D1, f, z), T2

def
= T (D2, f, z), and assume that |T1| ≥ |T2|. Then σ

def
= |T2\T1|/|T2| ≤ ε/γ.

4 SV-Consistent Sampling

Recall that we defined T (D, f, z)
def
= {r ∈ {0, 1}n | z = M(D, f ; r)} to be the set of all coins r

such that M outputs z when run on database D, query f and randomness r. Further recall that for

neighboring databases D1, D2, we let T1
def
= T (D1, f, z) and T2

def
= T (D2, f, z).

By Lemma 3.2 we know that in order to achieve (ε,SV(γ))-differential privacy we must have
|T2\T1|/|T2| = O(ε). This means that as ε → 0, it must be that |T2\T1|/|T2| → 0. This motivates
our definition of ε̃-consistent sampling. Later we will define ε in terms of ε̃ such that ε→ 0 as ε̃→ 0.
We remark that our definition of ε̃-consistent sampling is similar to the definition of [Man94,Hol07],
which has already been used in the context of differential privacy for different purposes [MMP+10].

Definition 4.1. We say M has ε̃-consistent sampling (ε̃-CS) if for all z ∈ Z, f ∈ F and neighboring

databases D1, D2 ∈ D where T1
def
= T (D1, f, z) and T2

def
= T (D2, f, z), provided T2 6= ∅, we have

|T1\T2|
|T2|

≤ ε̃.
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0 1

T1 T2

Figure 4.1: Example of how a SV(γ) ∈ SV(γ) distribution can increase the ratio
Pr

r←SV(γ)[r∈T1]

Pr
r←SV(γ)[r∈T2] .

We make a few remarks about Definition 4.1. First, notice that w.l.o.g. we can assume that
|T1| ≥ |T2| since in this case we have |T2\T1|

|T1|
≤ |T1\T2|

|T2|
. Second, notice that ε̃-consistent sampling

also guarantees that |T2\T1|
|T2|

≤ |T1\T2|
|T2|

≤ ε̃, which Lemma 3.2 tells us is a necessary condition for non-

trivial differential privacy under SV(γ). Finally, it is easy to see that if a mechanism has ε̃-consistent
sampling, then it is (ε̃,U)-differentially private, as

Prr←Un
[r ∈ T1]

Prr←Un
[r ∈ T2]

=
|T1|
|T2|

=
|T1 ∩ T2|
|T2|

+
|T1\T2|
|T2|

≤ 1 + ε̃.

To summarize, ε̃-consistent sampling is sufficient to achieve (ε̃,U)-differential privacy and is essen-
tially necessary to achieve (γε̃,SV(γ))-differential privacy. But is it sufficient to achieve (p(ε̃),SV(γ))-
differential privacy for some function p such that p(ε̃) → 0 as ε̃ → 0? This turns out not to be the
case, as it is still possible for a Santha-Vazirani distribution to increase the probability of T1\T2 while
simultaneously decreasing the probability of T2. For instance, consider the example in Figure 4.1,
where pictorially, we view each coin r ∈ {0, 1}∗ as defining a path down a binary tree. In this ex-
ample, T1\T2 and T2 are positioned precisely to the left and right of 1/2, respectively. After the first
coin, the SV-distribution can focus on either targeting T1\T2 or avoiding T2. If T1 and T2 only contain
a small fraction of the leaves of this tree, then the SV distribution can greatly increase the ratio of
probabilities Pr

r←SV(γ)[r ∈ T1\T2]/ Pr
r←SV(γ)[r ∈ T2]. This suggests that in order to handle γ-Santha

Vazirani distributions, we need to make more restrictions on the mechanism.

New Observations. We make two observations that will help us guarantee that the example de-
scribed in Figure 4.1 does not arise, but we first define some notation. For m ∈ Z

+ and a bit sequence

x = x1, . . . , xm ∈ {0, 1}m, we define suffix(x)
def
= {y = y1, y2, . . . ∈ {0, 1}∗ | xi = yi for all i ∈ [m]}

to be the set of all bit strings that have x as a prefix. For n ∈ Z
+ such that m ≤ n, we define

suffix(x, n)
def
= suffix(x) ∩ {0, 1}n.

Our first observation is that if we consider the longest prefix u of all elements in T1 ∪ T2, then the
ratio Pr

r←SV(γ)[r ∈ T1\T2]/ Pr
r←SV(γ)[r ∈ T2] is the same as when the probabilities are conditioned

on r having this prefix. This is because in order for r ∈ T1\T2 or r ∈ T2, it must be the case that
r ∈ suffix(u, n).

Our second observation is that we want to ensure that suffix(u, n) is a good approximation of
T1 ∪ T2, that is, that |suffix(u, n)| ≈ |T1 ∪ T2|. This guarantees that we never encounter the problem
that arose in the example in Figure 4.1. For this to be the case, however, we must first ensure that
T1 ∪ T2 are “close together”. We therefore make the following definition.

Definition 4.2. We say M is an interval mechanism if for all queries f ∈ F , databases D ∈ D,

and possible outcomes z ∈ Z, the values in T
def
= T (D, f, z) constitute an interval, that is, T 6= ∅ and

the set {int(r) | r ∈ T} contains consecutive integers, where for r = r1 . . . rn ∈ {0, 1}n, we define

int(r)
def
=
∑n

i=1 ri · 2n−i.
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We now formalize the requirement we described above. Let D1, D2 be two neighboring databases,

let f ∈ F , let z be a possible outcome, let n
def
= max(n(D1, f, z), n(D2, f, z)), and let T1

def
= T (D1, f, z)

and T2
def
= T (D2, f, z). We let u be the longest prefix such that T1 ∪ T2 ⊆ suffix(u, n). Formally,

u
def
= argmax{|u′| | u′ ∈ {0, 1}≤n and T1 ∪ T2 ⊆ suffix(u′, n)}

Definition 4.3. Let ε̃ > 0, c > 1. We say that an interval mechanism M has (ε̃, c)-SV-consistent
sampling ((ε̃, c)-SVCS) if it has ε̃-consistent sampling and for all queries f ∈ F , all neighboring

databases D1, D2 ∈ D and all possible outcomes z ∈ Z, which define T1, T2,u as above, we have:

|suffix(u, n)|
|T1 ∪ T2|

≤ c

We now show that (ε̃, c)-SV-consistent sampling is sufficient to obtain (ε,SV(γ))-differential privacy
for an interesting value of ε, that is, for an ε that can be made arbitrarily small by decreasing ε̃.

Theorem 4.4. If M has (ε̃, c)-SV-consistent sampling, then M is (ε,SV(γ))-differentially private,

where

ε = 2 · (8ε̃)1+log(1/(1+γ))

(
1 + γ

1− γ

)log(8c)

In particular, for γ ∈ [0, 1) and c = O(1), we have ε→ 0 as ε̃→ 0.

Before proving Theorem 4.4, we make a few additional definitions and prove a lemma. Let D1, D2

be two neighboring databases, f ∈ F , z be a possible outcome, n = max(n(D1, f, z), n(D2, f, z)), and
T1 = T (D1, f, z) and T2 = T (D2, f, z).

• Define v to be the longest prefix such that T1\T2 ⊆ suffix(v, n). Formally,

v = argmax{|v′| | v ∈ {0, 1}≤n and T1\T2 ⊆ suffix(v′, n)}

• Define I0
def
= suffix(v0, n) ∩ T1\T2 and I1

def
= suffix(v1, n) ∩ T1\T2. That is, I0 ∪ I1 = T1\T2

and Ib contains all coins in T1\T2 that have vb as prefix.

– Define v0 to be the longest prefix such that I0 ⊆ suffix(v0, n). Formally,

v0 = argmax{|v′0| | v0 ∈ {0, 1}≤n and I0 ⊆ suffix(v′0, n)}

– Define v1 to be the longest prefix such that I1 ⊆ suffix(v1, n). Formally,

v1 = argmax{|v′1| | v1 ∈ {0, 1}≤n and I1 ⊆ suffix(v′1, n)}

• Define w to be a shortest prefix such that suffix(w, n) ⊆ T2. Formally,

w = argmin{|w′| | w′ ∈ {0, 1}≤n and suffix(w′, n) ⊆ T2}

We remark that w may not be unique. In this case, any of the (at most two) possible values is
just as good since we will be concerned with the value |w| which is the same across all possible
values of w.

See Figure 4.2 for a pictorial representation of u,v,w. Note the asymmetry of the definitions of
u,v, and w. Also note that we define v and w in such a way that suffix(v) ∩ suffix(w) = ∅.
Informally, max(|v0|, |v1|)− |w| is roughly the number of coins that the Santha-Vazirani distribution
needs to use to increase the probability of landing in T1\T2 without affecting the probability of landing
in T2, while |w|−|u| is roughly the number of coins that it can use to decrease the probability of landing
in T2 without affecting the probability of landing in T1\T2. We first prove a lemma that says that if
M has (ε̃, c)-SV-consistent sampling then max(|v0|, |v1|)−|w| = Ω(log(1/ε̃)) and |w|− |u| = O(log c).
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︸ ︷︷ ︸

T1

︸ ︷︷ ︸

T2

u

v

w

|w| − |u|

|v| − |w|

Figure 4.2: Definitions of u,v,w.

Lemma 4.5. If M has (ε̃, c)-SV-consistent sampling then for all neighboring databases D1, D2 ∈ D
which define u,v0,v1,w as above, we have:

min(|v0|, |v1|)− |w| ≥ log

(
1

8ε̃

)
and |w| − |u| ≤ log(8c)

Proof. By (ε̃, c)-SV-consistent sampling we know that

|T1\T2|
|T2|

≤ ε̃ and
|suffix(u, n)|
|T1 ∪ T2|

≤ c

We therefore have,

|suffix(v0, n)| /2 + |suffix(v1, n)| /2 ≤ |I0|+ |I1| = |T1\T2| ≤ ε̃ · |T2| ≤ 4ε̃ · |suffix(w, n)|

n−min(|v0|, |v1|) ≤ log(8ε̃) + n− |w|
Reorganizing yields the first inequality. We also have,

|suffix(u, n)| ≤ c · |T1 ∪ T2| ≤ c · (|T1\T2|+ |T2|) ≤ (1 + ε̃) · c · |T2| ≤ 2c · |T2| ≤ 8c · |suffix(w, n)|

n− |u| ≤ log(8c) + n− |w|
Reorganizing yields the second inequality.

We now prove Theorem 4.4.

Proof of Theorem 4.4: Fix z ∈ Z, f ∈ F , and neighboring databases D1, D2 ∈ D. Let
n = max(n(D1, f, z), n(D2, f, z)), T1 = T (D1, f, z) and T2 = T (D2, f, z). Also fix a γ-Santha-Vazirani
distribution SV(γ) ∈ SV(γ). Then,

Pr
r←SV(γ,n)[r ∈ T1]

Pr
r←SV(γ,n)[r ∈ T2]

= 1 +
Pr

r←SV(γ,n)[r ∈ T1\T2]

Pr
r←SV(γ,n)[r ∈ T2]

So we need only prove that
Pr

r←SV(γ,n)[r ∈ T1\T2]

Pr
r←SV(γ,n)[r ∈ T2]

≤ ε
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By the total probability theorem,

Pr
r←SV(γ,n)[r ∈ T1\T2]

Pr
r←SV(γ,n)[r ∈ T2]

=
Pr

r←SV(γ,n)[r ∈ T1\T2 | r ∈ suffix(u)]

Pr
r←SV(γ,n)[r ∈ T2 | r ∈ suffix(u)]

By our definition of v and w, we have

Pr
r←SV(γ,n)[r ∈ T1\T2 | r ∈ suffix(u)]

Pr
r←SV(γ,n)[r ∈ T2 | r ∈ suffix(u)]

≤
Pr

r←SV(γ,n)[r ∈ suffix(v) | r ∈ suffix(u)]

Pr
r←SV(γ,n)[r ∈ suffix(w) | r ∈ suffix(u)]

Assume, without loss of generality, that |v0| ≤ |v1|. By the definition of a Santha-Vazirani source
and the fact that we are conditioning on r ∈ suffix(u),

Pr
r←SV(γ,n)[r ∈ suffix(v) | r ∈ suffix(u)]

Pr
r←SV(γ,n)[r ∈ suffix(w) | r ∈ suffix(u)]

≤
(

1
2 (1 + γ)

)|v0|−|u| +
(

1
2 (1 + γ)

)|v1|−|u|

(
1
2 (1− γ)

)|w|−|u|

≤
(

1
2 (1 + γ)

)|v0|−|u|
(
1 +

(
1
2 (1 + γ)

)|v1|−|v0|
)

(
1
2 (1− γ)

)|w|−|u|

≤ 2 ·
(

1
2 (1 + γ)

)|v0|−|u|

(
1
2 (1− γ)

)|w|−|u|

= 2 ·
(

1

2
(1 + γ)

)|v0|−|w|(1 + γ

1− γ

)|w|−|u|

= 2 ·
((

1

2

)|v0|−|w|
)1−log(1+γ)(

1 + γ

1− γ

)|w|−|u|

≤ 2 · (8ε̃)1+log(1/(1+γ))

(
1 + γ

1− γ

)log(8c)

where we used Lemma 4.5 in the second inequality.

5 Accurate and Private SVCS Mechanisms for Bounded Sensitivity

Functions

In this section we show a mechanism, which we denote M
SVCS

eε , that achieves (ε̃, O(1))-SVCS for Fd –
the class of functions with bounded sensitivity d ∈ Z

+. By Theorem 4.4 this gives us a (ε,SV(γ))-
differentially private mechanism, where ε→ 0 as ε̃→ 0. Furthermore, by our observation in Section 4,
the mechanism is also (ε̃,U)-differentially private. We highlight that for convenience, we parametrize

the mechanism M
SVCS

eε with the privacy parameter ε̃ w.r.t. U , and state the privacy and utility
guarantees w.r.t. SV(γ) as a function of ε̃ (see Lemma 5.1 and Lemma 5.2). For clarity, we focus on
the case d = 1.

We start with the (ε̃,U)-differentially private mechanism of Dwork et.al. [DMNS06], MRLap
eε (D, f) =

f(D) + RLap0,1/eε. Note that since MRLap
eε is additive-noise, then any finite-precision implementation

will also be additive-noise, and by Lemma 3.1 we know it cannot be accurate and private for F1

w.r.t. SV(γ). This is because the set of random coins that make the mechanism output z ∈ Z on
two neighboring databases is disjoint. We will therefore need to make several changes to ensure not

14



only that these sets overlap, but that their intersection is large, thus ensuring ε̃-consistent sampling.
Moreover, we must carefully implement our mechanism with finite precision so that the resulting
mechanism is (ε̃, O(1))-SV-consistent, ensuring that pathological cases, such as the one in Figure 4.1,
do not occur. Finally, in performing all these changes we must also keep in mind that we want a
good bound on utility. We first describe a new infinite-precision mechanism, which we call MSVCS

eε ,
and then show how to implement it with finite precision to ensure (ε̃, O(1))-SV-consistency. The final

mechanism M
SVCS

eε is shown in Figure 5.1.

A New Infinite-Precision Mechanism. Recall that MRLap
eε (D, f) = f(D) + RLap0,1/eε = ⌊f(D) +

Lap0,1/eε⌉. For our new mechanism, which we call MSVCS
eε , we choose to perform the rounding step

differently. MSVCS
eε (D, f) computes f(D) + Lap0,1/eε as before but then rounds the final outcome to

the nearest multiple of 1/ε̃. Recall that w.l.o.g. we can assume that 1/ε̃ ∈ Z since otherwise we can

choose a smaller ε̃ so that this is indeed the case. Formally, MSVCS
eε (D, f) computes y

def
= f(D) and

outputs z ← 1/ε̃ · ⌊ε̃ · (y + Lap0,1/eε)⌉. We let Zy denote the induced distribution of the outcome z. We

remark that MSVCS
eε is not additive-noise, since the rounding ensures that the “noise” introduced is

dependent on y = f(D). Further, the output distribution is only defined on multiples of 1/ε̃, i.e. for
k/ε̃ where k ∈ Z.

Consistent Sampling. We now give some intuition as to why this mechanism already satisfies ε̃-
consistent sampling. Since we are considering only queries in F1, for any two neighboring databases
D1, D2, we can assume w.l.o.g. that f(D1) = y and f(D2) = y − 1. Then for k ∈ Z,

Pr[MSVCS
eε (f, D1) = k/ε̃]

Pr[MSVCS
eε (f, D2) = k/ε̃]

=
Pr
[

k−1/2
eε ≤ y + Lap0,1/eε < k+1/2

eε

]

Pr
[

k−1/2
eε ≤ y − 1 + Lap0,1/eε < k+1/2

eε

]

=
Pr
[

k−1/2
eε ≤ Lapy,1/eε < k+1/2

eε

]

Pr
[

k−1/2
eε + 1 ≤ Lapy,1/eε < k+1/2

eε + 1
]

Notice that both the intervals defined in the numerator and denominator have size 1/ε̃, and that the
interval in the denominator is simply the interval in the numerator, shifted by 1. Therefore, their
intersection is roughly a 1− ε̃ fraction of their size, which is precisely what is required by ε̃-consistent
sampling. Of course, we now need to implement this ε̃-consistent mechanism with finite precision, so
as to achieve the stronger form of (ε̃, O(1))-SV-consistency. For that, we will use arithmetic coding

and some specific properties of the Laplace distribution.

From Infinite to Finite Precision via Arithmetic Coding. In what follows, we use the following
notation: for a sequence r = r1, r2, . . . ∈ {0, 1}∗, we define its real representation to be the real number

real(r)
def
= 0.r1r2r3 . . . ∈ [0, 1]. Arithmetic coding gives us a way to approximate any distribution X

on Z from a bit string r ∈ {0, 1}∗, as follows. Let CDFX be the cumulative distribution of X, so that

X(x) = CDFX(x)−CDFX(x−1). Let s(x)
def
= CDFX(x). Then the set of points {s(x)}x∈Z partitions the

interval [0, 1] into infinitely many intervals {IX(x)
def
= [s(x− 1), s(x))}x∈Z, where X(x) = |IX(x)|. Note

that if a value x ∈ Z has zero probability, then we can simply ignore it as its corresponding interval
will be empty. We can obtain distribution X from U by sampling a sequence of bits r = r1, r2, r3, . . .
and outputting the unique x ∈ Z such that real(r) ∈ IX(x). Note that arithmetic coding has the
very nice property that intervals IX(x) and IX(x + 1) are always consecutive for any x ∈ Z.

Since for some x ∈ Z we can have that s(x) has an infinite binary decimal representation, there is
no a priori bound on the number of coins to decide whether real(r) ∈ IX(x) or real(r) ∈ IX(x + 1).
To avoid this, we simply round each endpoint s(x) to its most n = n(x) significant figures, for some
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n = n(x) > 1 which potentially depends on x. We will need to make sure that n(x) is legal, in the
sense that rounding with respect to n(x) should not cause intervals to “disappear” or for consecutive
intervals to “overlap”. We use a bar to denote rounded values: s(x) for the rounded endpoint, and

I
X
(x) for the rounded interval [s(x− 1), s(x)).

A New Finite Precision Mechanism. We now show how to sample Zy, the output distribution
of MSVCS

eε (D, f) using arithmetic coding. This yields a new finite precision mechanism, which we call

M
SVCS

eε , and let Zy be its output distribution which will approximate Zy. The distribution Zy is the

Laplacian distribution Lapy,1/eε where for all k ∈ Z, the probability mass in the interval
[

k−1/2
eε , k+1/2

eε

)

collapses to the point k/ε̃. Let sy(k)
def
= CDFZy

(
k+1/2

eε

)
, and let sy(k) be sy(k), rounded to its

n = n(y, k) most significant figures. Then the set of points {sy(k)}k∈Z partition the interval [0, 1]

into infinitely many intervals {Iy(k)
def
= [sy(k − 1), sy(k))}k∈Z, where Pr[Zy = k/ε̃] = |Iy(k)|. We

obtain distribution Zy from U by sampling a sequence of bits r ∈ {0, 1}∗ and outputting k/ε̃ where
k ∈ Z is the unique integer such that real(r) ∈ Iy(k). We have not yet defined what the precision

n = n(y, k) is; we will do this below, but first we give some intuition as to why M
SVCS

eε will satisfy
(ε̃, O(1))-SV-consistent sampling for some “good-enough” precision.

SV-Consistent Sampling. Recall that since we assume f ∈ F1, for any two neighboring databases
D1, D2 we can assume that f(D1) = y and f(D2) = y − 1, so that for any k ∈ Z

Pr[M
SVCS

eε (f, D1) = k/ε̃]

Pr[M
SVCS

eε (f, D2) = k/ε̃]
=

Pr[Zy = k/ε̃]

Pr[Zy−1 = k/ε̃]
=
|Iy(k)|
|Iy−1(k)|

We thus wish to prove that the mechanism has (ε̃, c)-SV-consistent sampling where T1 = Iy(k) ≈
Iy(k) and T2 = Iy−1(k) ≈ Iy−1(k) in Definition 4.3. For now, let us assume that we use arithmetic
coding with infinite precision, that is, we do not round the endpoints. We will give intuition as to why
our mechanism satisfies an “infinite-precision analogue” of SV-consistent sampling. We can define u

to be the longest prefix of all coins in I
def
= Iy(k)∪Iy−1(k), and let uℓ

def
= u, 0, 0, . . . and ur

def
= u, 1, 1, . . ..

Informally, u is the longest prefix such that uℓ is to the left of I and ur is to the right of I. Then an
“infinite-precision analogue” of (·, O(1))-SV-consistent sampling is the following:

real(ur)− real(uℓ)

|Iy(k) ∪ Iy−1(k)| = O(1) (5.1)

By construction, we have real(ur) − real(uℓ) ≈ 2−|u|. Furthermore, our rounding ensures that
Iy(k)∩Iy−1(k) 6= ∅; indeed, we can view Iy−1(k) as having “shifted” Iy(k) slightly to the right. We can
therefore view I = Iy(k) ∪ Iy−1(k) as one single interval that is slightly bigger. Moreover, arithmetic
coding and our use of the Laplacian distribution ensures that smaller intervals are farther from the
center than bigger ones, and in fact, the size of the interval that contains I and everything to its right
(or left, depending on whether I is to the right or left of 1/2, respectively) is a constant factor of
|I|. This means that |Iy(k) ∪ Iy−1(k)| = |I| = c · 2−|u| for a constant c, and we thus obtain the ratio
required in Equation (5.1).

Defining the Precision. Now we just need to round all the points sy(k) with enough precision so
that the rounding is “legal” (i.e., preserves the relative sizes of all intervals Iy(k) and Iy(k)\Iy−1(k) to
within a constant factor), so that our informal analysis of SV-consistency above still holds after the

rounding. Formally, we let I ′y(k)
def
= Iy(k)\Iy−1(k), be the interval containing the coins that will make

the mechanism output k/ε̃ when it is run on D1 but output (k − 1)/ε̃ when run on D2. We then let

n(y, k) = n(D, f, z)
def
= log

(
1

|I ′y(k)|

)
+ 3
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and round sy(k) to its max(n(y+1, k+1), n(y, k+1)) most significant figures. The resulting mechanism

M
SVCS

eε in shown in Figure 5.1.

We can now state our main results about SV-consistency and SV-privacy of our mechanism:

Lemma 5.1. Mechanism M
SVCS

eε has (27ε̃, 57)-SV-consistent sampling. In particular, M
SVCS

eε is

(27ε̃,U)-differentially private and (ε,SV(γ))-differentially private for ε = 2·(216ε̃)1+log(1/(1+γ))
(

1+γ
1−γ

)9
.

Utility. We have showed that our mechanism M
SVCS

eε achieves (ε̃, O(1))-SV-consistent sampling and
thus (ε,SV(γ))-differential privacy, where ε→ 0 as ε̃→ 0. We now argue that the mechanism also has
non-trivial utility. It is easy to see that when the randomness source is uniform, rounding to the nearest
multiple of 1/ε̃ only affects utility by an additive factor of 1/ε̃, thus maintaining (O(1/ε̃),U)-utility.

This is comparable to the utility of the mechanism M
RLap

ε of [DMNS06]; see Lemma 2.11.
To analyze utility w.r.t. SV(γ), we first bound the probability that a coin sampled from a γ-

Santha-Vazirani distribution r← SV(γ), lands in the interval Iy(k), since this is the probability that

M
SVCS

eε outputs k/ε̃ when the real answer is y = f(D). We consider the longest common prefix a of
all coins in Iy(k) and upper bound the probability of landing in Iy(k) by the probability that r has

a as prefix. We can then upper bound this probability by
(

1+γ
2

)log

„
1

|Iy(k)|

«

. This allows us to prove,

by multiplying by |k/ε̃− y| and summing over all k ∈ Z, that any γ-Santha-Vazirani distribution can
worsen utility by at most an (asymptotic) factor of 1

1−γ .

Lemma 5.2. Mechanism M
SVCS

eε has (O(1/ε̃),U)-utility and (ρ,SV(γ))-utility, where ρ = O
(

1
eε · 1

1−γ

)
.

Finally, combining Lemma 5.1 and Lemma 5.2 yields our main theorem.

Theorem 5.3. For all γ < 1, MSVCS
= {MSVCS

eε } is a class of accurate and private mechanisms for

F1 w.r.t. SV(γ).

M
SVCS

eε (D, f ; r): Compute y
def
= f(D) and output a sample from the distribution Zy

def
= 1/ε̃ · ⌊ε̃ · Lapy,1/eε⌉

by using arithmetic coding as explained below.

• Let n(y, k) = n(D, f, z)
def
= log

(
1

|I′

y
(k)|

)
+ 3 and let r′y,k be the n(y, k) most significant figures of r.

• Output the the unique z = k/ε̃ such that k−1/2
eε ≤ real(r′y,k) < k+1/2

eε .

Figure 5.1: Finite precision mechanism M
SVCS

eε that has (27ε̃, 57)-SV-consistent sampling.
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A Proofs

A.1 Proof of Lemma 5.1

In Section 5, we gave some intuition to argue that the infinite precision mechanism MSVCS
eε has ε̃-

consistent sampling. Here we will prove formally that this is indeed the case (modulo a constant

factor). Recall that we define sy(k)
def
= CDFZy

(
k+1/2

eε

)
and Iy(k)

def
= [sy(k − 1), sy(k)). Further recall

that I ′y(k)
def
= Iy(k)\Iy−1(k) = [sy(k − 1), sy−1(k − 1)).

Lemma A.1. For all y, k ∈ Z,
|I ′y(k)|
|Iy−1(k)| ≤ 6ε̃.

Proof. We must consider four cases:

1. If 1
2 ≤ sy(k − 1) < sy−1(k − 1) < sy−1(k − 1), then

|I′y(k)|

|Iy−1(k)| =
eeε+1−e

e−1 .

2. If sy(k − 1) < 1
2 ≤ sy−1(k − 1) < sy−1(k − 1), then

|I′y(k)|

|Iy−1(k)| ≤
2(eeε+1−e)

e−1 .

3. If sy(k − 1) < sy−1(k − 1) < 1
2 ≤ sy−1(k − 1), then

|I′y(k)|

|Iy−1(k)| ≤ 1−e−eε

2(e−1) .

4. If sy(k − 1) < sy−1(k − 1) < sy−1(k − 1) < 1
2 , then

|I′y(k)|

|Iy−1(k)| =
1−e−eε

e−1 .

For ε̃ ∈ (0, 1), we have

1− e−eε

2(e− 1)
<

1− e−eε

e− 1
<

eeε+1 − e

e− 1
<

2(eeε+1 − e)

e− 1
< 6ε̃

.
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We now prove that the finite-precision mechanism M
SVCS

eε has O(ε̃)-consistent sampling, as defined
in Definition 4.1. Recall that we round the endpoints of sy(k− 1) and sy−1(k− 1) of the interval I ′y(k)

to its n
def
= max(n(y, k), n(y− 1, k)) most significant figures, where n(y, k)

def
= log

(
1

|I′y(k)|

)
+ 1. Further

recall that for O(ε̃)-consistent sampling, we wish to prove that the number of n-bit strings in I ′y(k)
is an O(ε̃) fraction of the number of coins in Iy−1(k). We thus define the following notation. For an

interval I = [a, b) ⊂ [0, 1], we let str(I, n)
def
= {r ∈ {0, 1}n | real(r) ∈ I} be the set of all n-bit strings

whose real representation lies in I. As an intermediate step towards proving O(ε̃)-consistent sampling,
we show that T1\T2 = str(I ′y(k), n) has constant size, and T2 = str(Iy−1(k), n) has size Ω(1/ε̃).

We begin by showing that rounding the endpoints as described, does not alter the size of the
intervals I ′y(k) or Iy−1(k) by much.

Lemma A.2. For all y, k ∈ Z and n = max(n(y, k), n(y − 1, k)), we have

|I ′y(k)| − 2−n ≤ |I ′y(k)| ≤ |I ′y(k)|+ 2−n

|Iy−1(k)| − 2−n ≤ |Iy−1(k)| ≤ |Iy−1(k)|+ 2−n

Proof. Since each endpoint changes by at most 2−n/2, then rounding changes the size of the interval
by at most 2−n.

Let n = max(n(y, k), n(y − 1, k)). The following lemma says that the number of n-bit strings
inside I ′y(k) is constant, while the number of n-bit strings inside Iy−1(k) is at least a constant factor
of 1/ε̃. Since for consistent sampling we’re interesting in rounding the ratio between the number of
n-bit strings in I ′y(k) and Iy−1(k), this will yield O(ε̃)-consistent sampling.

Lemma A.3. For all y, k ∈ Z and n = max(n(y, k), n(y − 1, k)), we have,

|str(I ′y(k), n)| ≤ 9 and |str(Iy−1(k), n)| ≥ 1

3ε̃

Proof. We can see |I ′y(k)| as the probability of sampling a sequence r from Un such that r ∈
str(I ′y(k), n). Therefore,

|I ′y(k)| =
∑

r∈str(I′y(k),n)

(
1

2

)n

= |str(I ′y(k), n)| · 2−n

and by Lemma A.2,

|str(I ′y(k), n)| = 2n · |I ′y(k)| ≤ 2n(y,k)(|I ′y(k)|+ 2−n(y,k)) ≤ 2
log

„
1

|I′y(k)|

«
+3
|I ′y(k)|+ 1 = 9

Similarly,

|Iy−1(k)| =
∑

r∈str(Iy−1(k),n)

(
1

2

)n

= |str(Iy−1(k), n)| · 2−n

and by Lemma A.2 and Lemma A.1,

|str(Iy−1(k), n)| = 2n · |Iy−1(k)| ≥ 2n(|Iy−1(k)| − 2−n) = 8 · |Iy−1(k)|
|I ′y(k)| − 1 ≥ 8

6ε̃
− 1 =

1

3ε̃
.
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Corollary A.4. For all y, k ∈ Z and n = max(n(y, k), n(y − 1, k)), we have

|str(I ′y(k), n)|
|str(Iy−1(k), n)|

≤ 27ε̃

In particular, M
SVCS

eε has 27ε̃-consistent sampling.

Corollary A.4 shows that M
SVCS

eε has 27ε̃-consistent sampling. We now show that in fact, it has
(27ε̃, c)-SV-consistent sampling for c = O(1).

Proof of Lemma 5.1: By Lemma A.3, we know that |T1 ∪ T2| ≥ |T2| = |str(Iy−1(k), n)| ≥ 1/3ε̃.
It thus suffices to prove that |suffix(u, n)| = O(1/ε̃), where u is the longest common prefix of all

strings in I
def
= Iy(k) ∪ Iy−1(k). Let u be the longest common prefix of all strings in I

def
= Iy(k) ∪

Iy−1(k). By rounding we must have that |suffix(u, n)| ≤ |suffix(u, n)|+2. Moreover, we can bound
|suffix(u, n)| by bounding the number of n-bit strings to the left or right of I (depending on where
Iy(k) and Iy−1(k) are located in the interval [0, 1]).

Recall that I ′y(k) = [sy(k − 1), sy−1(k − 1)) and Iy−1(k) = [sy−1(k − 1), sy−1(k − 1)). We first
calculate the size of the interval [sy(k), 1] (resp. [0, sy−1(k)]), that is, the interval taking all values to
the left (resp. to the right) and including I. This will give us a good approximation of the size of
[sy(k), 1] (resp. [0, sy−1(k)]). From this we can calculate how many n-bit strings there are to left or
right of I. We have to consider four cases:

1. If 1
2 ≤ sy(k − 1) < sy−1(k − 1) < sy−1(k − 1), then in this case, |I ′y(k)| = |I ′y+1(k)| · (1/eeε).

2. If sy(k − 1) < 1
2 ≤ sy−1(k − 1) < sy−1(k − 1), then in this case, |I ′y(k)| ≥ |I ′y+1(k)| · (1/(2eeε)).

3. If sy(k − 1) < sy−1(k − 1) < 1
2 ≤ sy−1(k − 1), then in this case, |I ′y+1(k)| ≥ |I ′y(k)| · (1/(2eeε)).

4. If sy(k − 1) < sy−1(k − 1) < sy−1(k − 1) < 1
2 , then in this case, |I ′y+1(k)| = |I ′y(k)| · (1/eeε).

In all cases, I ′y(k) and I ′y+1(k) are consecutive intervals and I ′y+1(k) is located to the left of I ′y(k).
We only analyze case 2; the other cases are analogous and yield the same bound.

Let J
def
= [sy(k), 1]. Then,

|J | =
y∑

j=−∞

|I ′j(k)| ≤
y∑

j=−∞

|I ′y(k)|(e−eε/2)y−j = |I ′y(k)|
∞∑

j=0

(e−eε/2)j =
|I ′y(k)|

1− e−eε/2
≤

2 · |I ′y(k)|
ε̃

Since we round one endpoint, this means that for J = [sy(k), 1],

|J | ≤
2 · |I ′y(k)|

ε̃
+

2−n(y,k)

2
= |I ′y(k)|

(
2

ε̃
+

1

16

)

At the same time, |J | is the probability of sampling a sequence r from Un such that r ∈ str(J, n).
Therefore,

|J | =
∑

r∈str(J,n)

(
1

2

)n

= |str(J, n)| · 2−n

Thus,

|str(J, n)| = 2n · |J | ≤ 2n(y,k)|I ′y(k)|
(

2

ε̃
+

1

16

)
=

16

ε̃
+

1

2
≤ 17

ε̃
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We can therefore conclude that

|suffix(u, n)| ≤ |suffix(u, n)|+ 2 ≤ |str(J, n)|+ 2 ≤ 17

ε̃
+ 2 ≤ 19

ε̃

Finally, since we know that |T1 ∪ T2| ≥ |T2| = |str(Iy−1(k), n)| ≥ 1/3ε̃, we conclude that

|suffix(u, n)|
|T1 ∪ T2|

≤ 57

A.2 Proof of Lemma 5.2

Proof of Lemma 5.2: For any SV(γ) ∈ SV(γ), we want to bound E
r←SV(γ)[|f(D) −M

SVCS

eε |]. Let
y = f(D), then:

E
r←SV(γ)

[∣∣∣MSVCS

eε (D, f ; r)− y
∣∣∣
]

=
∞∑

k=−∞

Pr
r←SV(γ)

[
M

SVCS

eε (D, f ; r) = k/ε̃
]
· |k/ε̃− y|

We upper bound Pr
[
M

SVCS

eε (D, f) = k/ε̃
]
. Under the uniform distribution, this probability is exactly

Iy(k). For SV(γ) ∈ SV(γ) we can upper bound this probability as follows. Let a be the longest common

prefix of all strings in str(Iy(k), n), let I0
def
= suffix(a0, n)∩ str(Iy(k), n) and I1

def
= suffix(a1, n)∩

str(Iy(k), n). That is, I0 ∪ I1 = str(Iy(k), n) and Ib contains all strings in str(Iy(k), n) with prefix
ab. Then,

Pr
r←SV(γ)

[
M

SVCS

eε (D, f ; r) = k/ε̃
]
≤
(

1 + γ

2

)|a0|

+

(
1 + γ

2

)|a1|

≤ 2 ·
(

1 + γ

2

)log

„
1

|Iy(k)|

«

We know |Iy(k)| ≤ 9/8 · |Iy(k)| by Lemma A.2. Furthermore, |Iy(k)| = (1/2)e−1/2(e − 1)e−|k−eεy|, so

that log
(

1
|Iy(k)|

)
≥ |k − ε̃y|.

Moreover, w.l.o.g. we can assume that 0 ≤ y ≤ 1/ε̃ since translation by 1/ε̃ does not affect our
result. Then,

∞∑

k=−∞

Pr
r←SV(γ)

[
M

SVCS

eε (D, f ; r) = k/ε̃
]
· |k/ε̃− y|

≤ 2

ε̃
·
∞∑

k=1

(
1 + γ

2

)|k−eεy|
|k − ε̃y|+ 2

ε̃
·

0∑

k=−∞

(
1 + γ

2

)|k−eεy|
|k − ε̃y|

≤ 2

ε̃
·
∞∑

k=1

(
1 + γ

2

)k−1

k +
2

ε̃
·

0∑

k=−∞

(
1 + γ

2

)−k

(−k + 1)

=
4

ε̃
·
∞∑

k=1

(
1 + γ

2

)k−1

k =
4

ε̃
· 1

1−
(

1+γ
2

)2 = O

(
1

ε̃
· 1

1− γ

)
.
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