
On the Se
urity of Joint Signature and En
ryptionJee Hea An� Yevgeniy Dodisy Tal RabinzJune 17, 2002Abstra
tWe formally study the notion of a joint signature and en
ryption in the publi
-key setting. Werefer to this primitive as sign
ryption, adapting the terminology of [36℄. We present two de�nitionsfor the se
urity of sign
ryption depending on whether the adversary is an outsider or a legal userof the system. We then examine generi
 sequential
omposition methods of building sign
ryptionfrom a signature and an en
ryption s
heme. In parti
ular, we show that the
lassi
al \en
rypt-then-sign" (EtS) and \sign-then-en
rypt" (StE) methods | when modeled \properly" | are both se
ure
omposition methods in the publi
-key setting.We also present a new
omposition method whi
h we
all \
ommit-then-en
rypt-and-sign" (CtE&S).Unlike the generi
 sequential
omposition methods, CtE&S applies the expensive signature and en-
ryption operations in parallel, whi
h
ould imply a gain in eÆ
ien
y over the StE and EtS s
hemes.We also show that the new CtE&S method elegantly
ombines with the re
ent \hash-sign-swit
h"te
hnique of [31℄, leading to eÆ
ient on-line/o�-line sign
ryption.Finally and of independent interest, we dis
uss the de�nitional inadequa
y of the standard notionof
hosen
iphertext (CCA2) se
urity. We suggest a natural and very slight relaxation of CCA2-se
urity, whi
h we
all generalized CCA2-se
urity (gCCA2). We show that gCCA2-se
urity suÆ
es forall known uses of CCA2-se
ure en
ryption, while no longer su�ering from the de�nitional short
omingsof the latter.

�SoftMax In
., San Diego, USA. (Work done while at UCSD). Email: jeehea�
s.u
sd.eduyDepartment of Computer S
ien
e, New York University, 251 Mer
er Street, New York, NY 10012, USA. Email:dodis�
s.nyu.eduzIBM T.J. Watson Resear
h Center, P.O. Box 704, Yorktown Heights, New York 10598, USA. Email:talr�watson.ibm.
om.

1 Introdu
tionSign
ryption. En
ryption and signature s
hemes are fundamental
ryptographi
 tools for providingpriva
y and authenti
ity, respe
tively, in the publi
-key setting. Until very re
ently, they have beenviewed as important but distin
t basi
 building blo
ks of various
ryptographi
 systems, and have beendesigned and analyzed separately. The separation between the two operations
an be seen as a naturalone as en
ryption is aimed at providing priva
y while signatures are used to enable authenti
ation,and these are two fundamentally di�erent se
urity goals. Yet
learly, there are many settings whereboth are needed, perhaps the most basi
 one is in se
ure e-mailing, where ea
h message should beauthenti
ated and en
rypted. A straightforward solution to o�ering simultaneously both priva
y andauthenti
ity might be to
ompose the known solutions of ea
h of the two
omponents. But given that the
ombination of the two se
urity goals is su
h a
ommon and, in fa
t, basi
 task, it stands to reason thata tailored solution for the
ombination should be given. Indeed, a
ryptographi
 tool providing bothauthenti
ity and priva
y has usually been
alled an authenti
ated en
ryption, but was mainly studied inthe symmetri
 setting [6, 5, 23℄. This paper will
on
entrate on the
orresponding study in the publi
key setting, and will use the term sign
ryption to refer to a \joint signature and en
ryption". We remarkthat this term was originally introdu
ed and studied by Zheng [36℄ with the primary goal of rea
hinggreater eÆ
ien
y than when
arrying out the signature and en
ryption operations separately. As we willargue shortly, eÆ
ien
y is only one (albeit important)
on
ern when designing a se
ure joint signatureand en
ryption. Therefore, we will use the term \sign
ryption" for any s
heme a
hieving both priva
yand authenti
ity in the publi
 key setting, irrespe
tive of its performan
e, as long as it satis�es a formalde�nition of se
urity we develop in this paper. Indeed, despite presenting some se
urity arguments,most of the initial work on sign
ryption [36, 37, 27, 20℄ la
ked formal de�nitions and analysis. Thispaper will provide su
h a formal treatment, as well as give new general
onstru
tions of sign
ryption.Sign
ryption as a primitive? Before devoting time to the de�nition and design of (additional)sign
ryption s
hemes one must ask if there is a need for de�ning sign
ryption as a separate primitive.Indeed, maybe one should forgo this notion and always use a simple
omposition of a signature anden
ryption? Though we show in the following that these
ompositions, in many instan
es, yield thedesired properties, we still
laim that a separate notion of sign
ryption is extremely useful. This is dueto several reasons. First, under
ertain de�nitions of se
urity (i.e., so
alled CCA2-se
urity as explainedin Se
tion 8), the straightforward
omposition of a se
ure signature and en
ryption does not ne
essarilyyield a se
ure sign
ryption. Se
ond, as we show in Se
tion 3, there are quite subtle and \non-obvious"issues with respe
t to sign
ryption | espe
ially in the publi
-key setting | whi
h need to be
apturedin a formal de�nition. Third, there are other interesting
onstru
tions for sign
ryption whi
h do notfollow the paradigm of sequentially
omposing signatures and en
ryption. Fourth, designing tailoredsolutions might yield eÆ
ien
y (whi
h was the original motivation of Zheng [36℄). Finally, the usage ofsign
ryption as a primitive might
on
eptually simplify the design of
omplex proto
ols whi
h requireboth priva
y and authenti
ity (e.g., some key ex
hange proto
ols; see [32℄).Summarizing the above dis
ussion, we believe that the study of sign
ryption as a primitive is im-portant and
an lead to very useful, general as well as spe
i�
, paradigms for a
hieving priva
y andauthenti
ity at the same time.Our Results. This paper provides a formal treatment of sign
ryption and analyzes several general
onstru
tions for this primitive. In parti
ular, we note that the problem of de�ning sign
ryption inthe publi
 key setting is more involved than the
orresponding task in the symmetri
 setting studiedby [5, 23℄, due to the asymmetri
 nature of the former. For example, full-
edged sign
ryption needsto be de�ned in the multi-user setting, where subtle issues with users' identities need to be addressed.In
ontrast, authenti
ated en
ryption in the symmetri
 setting
an be fully de�ned in a mu
h simpler1

two-user setting. Lu
kily, we show that for all the generi
 s
hemes we address in this paper,1 it suÆ
esto analyze their se
urity in the two-user setting, by giving a \semi-generi
" generi
 transformation tothe multi-user setting.2We give two de�nitions for se
urity of sign
ryption depending on whether the adversary is an out-sider or a legal user of the network (i.e., either the sender or the re
eiver). In both of these settings,we show that the
ommon \en
rypt-then-sign" (EtS) and \sign-then-en
rypt" (StE) methods in fa
tyield a se
ure sign
ryption, provided an appropriate de�nition of se
urity is used. Moreover, when theadversary is an outsider, these
omposition methods
an a
tually provide stronger priva
y or authen-ti
ity properties for the resulting sign
ryption s
heme than the assumed se
urity properties on the baseen
ryption or signature s
heme. Spe
i�
ally, the se
urity of the base signature s
heme
an help amplifythe priva
y of EtS, while the se
urity of the base en
ryption s
heme
an do the same to the authenti
ityof StE . We remark that these possibly \expe
ted" results are nevertheless somewhat surprising in lightof re
ent \negative" indi
ations from the symmetri
 setting [5, 23℄, and illustrate the need for rigorousde�nitions for se
urity of sign
ryption.In addition, we present a novel
onstru
tion of sign
ryption, whi
h we
all \
ommit-then-en
rypt-and-sign" (CtE&S). Our s
heme is a general way to
onstru
t sign
ryption from any signature anden
ryption s
hemes, while utilizing in addition a
ommitment s
heme. This method is quite di�erentfrom the obvious sequential
omposition paradigm. Moreover, unlike the previous sequential methods,the CtE&S method applies the expensive signature and en
ryption operations in parallel, whi
h
ouldimply a gain in eÆ
ien
y. We also show that our
onstru
tion naturally leads to a very eÆ
ient way toimplement o�-line sign
ryption, where the sender
an prepare most of the authenti
ated
iphertext inadvan
e (i.e., without knowing the plaintext) and perform very little on-line
omputation.Finally and of independent interest, we dis
uss the de�nitional inadequa
y of the standard notion of
hosen
iphertext (CCA2) se
urity [14, 4℄. Motivated by our appli
ations to sign
ryption, we show thatthe notion of CCA2-se
urity is synta
ti
ally ill-de�ned, and leads to arti�
ial examples of \intuitivelyCCA2-se
ure" s
hemes whi
h do not meet the formal de�nition (su
h observations were also made by [8,9℄). We suggest a natural and very slight relaxation of CCA2-se
urity, whi
h we
all generalized CCA2-se
urity (gCCA2). We show that gCCA2-se
urity suÆ
es for all known uses of CCA2-se
ure en
ryption,while no longer su�ering from the de�nitional short
omings of the latter.Related Work. The initial works on sign
ryption [36, 37, 27, 20℄ designed several sign
ryptions
hemes, whose \se
urity" was informally based on various number-theoreti
 assumptions. Only re
ently(and independently of our work) Baek et al. [3℄ showed that the original s
heme of Zheng [36℄ (basedon shortened ElGamal signatures)
an be shown se
ure in the random ora
le model under the gapDiÆe-Hellman assumption.We also mention the works of [35, 30℄, whi
h used S
hnorr signature to amplify the se
urity ofElGamal en
ryption to withstand a
hosen
iphertext atta
k. However, the above works
on
entrateon providing priva
y, and do not provide authenti
ity, as required by our notion of sign
ryption.Re
ently, mu
h work has been done about authenti
ated en
ryption in the symmetri
 (private-key)setting. The �rst formalizations of authenti
ated en
ryption in the symmetri
 setting were done by [22,6, 5℄. The works of [5, 23℄ dis
uss the se
urity of generi

omposition methods of a (symmetri
)en
ryption and a message authenti
ation
ode (MAC). In parti
ular, a lot of emphasis in these works isgiven to the study of suÆ
ient
onditions under whi
h a given
omposition method
an amplify (rather1Spe
i�
ally, those that are designed from a general signature and en
ryption s
heme (rather than in an \ad-ho
"manner from a spe
i�
 number-theoreti
 assumption).2It is an interesting open question if one
an redu
e multi-user se
urity to the two-user se
urity for arbitrary sign
ryptions
hemes, and not just the ones build from general signature and en
ryption.2

than merely preserve) the priva
y property of a given
omposition method from the
hosen plaintext(CPA) to the
hosen
iphertext (CCA2) level. From this perspe
tive, the \en
rypt-then-ma
" method| whi
h always a
hieves su
h an ampli�
ation due to a \strongly unforgeable" MAC | was foundgeneri
ally preferable to the \ma
-then-en
rypt" method, whi
h does so only in spe
i�
 (albeit veryuseful)
ases [23℄. In
ontrast, An and Bellare [1℄ study a symmetri
 question of under whi
h
onditionsa \good" priva
y property on the base en
ryption s
heme
an help amplify the authenti
ity property inthe \ma
-then-en
rypt" (or \en
rypt-with-redundan
y") method. On a positive side, they found that
hosen
iphertext se
urity on the base en
ryption s
heme is indeed suÆ
ient for that purpose. As weshall see in Se
tion 4, all these results are very related to our results about \sign-then-en
rypt" and\en
rypt-then-sign" methods for sign
ryption when the adversary is an \outsider".Another related paradigm for building authenti
ated en
ryption is the \en
ode-then-en
ipher" methodof [6℄: add randomness and redundan
y, and then en
ipher (i.e., apply a pseudorandom permutation)rather than en
rypt. Even though a strong pseudorandom permutation is often more expensive thanen
ryption, [6℄ shows that very simple publi
 redundan
y fun
tions are suÆ
ient | in
ontrast to the\en
rypt-with-redundan
y" method, where no publi
 redundan
y
an work [1℄.Finally, we mention re
ently designed modes of operations for blo
k
iphers that a
hieve both priva
yand authenti
ity in the symmetri
 setting: RFC mode of [22℄, IACBC and IAPM modes of [21℄, OCBmode of [29℄, and SNCBC mode of [1℄.2 De�nitionsIn this se
tion we brie
y review the (publi
-key) notions of en
ryption, signature and
ommitments
hemes. In addition, we present our extended de�nition for CCA2.2.1 En
ryptionSyntax. An en
ryption s
heme
onsists of three algorithms: E = (En
-Gen;En
;De
). En
-Gen(1k),where k is the se
urity parameter, outputs a pair of keys (EK;DK). EK is the en
ryption key, whi
h ismade publi
, and DK is the de
ryption key whi
h is kept se
ret. The randomized en
ryption algorithmEn
 takes as input a key EK and a message m from the asso
iated message spa
eM, and internally
ipssome
oins and outputs a
iphertext e; we write e En
EK(m). For brevity, we will usually omit EKand write e En
(m). The deterministi
 de
ryption algorithm De
 takes as input the
iphertext e, these
ret key DK, and outputs some message m 2M, or ? in
ase e was \invalid". We write m De
(e)(again, omitting DK). We require that De
(En
(m)) = m, for any m 2M.Se
urity of En
ryption. When addressing the se
urity of the s
hemes, we deal with two issues:what we want to a
hieve (se
urity goal) and what are the
apabilities of the adversary (atta
k model).In this paper we will talk about the most
ommon se
urity goal: indistinguishability of
iphertexts [17℄,whi
h we will denote by IND. A related notion of non-malleability will be brie
y dis
ussed in Se
tion 8.Intuitively, indistinguishability means that given a randomly sele
ted publi
 key, no PPT (probabilis-ti
 polynomial time) adversary A
an distinguish en
ryptions of any two messages m0;m1
hosen byA: En
(m0) � En
(m1). Formally, we require that for any PPT A, whi
h runs in two stages, �nd andguess, we havePr h b = ~b ��� (EK;DK) En
-Gen(1k); (m0;m1; �) A(EK; �nd);b R f0; 1g; e En
EK(mb); ~b A(e; �; guess) i � 12 + negl(k)Here and elsewhere negl(k) is some negligible fun
tion in the se
urity parameter k, and � is some internalstate information A saves and uses in the two stages.3

We now turn to the se
ond issue of se
urity of en
ryption | the atta
k model. We
onsider threetypes of atta
k: CPA, CCA1 and CCA2. Under the
hosen plaintext (or CPA) atta
k, the adversary is notgiven any extra
apabilities other than en
rypting messages using the publi
 en
ryption key. A morepowerful type of
hosen
iphertext atta
k gives A a

ess to the de
ryption ora
le, namely the abilityto de
rypt arbitrary
iphertexts of its
hoi
e. The �rst of this type of atta
k is the lun
h-time (CCA1)atta
k [28℄, whi
h gives a

ess only in the �nd stage (i.e., before the
hallenge
iphertext e is given).The se
ond is CCA2 on whi
h we elaborate in the following.CCA2 Atta
ks. The adaptive
hosen
iphertext atta
k [14℄ (CCA2) gives a

ess to the de
ryptionora
le in the guess stage as well. As stated, the CCA2 atta
k does not make sense sin
e A
an simplyask to de
rypt the
hallenge e. Therefore, we need to restri
t the
lass of
iphertexts e0 that A
angive to the de
ryption ora
le in the guess stage. The minimal restri
tion is to have e0 6= e, whi
h isthe way the CCA2 atta
k is usually de�ned. As we will argue in Se
tion 8, stopping at this minimal(and needed) restri
tion in turn restri
ts the
lass of en
ryption s
hemes that we intuitively view asbeing \se
ure". In parti
ular, it is not robust to synta
ti

hanges in the en
ryption (e.g., appendinga harmless random bit to a se
ure en
ryption suddenly makes it \inse
ure" against CCA2). Leavingfurther dis
ussion to Se
tion 8, we now de�ne a spe
ial
ase of the CCA2 atta
k whi
h does not su�erfrom the above synta
ti
 limitations and suÆ
es for all the uses of the CCA2-se
ure en
ryption we areaware of.We �rst generalize the CCA2 atta
k with respe
t to some equivalen
e relation R(�; �) on the
ipher-texts. R is de�ned as part of the en
ryption s
heme, it
an depend on the publi
 key EK, but must havethe following property: if R(e1; e2) = true) De
(e1) = De
(e2). We
all su
h R de
ryption-respe
ting.Now A is forbidden to ask any e0 equivalent to e, i.e. R(e; e0) = true. Sin
e R is re
exive, this at leastrules out e, and sin
e R is de
ryption-respe
ting, it only restri
ts
iphertexts that de
rypt to the samevalue as the de
ryption of e (i.e. mb). We note that the usual CCA2 atta
k
orresponds to the equalityrelation. Now we say that the en
ryption s
heme is se
ure against generalized CCA2 (or gCCA2) if thereexists some eÆ
ient de
ryption-respe
ting relation R w.r.t. whi
h it is CCA2-se
ure. For example,appending a harmless bit to gCCA2-se
ure en
ryption or doing other easily re
ognizable manipulationstill leaves it gCCA2-se
ure.We remark that the notion of gCCA2-se
urity was re
ently proposed in [33℄ (under the name be-nign malleability) for the ISO publi
 key en
ryption standard. In the private-key setting, [23℄ usesequivalen
es relations to de�ne \loose
iphertext unforgeability".2.2 SignaturesSyntax. A signature s
heme
onsists of three algorithms: S = (Sig-Gen;Sig;Ver). Sig-Gen(1k), wherek is the se
urity parameter, outputs a pair of keys (SK;VK). SK is the signing key, whi
h is kept se
ret,and VK is the veri�
ation key whi
h is made publi
. The randomized signing algorithm Sig takes asinput a key SK and a message m from the asso
iated message spa
eM, internally
ips some
oins andoutputs a signature s; we write s SigSK(m). We will usually omit SK and write s Sig(m). Wlog,we will assume that the message m
an be determined from the signature s (e.g., is part of it), andwrite m = Msg(s) to denote the message whose signature is s. The deterministi
 veri�
ation algorithmVer takes as input the signature s, the publi
 key VK, and outputs the answer a whi
h is either su

eed(signature is valid) or fail (signature is invalid). We write a Ver(s) (again, omitting VK). We requirethat Ver(Sig(m)) = su

eed, for any m 2M.Se
urity of Signatures. As with the en
ryption, the se
urity of signatures addresses two issues:what we want to a
hieve (se
urity goal) and what are the
apabilities of the adversary (atta
k model). Inthis paper we will talk about the the most
ommon se
urity goal: existential unforgeability [18℄, denoted4

by UF. This means that any PPT adversary A should have a negligible probability of generating a validsignature of a \new" message. To
larify the meaning of \new", we will
onsider the following twoatta
k models. In the no message atta
k (NMA), A gets no help besides VK. In the
hosen messageatta
k (CMA), in addition to VK, the adversary A gets full a

ess to the signing ora
le Sig, i.e. A isallowed to query the signing ora
le to obtain valid signatures s1; : : : ; sn of arbitrary messages m1; : : : ;mnadaptively
hosen by A (noti
e, NMA
orresponds to n = 0). Naturally, A is
onsidered su

essful onlyif it forges a valid signature s of a message m not queried to signing ora
le: m 62 fm1 : : : mng. Wedenote the resulting se
urity notions by UF-NMA and UF-CMA, respe
tively.We also mention a slightly stronger type of unforgeability
alled strong unforgeability, denoted sUF.Here A should not only be unable to generate a signature of a \new" message, but also be unable togenerate even a di�erent signature of an already signed message, i.e. s 62 fs1; : : : ; sng. This only makessense for the CMA atta
k, and results in a se
urity notion we denote by sUF-CMA.2.3 CommitmentSyntax. A (non-intera
tive)
ommitment s
heme
onsists of three algorithms: C = (Setup;Commit;Open). The setup algorithm Setup(1k), where k is the se
urity parameter, outputs a publi

ommitmentkey CK (possibly empty, but usually
onsisting of publi
 parameters for the
ommitment s
heme). Givena message m from the asso
iated message spa
e M (e.g., f0; 1gk), CommitCK(m; r) (
omputed usingthe publi
 key CK and additional randomness r) produ
es a
ommitment pair (
; d), where
 is the
ommitment to m and d is the de
ommitment. We will usually omit CK and write (
; d) Commit(m).Sometimes we will write
(m) (resp. d(m)) to denote the
ommitment (resp. de
ommitment) partof a randomly generated (
; d). The last (deterministi
) algorithm OpenCK(
; d) outputs m if (
; d) isa valid pair for m (i.e.
ould have been generated by Commit(m)), or ? otherwise. We require thatOpen(Commit(m)) = m for any m 2M.Se
urity of Commitment. Regular
ommitment s
hemes have two se
urity properties:Hiding. No PPT adversary
an distinguish the
ommitments to any two message of its
hoi
e:
(m1) �
(m2). That is,
(m) reveals \no information" about m. Formally, for any PPT A whi
h runs in twostages, �nd and guess, we havePr hb = ~b ��� CK Setup(1k); (m0;m1; �) A(CK; �nd);b R f0; 1g; (
; d) CommitCK(mb);~b A(
; �; guess) i � 12 + negl(k)Binding. Having the knowledge of CK, it is
omputationally hard for the adversary A to
ome up with
; d; d0 su
h that (
; d) and (
; d0) are valid
ommitment pairs for m and m0, but m 6= m0 (su
h a triple
; d; d0 is said to
ause a
ollision). That is, A
annot �nd a value
 whi
h it
an open in two di�erentways.Relaxed
ommitments. We will also
onsider relaxed
ommitment s
hemes, where the (stri
t) bind-ing property above is repla
ed by the Relaxed Binding property: for any PPT adversary A, havingthe knowledge of CK, it is
omputationally hard for A to
ome up with a message m, su
h that when(
; d) Commit(m) is generated, A(
; d;CK) produ
es, with non-negligible probability, a value d0 su
hthat (
; d0) is a valid
ommitment to some m0 6=m. Namely, A
annot �nd a
ollision using a randomlygenerated
(m), even for m of its
hoi
e.To justify this distin
tion, �rst re
all the
on
epts of
ollision-resistant hash fun
tion (CRHF) familiesand universal one-way hash fun
tion (UOWHF) families. For both
on
epts, it is hard to �nd a
ollidingpair x 6= x0 su
h that H(x) = H(x0), where H is a fun
tion randomly
hosen from the
orrespondingfamily. However, with CRHF, we �rst sele
t the fun
tion H, and for UOWHF the adversary has to5

sele
t x before H is given to it. By the result of Simon [34℄, UOWHF's are stri
tly weaker primitivethan CRHF (in parti
ular, they
an be built from regular one-way fun
tions [25℄). We note two
lassi
alresults about (regular)
ommitment s
hemes: the
onstru
tion of su
h a s
heme by [11, 19℄, and thefolklore \hash-then-
ommit" paradigm (used for
ommitting to long messages by hashing them �rst).Both of these results require the use of CRHF's, and it is easy to see that UOWHF's are not suÆ
ientto ensure (stri
t) binding for either one of them. On the other hand, it is not very hard to see thatUOWHF's suÆ
e to ensure relaxed binding in both
ases. Hen
e, basing some
onstru
tion on relaxed
ommitments (as we will do in Se
tion 5) has its merits over regular
ommitments.Trapdoor Commitments. We also de�ne a very useful
lass of
ommitment s
hemes, known as(non-intera
tive) trapdoor
ommitments [7℄ or
hameleon hash fun
tions [24℄. In these s
hemes the setupalgorithm Setup(1k) outputs a pair of keys (CK;TK). That is, in addition to the publi

ommitment keyCK, it also produ
es a trapdoor key TK. Like regular
ommitments, trapdoor
ommitments satisfy thehiding property and (possibly relaxed) binding properties. Additionally, they have an eÆ
ient swit
hingalgorithm Swit
h, whi
h allows one to �nd arbitrary
ollisions using the trapdoor key TK.Trapdoor Collisions. Given any
ommitment pair (
; d) to some message m and any message m0,Swit
hTK((
; d);m0) outputs a valid
ommitment pair (
; d0) to m0 (note,
 is the same!). Moreover,having the knowledge of CK, it is
omputationally hard to
ome up with two messages m;m0 su
hthat the adversary
an distinguish CommitCK(m0) from Swit
hTK(CommitCK(m);m0). Namely, a true
ommitment pair for m0 looks the same as a faked
ommitment pair for m0 (obtained from a randompair for m).We note that the trapdoor
ollisions property is mu
h stronger (and easily implies) the hiding property(sin
e the swit
hing algorithm does not
hange
(m)). Moreover, the hiding property is information-theoreti
. We also note that very eÆ
ient trapdoor
ommitment s
hemes exist based on fa
toring [24, 31℄or dis
rete log [24, 7℄. In parti
ular, the swit
hing fun
tion requires just one modulo addition and onemodulo multipli
ation for the dis
rete log based solution. Less eÆ
ient
onstru
tions based on moregeneral assumptions are known as well [24℄.3 De�nition of Sign
ryption in the Two-user SettingThe de�nition of sign
ryption is a little bit more involved than the
orresponding de�nition of authenti-
ated en
ryption in the symmetri
 setting. Indeed, in the symmetri
 setting, we only have one spe
i�
pair of users who (1) share a single key; (2) trust ea
h other; (3) \know who they are"; and (4)
areabout being prote
ted from \the rest of the world". In
ontrast, in the publi
 key setting ea
h user inde-pendently publishes its publi
 keys, after whi
h it
an send/re
eive messages to/from any other user. Inparti
ular, (1) ea
h user should have an expli
it identity (i.e., its publi
 key); (2) ea
h sign
ryption hasto expli
itly
ontain the (presumed) identities of the sender S and the re
eiver R; (3) ea
h user shouldbe prote
ted from every other user. This suggests that sign
ryption should be de�ned in the multi-usersetting. Lu
kily, however, all our sign
ryption s
hemes will be
omposed from general signature anden
ryption s
hemes as building blo
ks. And we will show that for su
h s
hemes there is a \generi
transformation" (see Se
tion 7) from two- to multi-user se
urity. In other words, for our purposes we
an �rst de�ne and study the
ru
ial properties of sign
ryption in the stand-alone two-user setting, andthen add identities to our de�nitions and
onstru
tions to a
hieve the full-
edged multi-user se
urity.
6

3.1 Some Philosophy: Two- vs. Multi-user Se
urityAs we shall see, �rst starting from the two-user setting will have
ertain advantages. For one thing,there are quite a few subtle issues with de�ning the se
urity of sign
ryption even in the simpler two-user setting, whi
h makes it a non-trivial starting point before moving to the more
omplex setting.Se
ondly, we already mentioned that it will make our presentation mu
h
learer at no
ost, sin
e ourspe
i�
 s
hemes
an be easily extended to the multi-user setting. More importantly, however, there isone more
on
eptual reason for distinguishing two-user and multi-user settings.Essentially, it turns out that the major additional issue addressed in the multi-user (but not in thetwo-user) setting is that of identity fraud. Namely, sin
e identities have to be expli
itly in
luded withea
h sign
ryption in the multi-user setting, it should be hard to tamper with these identities without there
ipient noti
ing the di�eren
e. For example, if Ali
e sends some message to Bob, the adversary shouldnot be able to modify the sign
ryption so that Bob thinks that the message (possibly unknown to theadversary) a
tually
ame from some other party Charlie. Similarly, the adversary should not be able to
onvin
e Charlie that Ali
e sent this message to him rather than to Bob. On the other hand, se
urityin the two-user setting more or less ensures that there are no other atta
ks on the sign
ryption besidetrying to tamper with the identities. In parti
ular, if the identity of the sender and the re
ipient areknown a-priori, the basi
 sign
ryption is
ompletely private (adversary
annot understand the message),and authenti
 (adversary
annot
onvin
e Bob that Ali
e send him some message that she did not sent).Put di�erently, two-user se
urity ignores the issue of identities and guarantees there are no weaknessesin the way the sign
ryption itself is built.We feel that this separation is quite important both for our understanding of what \se
ure sign
ryp-tion" is, as well as how to design and analyze sign
ryption s
hemes. Consider, for example, a very simpleEtS s
heme, where the sender Ali
e �rst en
rypts the message with the re
ipient's Bob publi
 key, andthen signs the resulting
iphertext (with her signing key). As we will show later, EtS is \se
ure" inthe two-user setting. On the other hand, in the multi-user setting the adversary Eve
an easily \strip"Ali
e's \outside" signature and repla
e it with his own signature,
onvin
ing Bob that the message (pos-sibly unknown to Eve!)
ame from him. Noti
e that this atta
k did not really expose any weaknessesin the signature or the en
ryption s
heme: and, indeed, it
ould not sin
e the s
heme is se
ure in thetwo-user setting. Of
ourse, we will show in Se
tion 7 a very simple �x to the EtS s
heme above to makeit se
ure even in the multi-user setting. However, the above example illustrates the usefulness of ourseparation: treating EtS in the two-user setting allows for a very
lean justi�
ation that the messageis se
urely hidden inside the signed
iphertext, while starting right away with multi-user setting makesthe s
heme more
omplex, the argument less elegant, and the intuition less transparent.Of
ourse, in general one
ertainly needs to prove the multi-user se
urity of the proposed s
heme, sin
eidentity fraud prote
tion is very important. We therefore suggests the following methodology. First oneshould to design a sign
ryption s
heme whi
h is se
ure in the two-user setting, whi
h typi
ally providesa good intuition behind the basi
 s
heme. Ones this is done, one should see what (if anything) \goeswrong" in the multi-user setting, and see if some simple measures
an \�x" the problem. Of
ourse,this methodology is not universal, but it
ertainly works in our
ase and makes our presentation mu
hmore transparent. Finally, we will see that there are quite a few subtle issues with de�ning the se
urityof sign
ryption even in the mu
h simpler two-user setting, whi
h additionally justi�es our two-levelapproa
h.Summarizing the above dis
ussion, for now we
on
entrate on a simple two-user setting, postponingthe extension to multi-user setting to Se
tion 7.
7

3.2 Two Se
urity Notions in the Two-User SettingSyntax. A sign
ryption s
heme SC
onsists of three algorithms: SC = (Gen;SigEn
;VerDe
). Thealgorithm Gen(1k), where k is the se
urity parameter, outputs a pair of keys (SDK;VEK). SDK is theuser's sign/de
rypt key, whi
h is kept se
ret, and VEK the user's verify/en
rypt key, whi
h is madepubli
. Note, that in the sign
ryption setting all parti
ipating parties need to invoke Gen. For a userP , denote its keys by SDKP and VEKP . The randomized sign
ryption (sign/en
rypt) algorithm SigEn
takes as input the sender S's se
ret key SDKS and the re
eiver R's publi
 key VEKR and a messagem from the asso
iated message spa
e M, and internally
ips some
oins and outputs a sign
ryption(
iphertext) u; we write u SigEn
(m) (omitting SDKS , VEKR). The deterministi
 de-sign
ryption(verify/de
rypt) algorithm VerDe
 takes as input the sign
ryption (
iphertext) e, the re
eiver R's se
retkey SDKR and the sender S's publi
 key VEKS , and outputs m 2M[f?g, where ? indi
ates that themessage was not en
rypted or signed properly. We write m VerDe
(u) (again, omitting the keys).We require that VerDe
(SigEn
(m)) = m, for any m 2M.Se
urity of Sign
ryption. Fix the sender S and the re
eiver R. Intuitively, we would like to saythat S's authenti
ity is prote
ted, and R's priva
y is prote
ted. We will give two formalizations ofthis intuition. The �rst one assumes that the adversary A is an outsider who only knows the publi
information pub = (VEKR;VEKS). We
all su
h se
urity Outsider se
urity. The se
ond, stronger notion,prote
ts S's authenti
ity even against R, and R's priva
y even against S. Put in other words, it assumesthat the adversary A is a legal user of the system. We
all su
h se
urity Insider se
urity.Outsider Se
urity. We de�ne it against the strongest se
urity notions on the signature (analogsof UF-CMA or sUF-CMA) and en
ryption (analogs of IND-gCCA2 or IND-CCA2), and weaker notions
ould easily be de�ned as well. We assume that the adversary A has the publi
 information pub =(VEKS ;VEKR). It also has ora
le a

ess to the fun
tionalities of both S and R. Spe
i�
ally, it
anmount a
hosen message atta
k on S by asking S to produ
e sign
ryption u of an arbitrary messagem. In other words, A has a

ess to the sign
ryption ora
le. Similarly, it
an mount a
hosen
iphertextatta
k on R by giving R any
andidate sign
ryption u and re
eiving ba
k the message m (where m
ould be ?), i.e. A has a

ess to the de-sign
ryption ora
le. Noti
e, A
annot by itself run eitherthe sign
ryption or the de-sign
ryption ora
les due to the la
k of
orresponding se
ret keys SDKS andSDKR.To break the UF-CMA se
urity of the sign
ryption s
heme, A has to
ome up with a valid sign
ryptionu of a \new" message m, whi
h it did not ask S to sign
rypt earlier (noti
e, A is not required to \know"m when produ
ing u). The s
heme is Outsider-se
ure in the UF-CMA sense if any PPT A has a negligible
han
e of su

eeding. (For sUF-CMA, A only has to produ
e u whi
h was not returned by S earlier.)To break the indistinguishability of the sign
ryption s
heme, A has to
ome up with two messages m0andm1. One of these will be sign
rypted at random, the
orresponding sign
ryption u will be given to A,and A has to guess whi
h message was sign
rypted. To su

eed in the CCA2 atta
k, A is only disallowedto ask R to de-sign
rypt the
hallenge u. For gCCA2 atta
k, similarly to the en
ryption s
enario, we�rst de�ne CCA2 atta
k against a given eÆ
ient de
ryption-respe
ting relation R (whi
h
ould dependon pub = (VEKR;VEKS) but not on any of the se
ret keys). As before, de
ryption-respe
ting means thatR(u; u0) = true) VerDe
(u) = VerDe
(u0). Thus, CCA2 atta
k w.r.t. R disallows A to de-sign
ryptany u0 equivalent to the
hallenge u. Now, for Outsider-se
urity against CCA2 w.r.t. R, we requirePr[A su

eeds℄ � 12 + negl(k). Finally, the s
heme is Outsider-se
ure in the IND-gCCA2 sense if it isOutsider-se
ure against CCA2 w.r.t. some eÆ
ient de
ryption-respe
ting R.Insider Se
urity. We
ould de�ne Insider se
urity in a similar manner by de�ning the
apabili-ties of A and its goals. However, it is mu
h easier to use already existing se
urity notions for sig-nature and en
ryption s
hemes. Moreover, this will
apture the intuition that \sign
ryption = sig-8

nature + en
ryption". More pre
isely, given any sign
ryption s
heme SC = (Gen;SigEn
;VerDe
),we de�ne the
orresponding indu
ed signature s
heme S = (Sig-Gen;Sig;Ver) and en
ryption s
hemeE = (En
-Gen;En
;De
).� Signature S. The generation algorithm Sig-Gen runs Gen(1k) twi
e to produ
e two key pairs(SDKS ;VEKS) and (SDKR;VEKR). Let pub = fVEKS ;VEKRg be the publi
 information. We setthe signing key to SK = fSDKS ; pubg, and the veri�
ation key to VK = fSDKR; pubg. Namely,the publi
 veri�
ation key (available to the adversary)
ontains the se
ret key of the re
eiver R.To sign a message m, Sig(m) outputs u = SigEn
(m), while the veri�
ation algorithm Ver(u) runsm VerDe
(u) and outputs su

eed i� m 6= ?. We note that the veri�
ation is indeed polynomialtime sin
e VK in
ludes SDKR.� En
ryption E. The generation algorithm En
-Gen runs Gen(1k) twi
e to produ
e two key pairs(SDKS ;VEKS) and (SDKR;VEKR). Let pub = fVEKS ;VEKRg be the publi
 information. We setthe en
ryption key to EK = fSDKS ; pubg, and the de
ryption key to DK = fSDKR; pubg. Namely,the publi
 en
ryption key (available to the adversary)
ontains the se
ret key of the sender S.To en
rypt a message m, En
(m) outputs u = SigEn
(m), while the de
ryption algorithm De
(u)simply outputs VerDe
(u). We note that the en
ryption is indeed polynomial time sin
e EKin
ludes SDKS.We say that the sign
ryption is Insider-se
ure against the
orresponding atta
k (e.g. gCCA2/CMA) onthe priva
y/authenti
ity property, if the
orresponding indu
ed en
ryption/signature is se
ure againstthe same atta
k.3 We will aim to satisfy IND-gCCA2-se
urity for en
ryption, and UF-CMA-se
urity forsignatures.3.3 Some Dis
ussionShould we Require Non-Repudiation? We note that the
onventional notion of digital signaturessupports non-repudiation. Namely, the re
eiver R of a
orre
tly generated signature s of the messagem
an hold the sender S responsible to the
ontents of m. Put di�erently, s is unforgeable and publi
lyveri�able. On the other hand, non-repudiation does not automati
ally follow from the de�nition ofsign
ryption. Sign
ryption only allows the re
eiver to be
onvin
ed that m was sent by S, but does notne
essarily enable a third party to verify this fa
t.We believe that non-repudiation should not be part of the de�nition of sign
ryption se
urity, butwe will point out whi
h of our s
hemes a
hieves it. Indeed, non-repudiation might be needed in someappli
ations, while expli
itly undesirable in others (e.g., this issue is the essen
e of undeniable [10℄ and
hameleon [24℄ signature s
hemes).Insider vs. Outsider se
urity. We illustrate some of the di�eren
es between Insider and Outsiderse
urity. For example, Insider-se
urity for authenti
ity implies non-repudiation \in prin
iple". Namely,non-repudiation is
ertain at least when the re
eiver R is willing to reveal its se
ret key SDKR (sin
ethis indu
es a regular signature s
heme), or may be possible by other means (like an appropriate zero-knowledge proof). In
ontrast, Outsider-se
urity leaves open the possibility that R
an generate |using its se
ret key | valid sign
ryptions of messages that were not a
tually sent by S. In su
h a
ase,non-repudiation
annot be a
hieved no matter what R does.3One small te
hni
ality for the gCCA2-se
urity. Re
all, the equivalen
e relation R
an depend on the publi
 en
ryptionkey | in this
ase fSDKS ; pubg. We strengthen this and allow it to depend only on pub (i.e. disallow the dependen
e onsender's se
ret key SDKS). 9

Despite the above issues, however, it might still seem that the distin
tion between Insider- andOutsider-se
urity is a bit
ontrived, espe
ially for priva
y. Intuitively, the Outsider-se
urity prote
tsthe priva
y of R when talking to S from outside intruders, who do not know the se
ret key of S. Onthe other hand, Insider-se
urity assumes that the sender S is the intruder atta
king the priva
y of R.But sin
e S is the only party that
an send valid sign
ryptions from S to R, this seems to make littlesense. Similarly for authenti
ity, if non-repudiation is not an issue, then Insider-se
urity seems to makelittle sense; as it assumes that R is the intruder atta
king the authenti
ity of S, and simultaneously theonly party that needs to be
onvin
ed of the authenti
ity of the (re
eived) data. And, indeed, in manysettings Outsider-se
urity might be all one needs for priva
y and/or authenti
ity. Still, there are some
ases where the extra strength of the Insider-se
urity might be important. We give just one example.Assume an adversary A happens to steal the key of S. Even though now A
an send fake messages\from S to R", we still might not want A to understand previous (or even future) re
orded sign
ryptionssent from honest S to R. Insider-se
urity will guarantee this fa
t, while the Outsider-se
urity mightnot.Finally, we note that a
hieving Outsider-se
urity
ould be signi�
antly easier than Insider-se
urity.One su
h example will be seen in Theorems 2 and 3. Other examples are given in [2℄, who show thatauthenti
ated en
ryption in the symmetri
 setting
ould be used to build Outsider-se
ure sign
ryptionwhi
h is not Insider-se
ure. To summarize, one should
arefully examine if one really needs the extraguarantees of Insider-se
urity.4 Two Sequential Compositions of En
ryption and SignatureIn this se
tion, we will dis
uss two methods of
onstru
ting sign
ryption s
hemes that are based onsequential generi

omposition of en
ryption and signature: en
rypt-then-sign (EtS) and sign-then-en
rypt (StE).Syntax. Let E = (En
-Gen;En
;De
) be an en
ryption s
heme and S = (Sig-Gen;Sig;Ver) be asignature s
heme. Both EtS and StE have the same generation algorithm Gen(1k). It runs (EK;DK) En
-Gen(1k), (SK;VK) Sig-Gen(1k) and sets VEK = (VK;EK), SDK = (SK;DK). To des
ribe thesign
ryptions from sender S to re
eiver R more
ompa
tly, we use the shorthands SigS(�), En
R(�),VerS(�) and De
R(�) indi
ating whose keys are used but omitting whi
h spe
i�
 keys are used, sin
e thelatter is obvious (indeed, SigS always uses SKS , En
R | EKR, VerS | VKS and De
R | DKR).Now, we de�ne \en
rypt-then-sign" s
heme EtS by u SigEn
(m; (SKS;EKR)) = SigS(En
R(m)).To de-sign
rypt u, we let ~m = De
R(Msg(u)) provided VerS(u) = su

eed, and ~m = ? otherwise. Wethen de�ne VerDe
(u; (DKR;VKS)) = ~m. Noti
e, we do not mention (EKS ;DKS) and (SKR;VKR), sin
ethey are not used to send the message from S to R. Similarly, we de�ne \sign-then-en
rypt" s
heme StEby u SigEn
(m; (SKS;EKR)) = En
R(SigS(m)). To de-sign
rypt u, we let s = De
R(u), and set ~m =Msg(s) provided VerS(s) = su

eed, and ~m = ? otherwise. We then de�ne VerDe
(u; (DKR;VKS)) = ~m.Insider-se
urity. We now show that both EtS and StE are se
ure
omposition paradigms. That is,they preserve (in terms of Insider-se
urity) or even improve (in terms of Outsider-se
urity) the se
urityproperties of E and S. We start with Insider-se
urity.Theorem 1 If E is IND-gCCA2-se
ure, and S is UF-CMA-se
ure, then EtS and StE are both IND-gCCA2-se
ure and UF-CMA-se
ure in the Insider-se
urity model.The simple proof of this result is given in Appendix A. However, we remark the
ru
ial use of gCCA2-se
urity when proving the se
urity of EtS. Indeed, we
an
all two sign
ryptions u1 and u2 equivalent for10

EtS, if ea
h ui is a valid signature (w.r.t. S) of ei = Msg(ui), and e1 and e2 are equivalent (e.g., equal)w.r.t. to the equivalen
e relation of E . In other words, a di�erent signature of the same en
ryption
learly
orresponds to the same message, and we should not reward the adversary for a
hieving su
h atrivial4 task.Remark 1 We note that StE a
hieves non-repudiation. On the other hand, EtS might not a
hieveobvious non-repudiation, ex
ept for some spe
ial
ases. One su
h important
ase
on
erns en
ryptions
hemes, where the de
ryptor
an re
onstru
t the randomness r used by the en
ryptor. In this
ase,presenting r su
h that En
R(m; r) = e, and u is a valid signature of e yields non-repudiation.We note that, for the Insider-se
urity in the publi
-key setting, we
annot hope to amplify the se
urityof the \base" signature or en
ryption, unlike the symmetri
 setting, where a proper use of a MAC allowsone to in
rease the priva
y from CPA to CCA2-se
urity (see [5, 23℄). For example, in the Insider-se
urityfor en
ryption, the adversary is a
ting as the sender and holds the signing key. Thus, it is obvious thatthe use of this signing key
annot prote
t the re
eiver and in
rease the quality of the en
ryption. Similarargument holds for signatures. Thus, the result of Theorem 1 is the most optimisti
 we
an hope forin that it at least preserves the se
urity of the base signature and en
ryption, while simultaneouslya
hieving both fun
tionalities.Outsider-se
urity. On the other hand, we show that in the weaker Outsider-se
urity model, it ispossible to amplify the se
urity of en
ryption using signatures, as well as the se
urity of signatures usingen
ryption, exa
tly like in the symmetri
 setting [5, 23, 1℄. This shows that Outsider-se
urity model isquite similar to the symmetri
 setting: namely, from the adversarial point of view the sender and there
eiver \share" the se
ret key (SDKS;SDKR).Theorem 2 If E is IND-CPA-se
ure, and S is UF-CMA-se
ure, then EtS is IND-gCCA2-se
ure in theOutsider- and UF-CMA-se
ure in the Insider-se
urity models.The formal proof is given in Appendix B. Intuitively, either the de-sign
ryption ora
le always returns? to the gCCA2-adversary, in whi
h
ase it is \useless" and IND-CPA-se
urity of E is enough, or theadversary
an submit a valid sign
ryption u = Sig(En
(�)) to this ora
le, in whi
h
ase it breaks theUF-CMA-se
urity of the \outside" signature S.Theorem 3 If E is IND-gCCA2-se
ure, and S is UF-NMA-se
ure, then StE is IND-gCCA2-se
ure in theInsider- and UF-CMA-se
ure in the Outsider-se
urity models.The formal proof is given in Appendix C. Intuitively, the IND-gCCA2-se
urity of the \outside" en
ryp-tion E makes the CMA atta
k of UF-CMA-adversary A \useless", by e�e
tively hiding the signatures
orresponding to A's queried messages, hen
e making the atta
k redu
ed to NMA.5 Parallel En
rypt and SignSo far we
on
entrated on two basi
 sequential
omposition methods, \en
rypt-then-sign" and \sign-then-en
rypt". Another natural generi

omposition method would be to both en
rypt the message andsign the message, denoted E&S. This operation simply outputs a pair (s; e), where s SigS(m) ande En
R(m). One should observe that E&S preserves the authenti
ity property but obviously does notpreserve the priva
y of the message as the signature s might reveal information about the message m.4The task is indeed trivial in the Insider-se
urity model, sin
e the adversary has the signing key.11

Moreover, if the adversary knows that m 2 fm0;m1g (as is the
ase for IND-se
urity), it
an see if s isa signature of m0 or m1, thus breaking IND-se
urity. This simple observation was also made by [5, 23℄.However, we would like to stress that this s
heme has a great advantage: it allows one to parallelize theexpensive publi
 key operations, whi
h
ould imply signi�
ant eÆ
ien
y gains.Thus, the question whi
h arises is under whi
h
onditions
an we design a se
ure sign
ryption s
hemewhi
h would also yield itself to eÆ
ien
y improvements su
h as parallelization of operations. More
on
retely, there is no reason why we should apply En
R and SigS to m itself. What if we apply someeÆ
ient \pre-pro
essing" transformation T to the message m, whi
h produ
es a pair (
; d), and thensign
 and en
rypt d in parallel? Under whi
h
onditions on T will this yield a se
ure sign
ryption?Somewhat surprisingly, we show a very general result: instantiating T as a
ommitment s
heme wouldenable us to both a
hieve a sign
ryption s
heme and parallelize the expensive publi
 key operations.More pre
isely, relaxed
ommitment is ne
essary and suÆ
ient! In the following we explain this resultin more detail.Syntax. Clearly, the values (
; d) produ
ed by T (m) should be su
h that m is re
overable from(
; d), But whi
h exa
tly the syntax (but not yet the se
urity) of a
ommitment s
heme, as de�nedin Se
tion 2.3. Namely, T
ould be viewed as the message
ommitment algorithm Commit, while themessage re
overy algorithm is the opening algorithm Open, and we want Open(Commit(m)) = m. Fora te
hni
al reason, we will also assume there exists at most one valid
 for every value of d. This isdone without loss of generally when
ommitment s
hemes are used. Indeed, essentially all
ommitments
hemes have, and
an always be assumed to have, d = (m; r), where r is the randomness of Commit(m),and Open(
; (m; r)) just
he
ks if Commit(m; r) = (
; (m; r)) before outputting m.Now, given any su
h (possibly inse
ure) C = (Setup;Commit;Open), an en
ryption s
heme E =(En
-Gen;En
;De
) and a signature s
heme S = (Sig-Gen;Sig;Ver), we de�ne a new
ompositionparadigm, whi
h we
all \
ommit-then-en
rypt-and-sign": shortly, CtE&S = (Gen;SigEn
;VerDe
).For simpli
ity, we assume for now that all the parti
ipants share the same
ommon
ommitment keyCK (e.g., generated by a trusted party). Gen(1k) is the same as for EtS and StE
ompositions: setVEK = (VK;EK), SDK = (SK;DK). Now, to sign
rypt a message m from S to R, the sender S �rstruns (
; d) Commit(m), and outputs sign
ryption u = (s; e), where s SigS(
) and e En
R(d).Namely, we sign the
ommitment
 and en
rypt the de
ommitment d. To de-sign
rypt, the re
eiver Rvalidates
 = Msg(s) using VerS(s) and de
rypts d = De
R(e) (outputting ? if either fails). The �naloutput is ~m = Open(
; d). Obviously, ~m = m if everybody is honest.Main Result. We have de�ned the new
omposition paradigm CtE&S based purely on the synta
ti
properties of C, E and S. Now we formulate whi
h se
urity properties of C are ne
essary and suÆ
ientso that our sign
ryption CtE&S preserves the se
urity of E and S. As in Se
tion 4, we
on
entrate onUF-CMA and IND-gCCA2 se
urity. Our main result is as follows:Theorem 4 Assume that E is IND-gCCA2-se
ure, S is UF-CMA-se
ure and C satis�es the synta
ti
properties of a
ommitment s
heme. Then, in the Insider-se
urity model, we have:� CtE&S is IND-gCCA2-se
ure () C satis�es the hiding property.� CtE&S is UF-CMA-se
ure () C satis�es the relaxed binding property.Thus, CtE&S preserves se
urity of E and S i� C is a se
ure relaxed
ommitment. In parti
ular, anyse
ure regular
ommitment C yields se
ure sign
ryption CtE&S.We prove our theorem by proving two related lemmas of independent interest. De�ne auxiliary en
ryp-tion s
heme E 0 = (En
-Gen0;En
0;De
0) where (1) En
-Gen0 = En
-Gen, (2) En
0(m) = (
;En
(d)), where(
; d) Commit(m), and (3) De
0(
; e) = Open(
;De
(d)).12

Lemma 1 Assume E is IND-gCCA2-se
ure en
ryption. Then E 0 is IND-gCCA2-se
ure en
ryption i� Csatis�es the hiding property.The proof is given in Appendix D. Intuitively, the hiding property is ne
essary sin
e
 is given\in the
lear", and is suÆ
ient sin
e E is IND-gCCA2-se
ure and there is at most one valid value of

orresponding to every d (by our assumption).We note that the �rst part of Theorem 4 follows using exa
tly the same proof as Lemma 1. Only fewsmall
hanges (omitted) are needed due to the fa
t that the
ommitment is now signed. We remark onlythat IND-gCCA2 se
urity is again important here. Informally, IND-gCCA2-se
urity is robust to easilyre
ognizable and invertible
hanges of the
iphertext. Thus, signing the
ommitment part | whi
h ispolynomially veri�able | does not spoil IND-gCCA2-se
urity.We now move to the se
ond lemma. We de�ne auxiliary signature s
heme S 0 = (Sig-Gen0;Sig0;Ver0) as follows: (1) Sig-Gen0 = Sig-Gen, (2) Sig0(m) = (Sig(
); d), where, (
; d) Commit(m)), (3)Ver0(s; d) = su

eed i� Ver(s) = su

eed and Open(Msg(s); d) 6= ?.Lemma 2 Assume S is UF-CMA-se
ure signature. Then S 0 is UF-CMA-se
ure signature i� C satis�esthe relaxed binding property.The proof is given in Appendix E. Intuitively, modulo breaking the se
urity of the signature S, theonly way to forge a new signature in S 0 is to \reuse" some Sig(
) and
ome up with a some d0 whi
hopens
 di�erent from the original de
ommitment d. And this is exa
tly what the relaxed bindingproperty of C guarantees. Noti
e, the binding
an indeed be relaxed, sin
e the value of
 is
hosen bythe signing ora
le and not by the adversary.We note that the se
ond part of Theorem 4 follows using exa
tly the same proof as Lemma 2. Only fewsmall
hanges are needed due to the fa
t that the de
ommitment is now en
rypted (e.g., the adversary
hooses its own en
ryption keys and performs de
ryptions on its own). This
ompletes the proof ofTheorem 4.Remark 2 We note that CtE&S a
hieves non-repudiation by Lemma 2. Also note that the ne
essity ofrelaxed
ommitments holds in the weaker Outsider-se
urity model as well. Finally, we note that CtE&Sparadigm su

essfully applies to the symmetri
 setting as well.Remark 3 We remark that in pra
ti
e, CtE&S
ould be faster or slower than the sequential EtS andStE
ompositions, depending on the spe
i�
s C, E and S. For most eÆ
ien
y on the
ommitment side,however, one
an use the simple
ommitment
 = H(m; r), d = (m; r), where r is a short random stringand H is a
ryptographi
 hash fun
tion (analyzed as a random ora
le). For provable se
urity, one
anuse an almost equally eÆ
ient
ommitment s
heme of [11, 19℄ based on CRHF's.6 On-line/O�-line Sign
ryptionPubli
-key operations are expensive. Therefore, we examine the possibility of designing sign
ryptions
hemes whi
h
ould be run in two phases: (1) the o�-line phase, performed before the messages to besign
rypted is known; and (2) the on-line phase, whi
h uses the message and the pre-
omputation ofthe o�-line stage, to eÆ
iently produ
e the required sign
ryption. We show that the CtE&S paradigmis ideally suited for su
h a task, but �rst we re
all a similar notion for ordinary signatures.13

On-line/Off-line Signatures. On-line/O�-line signatures where introdu
ed by Even et al. [15℄ whopresented a general methodology to transform any signature s
heme into a more eÆ
ient on-line/o�-line signature (by using so
alled \one-time" signatures). Their
onstru
tion, however, is mainly oftheoreti
al interest. Re
ently, Shamir and Tauman [31℄ introdu
ed the following mu
h more eÆ
ientmethod to generate on-line/o�-line signatures, whi
h they
alled \hash-sign-swit
h". The idea is to usetrapdoor
ommitments (see Se
tion 2.3) in the following way. The signer S
hooses two pairs of keys:regular signing keys (SK;VK) Sig-Gen(1k), and trapdoor
ommitment keys (TK;CK) Setup(1k). Skeeps (SK;TK) se
ret, and publishes (VK;CK). In the o�-line phase, S prepares (
; d0) CommitCK(0),and s SigSK(
). In the on-line phase, when the message m arrives, S
reates \fake" de
ommitment(
; d) Swit
hTK((
; d0);m) to m, and outputs (s; d) as the signature. To verify, the re
eiver R
he
ksthat s is a valid signature of
 = Msg(s), and OpenCK(
; d) = m.Noti
e, this is very similar to the auxiliary signature s
heme S 0 we used in Lemma 2. The onlydi�eren
e is that the \fake" pair (
; d) is used instead of Commit(m). However, by the trapdoor
ollisionsproperty of trapdoor
ommitments, we get that (
; d) � Commit(m), and hen
e Lemma 2 | true forany
ommitment s
heme | implies that this modi�ed signature s
heme is indeed se
ure (more detailedproof is given in [31℄). Thus, the resulting signature S 00 essentially returns the same (Sig(
); d) as S 0,ex
ept that the expensive signature Sig is
omputed in the o�-line phase.\Hash-Sign-Swit
h" for Sign
ryption. Now, we
ould use the on-line/o�-line signature S 00 abovewith any of our
omposition paradigms: EtS;StE or CtE&S. In all
ases this would move the a
tualsigning operation into the o�-line phase. For example, EtS will (essentially) return (Sig(
(e)); d(e)),where e En
(m); while StE will return En
(Sig(
(m)); d(m)). We
ould also apply it \dire
tly" tothe CtE&S s
heme. However, CtE&S s
heme already uses
ommitments! So let us see what happenswhen we use a trapdoor
ommitment C instead of any general
ommitment. We see that we still return(Sig(
);En
(d)) (where (
; d) Swit
h(Commit(0);m) � Commit(m)), ex
ept the expensive signaturepart is performed o�-line, exa
tly as we wish. Thus, CtE&S yields a more eÆ
ient (and provably se
ureby Theorem 4) on-line/o�-line implementation than the one we get by blindly applying the \hash-sign-swit
h" te
hnique to the EtS or StE s
hemes.We remark that in this s
heme the trapdoor key TK has to be known to the sender, but not to there
eiver. Hen
e, ea
h user P has to generate its own pair (TK;CK) during key generation, keeping TKas part of SDKP . Also, P should use its own CKP when sending messages, and the sender's CK whenre
eiving messages. Noti
e, sin
e trapdoor
ommitments are information-theoreti
ally hiding, there isno danger for the re
eiver that the sender
hooses a \bad"
ommitment key (the hiding property issatis�ed for all CK's, and it is in sender's interest to
hoose CK so that the binding is satis�ed as well).Adding On-line/Off-line En
ryption. We have su

essfully moved the expensive publi
-key sig-nature to the o�-line phase. What about publi
-key en
ryption? We
an use the folklore te
hnique ofintegrating publi
- and se
ret-key en
ryptions: En
0EK(m) = (En
EK(r); Er(m)). Namely, we en
rypt arandom se
ret-key r for symmetri
 en
ryption E, and then en
rypt the a
tual message m using E withthe key r. Clearly, we
an do the (mu
h more expensive) publi
-key en
ryption En
EK(r) in the o�-linestage. Surprisingly, this folklore te
hnique, whi
h is being extensively used in pra
ti
e, has only re
entlybeen formally analyzed in the CCA2-setting by [12℄. Translated to our terminology, IND-gCCA2-se
ureEn
 and E yield IND-gCCA2-se
ure En
0 above ([12℄ showed this for regular IND-CCA2-se
urity). As aside remark, in the random ora
le model,
lever integration of publi
- and se
ret-key en
ryption allowsus to get IND-CCA2-se
ure En
0 starting from mu
h less se
ure base en
ryption En
 (e.g., see [16, 26℄).Thus, making en
ryption o�-line
an also amplify its se
urity in this setting.Final S
heme. To summarize, we get the following very eÆ
ient on-line/o�-line sign
ryption s
hemefrom any signature S, publi
-key en
ryption E , trapdoor
ommitment C, and symmetri
 en
ryption14

E: (1) in the o�-line stage generate (
; d0) CommitCKS (0), and prepare e1 En
EKR(r), ands SigSKS(
); (2) in the on-line stage,
reate (
; d) Swit
hTKS((
; d0);m), e2 Er(d), and re-turn (s; (e1; e2)). In essen
e, we eÆ
iently
ompute and return (Sig(
); (En
(r); Er(d))), where (
; d) �Commit(m). Sin
e the swit
hing operation and the symmetri
 en
ryption are usually very fast, we getsigni�
ant eÆ
ien
y gain. De
ryption and veri�
ation are obvious.7 Multi-User SettingEven though it is easier to work in the two-user setting, we argued in detail in Se
tion 3.1 that onereally needs multi-user se
urity for most appli
ations of sign
ryption. This is pre
isely the topi
 of thisse
tion.Syntax. So far we have
on
entrated on the network of two users: the sender S and the re
eiverR. On
e we move to the full-
edged multi-user network, several new
on
erns arise. First, users mustnow have identities. We denote by IDP the identity of user P . We do not impose any
onstraintson the identities, other than they should be easily re
ognizable by everyone in the network, and thatusers
an easily obtain the publi
 key VEKP from IDP (e.g., IDP
ould be VEKP). Next, we
hangethe syntax of the sign
ryption algorithm SigEn
 to both take and output the identity of the sender andthe re
eiver. Spe
i�
ally, (1) the sign
ryption for user S, on input, (m; IDS0 ; IDR0), uses VEKR0 andgenerates (u; IDS; IDR0) provided IDS = IDS0 ; (2) the de-sign
ryption for user R, on input (u; IDS0 ; IDR0),uses VEKS0 and outputs ~m provided IDR = IDR0 . It must be
lear from whi
h S0 the message ~m
amefrom. Otherwise this will not be able to satisfy the se
urity property des
ribed below.Se
urity. To break the Outsider-se
urity between a pair of designated users S and R, A is assumedto have all the se
ret keys beside SDKS and SDKR, and has a

ess to the sign
ryption ora
le of S(whi
h it
an
all with any IDR0 and not just IDR) and the de-sign
ryption ora
le for R (whi
h it
an
all with any IDS0 and not just IDS). Naturally, to break the UF-CMA-se
urity, A has to
ome up witha valid sign
ryption (u; IDS ; IDR) of the message m su
h that (m; IDS ; IDR) was not queried earlier tothe sign
ryption ora
le of S. Similarly, to break IND-gCCA2-se
urity of en
ryption, A has to
omeup with m0 and m1 su
h that it
an distinguish SigEn
(m0; IDS ; IDR) from SigEn
(m1; IDS; IDR). Of
ourse, given a
hallenge (u; IDS; IDR), A is disallowed to ask the de-sign
ryption ora
le for R a query(u0; IDS ; IDR) where R(u; u0) = true.We de�ne Insider-se
urity in an analogous manner, ex
ept now the adversary has all the se
ret keysex
ept SDKS when atta
king authenti
ity or SDKR when atta
king priva
y. Also, for UF-CMA-se
urity,a forgery (u; IDS ; IDR0) of a message m is \new" as long as (m; IDS ; IDR0) was not queried (even though(m; IDS ; IDR00)
ould be queried). Similarly, A
ould
hoose to distinguish sign
ryptions (m0; IDS0 ; IDR)from (m1; IDS0 ; IDR) (for any S0), and only has the natural restri
tion on asking de-sign
ryption queriesof the form (u; IDS0 ; IDR), but has no restri
tions on using IDS00 6= IDS0 .Extending Sign
ryption. We
an see that the sign
ryption algorithms that we use so far have tobe upgraded, so that they use the new inputs IDS and IDR in non-trivial manner. For example, if theEtS method is used in the multi-user setting, the adversary A
an easily break the gCCA2-se
urity,even in the Outsider-model. Indeed, given the
hallenge u = (SigS(e); IDS ; IDR), where e = En
R(mb),A
an repla
e the sender's signature with its own by
omputing u0 = (SigA(e); IDA; IDR) and ask R tode-sign
rypt it. Sin
e A has no restri
tions on using IDA 6= IDS in its de-sign
ryption ora
le queries,A
an e�e
tively obtain the de
ryption of e (i.e. mb). Similar atta
k on en
ryption holds for the StEs
heme, while in CtE&S both the en
ryption and the signature su�er from these trivial atta
ks. In otherwords, the s
hemes we designed so far su�er from the identity fraud, sin
e the sign
ryption does not15

\bind together" the message with the identities of the sender and the re
ipient, allowing the adversaryto freely tamper with these identities.It turns out there is a general simple solution to this problem for all the s
hemes we
onsidered sofar: namely, the s
hemes build from general signature and en
ryption. Spe
i�
ally, whatever se
uritywas proven in the two-user setting remains un
hanged for the multi-user setting as long as we followthese simple
hanges to \bind" the message and the identities:1. Whenever en
rypting something, in
lude the identity of the sender IDS together with the en
ryptedmessage.2. Whenever signing something, in
lude the identity of the re
eiver IDR together with the signedmessage.3. On the re
eiving side, whenever either the identity of the sender or of the re
eiver do not mat
hwhat is expe
ted, output ?.Hen
e, we get the following new analogs for EtS, StE and CtE&S in the multi-user setting:� EtS returns (SigS(En
R(m; IDS); IDR); IDS; IDR).� StE returns (En
R(SigS(m; IDR); IDS); IDS; IDR).� CtE&S returns (SigS(
; IDR);En
R(d; IDS); IDS ; IDR), where (
; d) Commit(m).The formal justi�
ation for our generi
 transformation follows by a tedious, but straightforward exten-sion of the
orresponding proofs for two-user setting. We omit the details to the full version.8 On CCA2 Se
urity and Strong UnforgeabilityThis se
tion will be mainly dedi
ated to the
onventional notion of CCA2-atta
k for en
ryption. Mu
hof the dis
ussion also applies to a related notion of strong unforgeability, sUF, for signatures. Despitethe fa
t that one spe
i�es the atta
k model, and the other | the adversary's goal, we will see that therelation between gCCA2/CCA2, and UF/sUF notions is quite similar. We will argue that: (1) gCCA2-atta
k and UF-se
urity are better suited for a \good" de�nition than their stronger but synta
ti
ally illCCA2 and sUF
ounterparts; (2) it is unlikely that the extra strength of CCA2 w.r.t. gCCA2 and sUFw.r.t. UF will �nd any useful appli
ations.Of
ourse, what is stated above is a subje
tive opinion. Therefore, for
omplete referen
e we brie
yindi
ate in Appendix F whi
h of our previous results for sign
ryption (stated for gCCA2/UF notions)extend to the CCA2/sUF notions. Roughly, half of the impli
ations still hold, while the other half failsto do so. As one representative example, EtS is no longer CCA2-se
ure even if E is CCA2-se
ure. A\
ounter-example"
omes when we use a perfe
tly possible UF-CMA-se
ure signature s
heme S whi
halways appends a useless bit during signing. By simply
ipping this bit on the
hallenge
iphertext,CCA2-adversary is now \allowed" to use the de
ryption ora
le and re
over the plaintext. The arti�
ialnature of this \
ounter-example" is perfe
tly highlighted by Theorem 1, whi
h shows that the IND-gCCA2-se
urity of EtS is preserved.Definitional Ne
essity. Even more expli
itly, appending a useless (but harmless) bit to a CCA2-se
ure en
ryption no longer leaves it CCA2-se
ure. It seems a little disturbing that this
learly harmless(albeit useless) modi�
ation does not satisfy the de�nition of \se
ure en
ryption". The
ommon answerto the above
riti
ism is that there is nothing wrong if we be
ame overly stri
t with our de�nitions, as16

long as (1) the de�nitions do not allow for \inse
ure" s
hemes; and (2) we
an meet them. In otherwords, the fa
t that some se
ure, but \useless"
onstru
tions are ruled out
an be tolerated. However,as we illustrated for the �rst time, the
onventional CCA2 notion does rule out some se
ure \useful"
onstru
tions as well. For example, it might have led one to believe that the EtS s
heme is generi
allyinse
ure and should be avoided, while we showed that this is not the
ase.Relation to Non-malleability. We re
all that the
on
ept of indistinguishability is very usefulin terms of proving s
hemes se
ure, but it is not really \natural". It is generally believed that a moreuseful se
urity notion | and the one really important in appli
ations | is that of non-malleability [14℄(denoted NM), whi
h we explain in a se
ond. Lu
kily, it is known [14, 4℄ that IND-CCA2 is equivalentto NM-CCA2, whi
h \justi�es" the use of IND-CCA2 as a simpler notion to work with. And now thatwe relaxed IND-CCA2 to IND-gCCA2, a valid
on
ern arises that we loose the above equivalen
e, andtherefore the justi�
ation for using indistinguishability as our se
urity notion. A
loser look, however,reveals that this
on
ern is merely a synta
ti
 triviality. Let us explain.In essen
e, NM-se
urity roughly states the following: upon seeing some unknown
iphertext e, theonly thing the adversary
an extra
t | whi
h bears any relevan
e to the
orresponding plaintext m |is the en
ryption of this plaintext (whi
h the adversary has anyway). The
urrent formalization of non-malleability additionally requires that the only su
h en
ryption e0 that A
an get is e itself. However,unlike the �rst property, the last requirement does not seem
ru
ial, provided that anybody
an tell thatthe
iphertext e0 en
rypts the same message as e, by only looking at e and e0. In other words, there
ould possibly be no harm even if A
an generate e0 6= e: anyone
an tell that De
(e) = De
(e0), sothere is no point to even
hange e to e0. Indeed, we
an relax the formalization of non-malleability (
allif gNM) by using a de
ryption-respe
ting relation R, just like we did for the CCA2 atta
k: namely, A isnot
onsidered su

essful if it outputs e0 s.t. R(e; e0) = true. On
e this is done, the equivalen
e between\gNM-CCA2" and IND-gCCA2 holds again.Appli
ational Ne
essity. The above argument also indi
ates that gCCA2-se
urity is suÆ
ient forall appli
ations where
hosen
iphertext se
urity matters (e.g., those in [32, 9, 8℄). Moreover, it isprobably still a slight overkill in terms of a ne
essary and suÆ
ient formalization of \se
ure en
ryption"from the appli
ational point of view. Indeed, we tried to relax the notion of CCA2-se
urity to theminimum extent possible, just to avoid the synta
ti
 problems of CCA2-se
urity. In parti
ular, we arenot aware of any \natural" en
ryption s
heme in the gap between gCCA2 and CCA2-se
urity.5 Theonly thing we are saying is that the notion of gCCA2 se
urity is more robust to synta
ti
 issues, seemsmore appli
able for studying generi
 properties of \se
ure en
ryption", while also being suÆ
ient for itsappli
ations.Strong Unforgeability. Finally, we brie
y remark on the
on
ept of sUF-se
urity for signatures.To the best of our knowledge, the extra guarantees of this
on
ept have no realisti
 appli
ations (whilesu�ering similar synta
ti
 problems as CCA2-se
urity does). Indeed, on
e the message m is signed,there is no use to produ
e a di�erent signature of the same message: the adversary already has a validsignature of m. The only \appli
ation" we are aware of is building CCA2-se
ure en
ryption from aCPA-se
ure en
ryption, via the EtS method. As we demonstrated in Theorem 2, sUF-se
urity is nolonger ne
essarily on
e we a

ept the
on
ept of gCCA2-se
urity.5In other words, the separating examples we know about all start with a CCA2-se
ure en
ryption, and make a more
ompli
ated \
ounter-example" out of it. Very re
ently, a natural separation was given by [13℄, but for the setting ofbroad
ast (rather than ordinary) en
ryption.
17

Referen
es[1℄ J. An and M. Bellare, \Does en
ryption with redundan
y provide authenti
ity?," In Euro
rypt '01, pp. 512{528, LNCS Vol. 2045.[2℄ J. An and Y. Dodis, \Se
ure integration of symmetri
- and publi
-key authenti
ated en
ryption."Manus
ript, 2002.[3℄ J. Baek, R. Steinfeld, and Y. Zheng, \Formal proofs for the se
urity of sign
ryption," In PKC '02, 2002.[4℄ M. Bellare, A. Desai, D. Point
heval and P. Rogaway, \Relations among notions of se
urity for publi
-keyen
ryption s
hemes," In Crypto '98, LNCS Vol. 1462.[5℄ M. Bellare and C. Namprempre, \Authenti
ated En
ryption: Relations among Notions and Analysis of theGeneri
 Composition Paradigm," In Asia
rypt '00 , LNCS Vol. 1976.[6℄ M. Bellare, P. Rogaway, \En
ode-Then-En
ipher En
ryption: How to Exploit Non
es or Redundan
y inPlaintexts for EÆ
ient Cryptography," In Asia
rypt '00, LNCS Vol 1976.[7℄ G. Brassard, D. Chaum, and C. Cr�epeau, \Minimum dis
losure proofs of knowledge," JCSS, 37(2):156{189,1988.[8℄ R. Canetti, \Universally Composable Se
urity: A New Paradigm for Cryptographi
 Proto
ols," In Pro
.42st FOCS, pp. 136{145. IEEE, 2001.[9℄ R. Canetti and H. Kraw
zyk, \Analysis of Key-Ex
hange Proto
ols and Their Use for Building Se
ureChannels," In Euro
rypt '01 , pp. 453{474, LNCS Vol. 2045.[10℄ D. Chaum and H. Van Antwerpen, \Undeniable signatures," In Crypto '89 , pp. 212{217, LNCS Vol. 435.[11℄ I. Damg�ard, T. Pedersen, and B. P�tzmann, \On the existen
e of statisti
ally hiding bit
ommitments
hemes and fail-stop signatures," In Crypto '93, LNCS Vol. 773.[12℄ G. Di Cres
enzo, J. Katz, R. Ostrovsky, and A. Smith, \EÆ
ient and Non-intera
tive Non-malleable Com-mitment," In Euro
rypt '01 , pp. 40{59, LNCS Vol. 2045.[13℄ Y. Dodis, N. Fazio, \On Adaptive and CCA Se
urity for Publi
 Key Tra
e and Revoke S
hemes",manus
rypt, 2002.[14℄ D. Dolev, C. Dwork and M. Naor, \Non-malleable
ryptography," In Pro
. 23rd STOC, ACM, 1991.[15℄ S. Even, O. Goldrei
h, and S. Mi
ali, \On-Line/O�-Line Digital S
hemes," In Crypto '89 , pp. 263{275,LNCS Vol. 435.[16℄ E. Fujisaki and T. Okamoto, \Se
ure integration of asymmetri
 and symmetri
 en
ryption s
hemes," InCrypto '99, pp. 537{554, 1999, LNCS Vol. 1666.[17℄ S. Goldwasser and S. Mi
ali, \Probabilisti
 en
ryption," JCSS, 28(2):270{299, April 1984.[18℄ S. Goldwasser, S. Mi
ali, and R. Rivest, \A digital signature s
heme se
ure against adaptive
hosen-messageatta
ks," SIAM J. Computing, 17(2):281{308, April 1988.[19℄ S. Halevi and S. Mi
ali, \Pra
ti
al and provably-se
ure
ommitment s
hemes from
ollision-free hashing,"In Crypto '96, pp. 201{215, 1996, LNCS Vol. 1109.[20℄ W. He and T. Wu, \Cryptanalysis and Improvement of Petersen-Mi
hels Sign
ryption S
hemes," IEEComputers and Digital Communi
ations, 146(2):123{124, 1999.[21℄ C. Jutla, \En
ryption modes with almost free message integrity," In Euro
rypt '01, pp. 529{544, LNCS Vol.2045.[22℄ J. Katz and M. Yung, \Unforgeable En
ryption and Chosen Ciphertext Se
ure Modes of Operation," InFSE '00, pp. 284{299, LNCS Vol. 1978.[23℄ H. Kraw
zyk, \The Order of En
ryption and Authenti
ation for Prote
ting Communi
ations (or: HowSe
ure Is SSL?)," In Crypto '01 , pp. 310{331, LNCS Vol. 2139.[24℄ H. Kraw
zyk and T. Rabin, \Chameleon Signatures," In NDSS '00, pp. 143{154, 2000.[25℄ M. Naor and M. Yung, \Universal One-Way Hash Fun
tions and their Cryptographi
 Appli
ations," InPro
. 21st STOC, pp. 33{43, ACM, 1989. 18

[26℄ T. Okamoto and D. Point
heval, \Rea
t: Rapid enhan
ed-se
urity asymmetri

ryptosystem transform,"In CT-RSA '01, pp. 159{175, 2001, LNCS Vol. 2020.[27℄ H. Petersen and M. Mi
hels, \Cryptanalysis and Improvement of Sign
ryption S
hemes," IEE Computersand Digital Communi
ations, 145(2):149{151, 1998.[28℄ C. Ra
ko� and D. Simon, \Non-Intera
tive zero-knowledge proof of knowledge and
hosen
iphertext at-ta
k," In Crypto '91, LNCS Vol. 576.[29℄ P. Rogaway, M. Bellare, J. Bla
k, and T. Krovetz, \OCB: A Blo
k-Cipher Mode of Operation for EÆ
ientAuthenti
ated En
ryption," In Pro
. 8th CCS, ACM, 2001.[30℄ C. S
hnorr and M. Jakobsson, \Se
urity of Signed ElGamal En
ryption," In Asia
rypt '00 , pp. 73{89,LNCS Vol. 1976.[31℄ A. Shamir and Y. Tauman, \Improved Online/O�ine Signature S
hemes," In Crypto '01 , pp. 355{367,LNCS Vol. 2139.[32℄ V. Shoup, \On Formal Models for Se
ure Key Ex
hange," Te
hni
al Report RZ 3120, IBM Resear
h, 1999.[33℄ V. Shoup, \A proposal for an ISO standard for publi
 key en
ryption (version 2.1)," Manus
ript, De
. 20,2001.[34℄ D. Simon, \Finding Collisions on a One-Way Street: Can Se
ure Hash Fun
tions Be Based on GeneralAssumptions?," In Euro
rypt '98 , pp. 334{345, LNCS Vol. 1403.[35℄ Y. Tsiounis and M. Yung, \On the Se
urity of ElGamal Based En
ryption," In PKC '98 , pp. 117{134,LNCS Vol. 1431.[36℄ Y. Zheng, \Digital Sign
ryption or How to A
hieve Cost(Signature & En
ryption) � Cost(Signature) +Cost(En
ryption)," In Crypto '97, pp. 165{179, 1997, LNCS Vol. 1294.[37℄ Y. Zheng and H. Imai, \EÆ
ient Sign
ryption S
hemes on Ellipti
 Curves," Information Pro
essing Letters,68(5):227{233, De
ember 1998.

19

A Proof of Theorem 1We sket
h the proofs of all four
laims.(1) UF-CMA-se
urity of EtS. Take any forger A0 for the EtS. We
an easily
onstru
t the forgerA for S that has identi
al probability of forging signatures. A views the keys of S as (SKS ;VKS), andby itself pi
ks a pair of en
ryption keys (EKR;DKR) En
-Gen(1k). A then hands (EKR;DKR;VKS)to A0, as the publi
 key of the indu
ed signature s
heme. Next, A
an easily simulate the sign
ryptionquery of A0 for message m0 by �rst
reating e0 En
R(m0) and then asking the signing ora
le for S tosign e0. Finally, when A0 produ
es a forgery u for EtS, A outputs u as well. Noti
e that if u is a validsign
ryption of some new message m (w.r.t. EtS), then u is a valid signature of e = Msg(u) (w.r.t. S).Moreover, sin
e m is new, m = De
R(e) and the en
ryption E is
ommitting, e
ould not have beensigned by the signing ora
le, so e is indeed a new message w.r.t. S.(2) UF-CMA-se
urity of StE. The proof is
ompletely identi
al to the above with few minor di�er-en
es. Now, A simulates the sign
ryption query m0 of A0 by �rst asking the ora
le for S to produ
e thesignature s0 for m0, and then returning u0 En
R(s0). Similarly, when A0 produ
es a forged sign
ryp-tion u of a new message m (w.r.t. StE), A outputs De
R(u) (whi
h it
an do eÆ
iently). Finally, noti
ethat if u is a valid sign
ryption of some new m (w.r.t. StE), then s = De
R(u) is a valid signature ofthis new m (w.r.t. S).(3) IND-gCCA2-se
urity of EtS. As a new element with gCCA2-se
urity, we �rst have to deal withthe equivalen
e relation. So let R be the equivalen
e relation w.r.t. whi
h E is se
ure. We de�ne theequivalen
e relation for the indu
ed en
ryption R0 for EtS to be R0(u1; u2) = R(e1; e2), if ea
h ui isvalid signature of ei = Msg(ui) w.r.t. VKR, and false otherwise. We
he
k that R0 is de
ryption-respe
ting. Indeed, for R0(u1; u2) = true, we have that ea
h ui is a valid signature of ei, and also thatDe
R(e1) = De
R(e2) (sin
e R is de
ryption-respe
ting), whi
h means that VerDe
(u1) = VerDe
(u2)indeed.Now, assume EtS is not CCA2 se
ure w.r.t. R0. We show that the same holds for E w.r.t. to Ras well. To do this, we take any distinguisher A0 for EtS and
onstru
t A for E as follows. A viewsthe keys of E as (EKR;DKR), and by itself pi
ks a pair of signing keys (SKS ;VKS) Sig-Gen(1k). Athen hands (EKR;SKS ;VKS) to A0, as the publi
 key of the indu
ed en
ryption s
heme. To simulatethe de-sign
ryption query u0 made by A0, A �rst
he
ks that u0 is a valid signature of e0 = Msg(u0)(if not, it returns ?), and then asks its own de
ryption ora
le to de
rypt e0. Next, when A0 outputsa pair of messages m0 and m1, A0 outputs the same pair. Then, when A by itself gets the
hallengee = En
R(mb) (for unknown b), it hands u SigS(e) to A0. Now, the de�nition of R0 tells us that A0is disallowed to de-sign
rypt any u0 whi
h a valid signature of e0 satisfying R(e; e0) = true. But su
he0 are the only queries that A itself is disallowed to ask its de
ryption ora
le! Thus, A
an still handleall the legal de-sign
ryption queries of A0, in the same manner as before. Finally, A outputs the sameguess b0 that A0 outputs, whi
h
learly gives A the same probability of being
orre
t as A0 has.(4) IND-gCCA2-se
urity of StE. Again, the proof is very similar to the above with few smalldi�eren
es. First, the relation R0 is now the same as the relation R. Noti
e, it is de
ryption-respe
tingw.r.t. StE sin
e if R(u1; u2) = true, it means that s1 = De
R(u1) = De
R(u2) = s2 (sin
e R isde
ryption-respe
ting w.r.t. E), and this implies that m1 = Msg(s1) = Msg(s2) = m2. Se
ond,A simulates the de-sign
ryption query u0 made by A0, by �rst de
rypting u0 into s0 (using its ownde
ryption ora
le), and then
he
king if s0 is a valid signature of m0 = Msg(s0). Third, when A0 outputsa pair of messages m0 and m1, A0 outputs s0 and s1, where si = SigS(mi) (noti
e, A
an sign by itself),and then gives A0 the same
hallenge u = En
R(sb) it gets. Finally, the de�nition of R0 = R tells us20

that A0 is disallowed to de-sign
rypt any u0 satisfying R(u; u0) = true, whi
h again are the only queriesthat A itself is disallowed to ask its de
ryption ora
le!B Proof of Theorem 2The proof of UF-CMA-se
urity is the same as in Theorem 1, sin
e we did not use the se
urity ofen
ryption there. Thus, we
on
entrate on showing IND-gCCA2-se
urity. First, we de�ne the equivalen
erelation R0 by: R0(u1; u2) = (e1 ?= e2), if ea
h ui is a valid signature of ei = Msg(ui) w.r.t. VKR,and false otherwise. We already
he
ked in Theorem 1 that this R0 is de
ryption-respe
ting (as it
orresponds to R being the equality relation).Next, let A0 be the adversary breaking IND-gCCA2-se
urity of EtS in the Outsider-se
urity model.Re
all, A0 only knows pub = (EKR;VKS), but has a

ess to the sign
ryption and the de-sign
ryptionora
les SigEn
 and VerDe
. By assumption, Pr(~b = b) � 12 + ", where the probability is taken over theall the randomness needed to perform the run of A0 (as des
ribed in Se
tion 3), b is the real index of themessage being sign
rypted, and ~b is the guess of A0. Let Forged denote the following event: somewhereduring its run, A0
alled its de-sign
ryption ora
le VerDe
 on some value u satisfying:1. u is a valid signature of e = Msg(u) w.r.t. S, i.e. VerS(u) = su

eed; and2. u was not given to A0 by the sign
ryption ora
le SigEn
 so far.Intuitively, if Forged happened, than A0 broke the se
urity of signature S, else the de-sign
ryption ora
leVerDe
 is useless, and A0 breaks IND-CPA-se
urity of E . Formally, we have" � Pr�b = ~b�� 12 = �Pr(b = ~b ^ Forged) + Pr(b = ~b ^ Forged)�� 12� Pr(Forged) +�Pr(b = ~b ^ Forged)� 12�Hen
e, we either have Pr(Forged) � "2 , or Pr(b = ~b ^ Forged) � 12 + "2 . We treat these separately.Case 1: Pr(Forged) � "2 . We show that we
an
onstru
t forger A1 whi
h breaks UF-CMA-se
urityof S, whi
h is a
ontradi
tion. Our forger A1 behaves exa
tly in the same way as the forger in theproof of Theorem 1, ex
ept: (1) it simulates the sign
ryption ora
le SigEn
 as before by asking its ownsigning ora
le to sign e En
R(m); (2) it simulates the de-sign
ryption ora
le (whi
h was not ne
essaryin Theorem 1) expli
itly using its knowledge of DKR whi
h it had pi
ked; (3) it does not wait for A0to
omplete, but instead waits for the event Forged to happen (whi
h it
an easily
he
k by itself),and outputs forgery u when u triggering Forged is given by A0; (4) it announ
es failure if Forged doesnot happen during the run of A0. By the assumption that Pr(Forged) � "=2, A1 indeed
ontradi
tsUF-CMA-se
urity of S.Case 2: Pr(b = ~b ^ Forged) � 12+ "2 . First, we note that when Forged does not happen, all the queriesu0 that A0 gives to VerDe
 have one of the following two forms: (a) VerS(u0) = fail; or (b) u0 was alreadyreturned by SigEn
 on some query m0. Well, in type (a) queries A0
an
he
k by itself that VerDe
 willreturn ? sin
e the \outside" signature does not
he
k, while in type (b) queries there was no need tosubmit u0 in the �rst pla
e, sin
e A0 already knows the answer m0. Overall, the de-sign
ryption ora
leis useless: A0
an
ompute all the answers by itself and CPA-se
urity suÆ
es.Formally, we show that we
an
onstru
t an adversary A2 whi
h would break the IND-CPA-se
urityof E . Again, A2 behaves the same as the adversary used in Theorem 1, ex
ept: (1) it simulates the21

sign
ryption ora
le (whi
h was not ne
essary in Theorem 1) expli
itly using its knowledge of SKS whi
hit had pi
ked; (2) it keeps tra
k of all the pairs (m0; u0) that were simulated by the sign
ryption ora
le;(3) it announ
es failure if the event Forged ever happens (whi
h it
an easily
he
k); (4) it simulates thede-sign
ryption ora
le on u0 by outputting ? on type (a) queries, and outputting the
orresponding m0on type (b) queries (by using the table kept in rule (2)). It is
lear than if Forged does not happen, A2exa
tly simulates the behavior of A0, and hen
e su

eeds with overall probability at least 12 + "2 .C Proof of Theorem 3The proof of IND-gCCA2-se
urity is the same as in Theorem 1, sin
e we did not use the se
urity ofsignature there. Thus, we
on
entrate on showing UF-CMA-se
urity. Let A0 by PPT adversary trying tobreak UF-CMA-se
urity of StE in the Outsider-se
urity model. Re
all, A0 only knows pub = (EKR;VKS),but has a

ess to sign
ryption and the de-sign
ryption ora
les SigEn
 and VerDe
. Let m1; : : : ;mt bethe queries A0 asked the sign
ryption ora
le, and u1; : : : ; ut be the
orresponding answers. Without lossof generality, we assume that A0 never asks its de-sign
ryption ora
le any query u0 whi
h is equivalent toone of the ui's returned so far, i.e. where R0(u0; ui) = true (re
all from Theorem 1 that the equivalen
erelation for StE was R0 = R, i.e. the same as that for E). Indeed, sin
e R0
an be evaluated by A0, andR0 is de
ryption-respe
ting, there is no need for A to ask su
h a query | it already knows the answermi.Now, we use the standard hybrid argument. Let Env0 denote the usual environment for A0, whi
hhonestly answers all the sign
ryption and de-sign
ryption queries of A0. Spe
i�
ally, the sign
ryptionquery mi is answered by generating si SigS(mi) and returning ui En
R(si). Let Su

0(A0) be thesu

ess probability (i.e., that of forging a new sign
ryption) of A0 in Env0. Next, we de�ne the following\hybrid" environments Envj , 1 � j � t. Ea
h Envj is identi
al to Env0 above, ex
ept for one aspe
t:for the �rst j queries mi (1 � i � j) to the sign
ryption ora
le, instead of returning ui En
R(si),Envi returns a random en
ryption of 0: ui En
R(0). We let Su

j(A0) be the su

ess probability ofA0 in Envj . Noti
e, Envt answers all t queries \in
orre
tly".We make two
laims: (a) using the IND-gCCA2-se
urity of E , no PPT adversary A0
an distinguishEnvj�1 from Envj, for any 1 � j � t, i.e. Su

j�1(A0) � Su

j(A0) � negl(k); (2) using UF-NMA-se
urity of S, Su

t(A0) � negl(k), for any PPT A0. Combined,
laims (a) and (b) imply our theorem,sin
e t is polynomial and Su

0(A0) � (t+ 1) � negl(k) = negl(k).Proof of Claim (a). If for some A0, Su

j�1(A0)� Su

j(A0) > " for non-negligible ", we
reate A1that will break the IND-gCCA2-se
urity of E with probability ". A1 views the keys of E as (EKR;DKR),by itself pi
ks a pair of signing keys (SKS ;VKS) Sig-Gen(1k), and hands pub = (EKR;VKS) to A0.A1 simulates all the de-sign
ryption queries u0 of A0 by using its own de
ryption ora
le on u0, and thenvalidating the signature s it gets ba
k, before returning the messagem = Msg(s) to A0. Simulation of thesign
ryption ora
le is more intri
ate. A1 simulates the �rst (j�1) sign
ryption queries ui \in
orre
tly",by returning ui En
R(0). At the j-th query mj, A1 sets sj SigS(mj) and
laims to distinguishthe en
ryption of sj from the en
ryption of 0. When given to distinguish an en
ryption (
all it uj for
onsisten
y) of either 0 or sj , A1 hands uj to A0 as a sign
ryption of mj. From that point on, all theremaining sign
ryption queries mi are answered \
orre
tly": ui En
R(SigS(mi)).After A0 returns a
andidate forgery u, A1
he
ks if u is indeed a valid forgery by: (1)
he
king thatu is not equivalent to any of the ui's, in
luding uj; (2) using its de
ryption ora
le on u, thus obtainingthe presumed signature s; (3) validating that s is a valid signature of m = Msg(u); and (4)
he
kingthat m 62 fm1 : : : mtg. If all of the above su

eed, A1 guesses that the
hallenge uj was the en
ryptionof sj (i.e., A0 was run in Envj�1), else it
ips a random
oin. We note that if uj was the en
ryption of22

sj, we indeed ran A0 in Envj�1, otherwise, we ran it in Envj . From the assumption, we get that theprobability of A1 being
orre
t is 12 + "2 , a
ontradi
tion.However, to
omplete the proof of
laim (a), we also need to
he
k that A1 never asked its de
ryptionora
le to de
rypt some u0 equivalent (w.r.t. R) to the
hallenge uj. But we assumed that A0 never asksits de-sign
ryption ora
le a query u0 equivalent (w.r.t. R0) to any of the ui's (in parti
ular, uj). Sin
eR0 = R and A1 only uses the de
ryption ora
les to answer de-sign
ryption queries of A0 and to de
ryptu, this is indeed so.Proof of Claim (b). We note that in Envt, the questions to the sign
ryption ora
le are \useless":A0
ould have gotten the answers by itself by returning En
R(0). More formally, assuming A0 forgesa new sign
ryption with probability " in Envt, we
an build a forger A2 for S that will
ontradi
tthe UF-NMA-se
urity of S. A2 views the keys of S as (SKS ;VKS), by itself pi
ks a pair of en
ryptionkeys (EKR;DKR) En
-Gen(1k), and hands pub = (EKR;VKS) to A0. From there on, A2 simulates thede-sign
ryption queries u0 by getting s0 = De
R(u0) and returningm0 = Msg(s0) if VerR(s0) = su

eed. Italso simulates the sign
ryption queries by returning En
R(0). When A0 returns a forgery u, A2 outputss = De
(u). It is easy to see that A2 exa
tly re
reates Envt,
ompleting the proof.D Proof of Lemma 1For one dire
tion, we show that if C does not satisfy the hiding property, then E
annot even be IND-CPA-se
ure, let alone IND-gCCA2-se
ure. Indeed, if some adversary A
an �nd m0;m1 s.t.
(m0) 6�
(m1),then obviously En
0(m0) � (
(m0);En
(d(m0))) 6� (
(m1);En
(d(m1))) � En
0(m1),
ontradi
ting IND-CPA-se
urity.Conversely, assume C satis�es the hiding property, and let R be the de
ryption-respe
ting equiv-alen
e relation w.r.t. whi
h E is IND-CCA2-se
ure. We let the equivalen
e relation R0 for E 0 beR0((
1; e1); (
2; e2)) = true i� R(e1; e2) = true and
1 =
2. It is easy to see that R0 is de
ryption-respe
ting, sin
e if di = De
(ei), then R0((
1; e1); (
2; e2)) = true implies that (
1; d1) = (
2; d2), whi
himplies that m1 = Open(
1; d1) = Open(
2; d2) = m2.We now show IND-CCA2-se
urity of E 0 w.r.t. R0. For that, let Env1 denote the usual environmentwhere we pla
e any adversary A0 for E 0. Namely, (1) in �nd Env1 honestly answers the de
ryptionqueries of A0; (2) after m0 and m1 are sele
ted, Env1 pi
ks a random b, sets (
b; db) Commit(mb),eb En
(db) and returns ~e = En
0(mb) = (
b; eb); (3) in guess, Env1 honestly answers de
ryptionquery e0 = (
; e) provided R0(e0; ~e) = false. We
an assume that A0 never asks a query (
; e) whereR(e; eb) = true but
 6=
b. Indeed, by our assumption only the value
 =
b will
he
k with db, so theanswer to queries with
 6=
b is ? (and A0 knows it). Hen
e, we
an assume that R0(e0; ~e) = falseimplies that R0(e; eb) = false. We let Su

1(A0) denote the probability A0 su

eeds in predi
ting b.Then, we de�ne the following \fake" environment Env2. It is identi
al to Env1 above, ex
ept for oneaspe
t: in step (2) it would return bogus en
ryption ~e = (
(0); eb), i.e. puts the
ommitment to the zerostring 0 instead of the expe
ted
b. In parti
ular, step (3) is the same as before with the understandingthat R0(e0; ~e) is evaluated with the fake
hallenge ~e. We let Su

2(A0) be the su

ess probability of Ain Env2.We make two
laims: (a) using the hiding property of C, no PPT adversary A0
an distinguish Env1from Env2, i.e. jSu

1(A0) � Su

2(A0)j � negl(k); (b) using IND-gCCA2-se
urity of E , Su

2(A0) <12 + negl(k), for any PPT A0. Combined,
laims (a) and (b) imply the lemma.Proof of Claim (a). If for some A0, Su

1(A0) � Su

2(A0) > " for non-negligible ", we
reate A1that will break the hiding property of C. A1 pi
ks (EK;DK) En
-Gen(1k) by itself, and runs A023

(answering its de
ryption queries using DK) until A0 outputs m0 and m1. At this stage A1 pi
ks arandom b f0; 1g, and
laims to be able to distinguish
(0) from
b =
(mb). When presented with ~
| a
ommitment to either 0 or mb | A1 will return to A0 the \
iphertext" ~e = (~
; eb). A1 will thenagain run A0 to
ompletion refusing to de
rypt e0 su
h that R0(e0; ~e) = true. When A0 outputs ~b, A1says that the message was mb if A0 su

eeds (~b = b), and says 0 otherwise. It is easy to
he
k thatin
ase ~
 =
(mb) =
b, A0 was run exa
tly in Env1, otherwise | in Env2, whi
h easily implies thatPr(A1 su

eeds) � 12 + "2 , a
ontradi
tion.Proof of Claim (b). If for some A0, Su

2(A0) > 12 + ", we
reate A2 whi
h will break IND-gCCA2-se
urity of E . Spe
i�
ally, A2
an simulate the de
ryption query e0 = (
; e) of A0 by asking its ownde
ryption ora
le to de
rypt d = De
(e), and returning Open(
; d). When A0 outputs m0 and m1, A2sets (
i; di) Commit(mi) and
laims to distinguish d0 and d1. When given
hallenge eb En
(db) forunknown b, A2 gives A0 the
hallenge ~e = (
(0); eb). Then, again, A2 uses its own de
ryption ora
le toanswer all queries e0 = (
; e) as long as R0(e0; ~e) = false. From the de�nition of R0 and our assumptionearlier, we see that R(e; eb) = false as well, so all su
h queries are legal. Sin
e A2 exa
tly re
reates theenvironment Env2 for A0, A2 su

eeds with probability Su

2(A0) > 12 + ".E Proof of Lemma 2For one dire
tion, we show that if C does not satisfy the relaxed binding property, then S 0
annotbe UF-CMA-se
ure. Indeed, assume for some adversary A
an produ
e m su
h that when (
; d) Commit(m) is generated and given to A, A
an �nd (with non-negligible probability ") a value d0 su
hthat Open(
; d0) = m0 and m0 6= m. We build a forger A0 for S 0 using A. A0 gets m from A, and asksits signing ora
le to sign m. A0 gets ba
k (s; d), where s is a valid signature of
, and (
; d) is a random
ommitment pair for m. A0 gives (
; d) to A, and gets ba
k (with probability ") the value d0 su
h thatOpen(
; d0) = m0 di�erent from m. But then (s; d0) is a valid signature (w.r.t. S 0) of a \new" messagem0,
ontradi
ting the UF-CMA-se
urity of S.Conversely, assume some forger A0 breaks the UF-CMA-se
urity of S 0 with non-negligible probability". Assume A0 made (wlog exa
tly) t = t(k) ora
le queries to Sig0 for some polynomial t(k). For 1 � i � t,we letmi be the i-th message A0 asked to sign, and (si; di) be its signature (where (
i; di) Commit(mi)and si Sig(
i)). We also let m; s; d;
 have similar meaning for the message that A0 forged. Finally,let Forged denote the event that
 62 f
1; : : : ;
tg. Noti
e," < Pr(A0 su

eeds) = Pr(A0 su

eeds ^ Forged) + Pr(A0 su

eeds ^ Forged)Thus, at least one of the probabilities above is � "=2. We show that the �rst
ase
ontradi
ts theUF-CMA-se
urity of S, while the se
ond
ase
ontradi
ts the relaxed binding property of C.Case 1: Pr(A0 su

eeds ^ Forged) � "=2. We
onstru
t a forger A1 for S. It simulates the run ofA0 by generating a
ommitment key CK by itself, and using its own signing ora
le to answer the signingqueries of A0: set (
i; di) Commit(mi), get si Sig0(
i) from the ora
le, and return (si; di). WhenA0 forges a signature (s; d) of m w.r.t. S 0, A1 forges a signature s of
 w.r.t. S. Noti
e,
 is a \newforgery" in S i� Forged happens. Hen
e, A1 su

eeds with probability at least "=2, a
ontradi
tion toUF-CMA-se
urity of S.Case 2: Pr(A0 su

eeds ^ Forged) � "=2. We
onstru
t an adversary A2
ontradi
ting the relaxedbinding property of C. A2 will generate its own key pair (SK;VK) Sig-Gen(1k), and will also pi
k arandom index 1 � i � t. It simulates the run of A0 in a standard manner (same way as A1 above) up tothe point where A0 asks its i-th query mi. At this stage A2 outputs mi as its output to the �nd stage.24

When re
eiving ba
k random (
i; di) Commit(mi), it uses them to sign mi as before (i.e., returns(Sig(
i); di) to A0), and keeps simulating the run of A0 in the usual manner. When A outputs the forgery(s; d) of a message m, A2
he
ks if
i =
 (Msg(s)) and mi 6= m. If this fails, it fails as well. Otherwise,it outputs d as its �nal output to the
ollide stage. We note that when Forged does not happen, i.e.
 2 f
1 : : :
tg, we have
 =
i with probability at least 1=t. Thus, with overall non-negligible probability"=(2t) we have that: (1) m 6= mi (A0 outputs a new message m); (2)
i =
 (Forged did not happen andA2
orre
tly guessed i su
h that
i =
); (3) Open(
; d) = m and Open(
; di) = mi. But this exa
tlymeans that A2 broke the relaxed binding property of C, a
ontradi
tion.F Summary of Impli
ations for CCA2/sUF NotionsWe indi
ate whi
h of our results for sign
ryption (stated for gCCA2/UF notions) extend to the CCA2/sUFnotions.En
rypt-then-sign EtS. EtS sign
ryption preserves sUF unforgeability for signatures (sin
e thesignature is applied on the outside layer). However, EtS does not in general preserve the CCA2-se
urityfor the en
ryption. In parti
ular, CCA2-se
urity is not preserved in the Insider-se
urity model as long asthe signature is probabilisti
. Indeed, the sender S
an always regenerate a new signature of e = Msg(u),when given the
hallenge u to de-sign
rypt. In the Outsider-se
urity model, CCA2-se
urity is notne
essarily preserved as well, provided the signature S is not strongly unforgeable. Indeed, if S allowsthe adversary to obtain a di�erent signature of the same message (e.g., the last bit of the signature is\useless"), then the adversary
an de
rypt u = SigS(e) by simply
hanging u to a di�erent signatureu0 of e, and asking its ora
le to de-sign
rypt u0 (whi
h is now arti�
ially \di�erent" from the
hallengeu). On a positive note, if S is sUF-CMA-se
ure, then we easily obtain the analog of Theorem 2 in theOutsider-model: EtS ampli�es the se
urity of E from CPA to CCA2 level.Sign-then-en
rypt StE. The results get
ompletely \reversed"
ompared with the EtS sign
ryption.Now, IND-CCA2-se
urity is preserved (sin
e the en
ryption is applied on the outside layer). However,StE does not in general preserve the sUF-CMA-se
urity for the signature. In parti
ular, sUF-CMA-se
urity is never preserved in the Insider-se
urity model sin
e the en
ryption must be probabilisti
.Indeed, the re
eiver R
an always regenerate a new en
ryption of s = De
R(u), resulting in a newsign
ryption of the same message. In the Outsider-se
urity model, sUF-CMA-se
urity is not ne
essarilypreserved as well, provided the equivalen
e relation of the IND-gCCA2-se
ure en
ryption s
heme E isnot the identity and E allows the adversary to obtain a di�erent en
ryption of the same message (e.g.,the last bit of the en
ryption is \useless"). Indeed, then the adversary
an forge a new sign
ryptionof the same message by simply
hanging u = En
R(s) to a di�erent en
ryption u0 of s. On a positivenote, if E is IND-CCA2-se
ure, then we easily obtain the analog of Theorem 3 in the Outsider-model:StE ampli�es the se
urity of S from UF-NMA to sUF-CMA level.Commit-then-en
rypt-and-sign CtE&S. First, the auxiliary Lemma 1 about En
0(m) = (
;En
(d))still holds. Indeed, the equivalen
e relation R0 remains the equality relation when R is the equalityrelation. On the other hand, Lemma 2 about Sig0(m) = (Sig(
); d) does not hold as stated, sin
e relaxedbinding leaves open the possibility of �nding a value d0 6= d su
h that Open(
; d) = Open(
; d0) (say,the last bit of d is \useless"). However, if we strengthen the relaxed binding property to say thatone
annot even �nd a di�erent
ommitment pair (
; d0) to the same message, then sUF-CMA-se
uritywill be preserved in Lemma 2. In any event, despite these results for auxiliary lemmas, the analog ofTheorem 4 does not hold in the Insider-se
urity model for either IND-CCA2 or sUF-CMA, sin
e signaturesand en
ryptions are usually probabilisti
. 25

