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1 Introduction

1.1 Selfish Routing and Marginal

Cost Pricing

We study the negative consequences of selfish be-
havior in networks and economic means of in-
fluencing such behavior. We focus on a simple
model of selfish routing, defined by Wardrop [12]
and first studied from a theoretical computer
science perspective by Roughgarden and Tar-
dos [10]. In this model, we are given a directed
network in which each edge possesses a latency
function, describing the common latency (delay)
experienced by all traffic on the edge as a func-
tion of the edge congestion. There is a fixed
amount of traffic wishing to travel from a source
vertex s to a sink vertex t, and we assume that
the traffic comprises a very large population of
users, so that the actions of a single individual
have negligible effect on network congestion. A
common way to measure the quality of an assign-
ment of traffic to s-t paths is by the sum of all
travel times—the total latency. We assume that
each network user acts selfishly and routes itself
on a minimum-latency path, given the network
congestion due to the other users. In general
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such a “selfishly motivated” assignment of traffic
to paths (a Nash equilibrium) does not minimize
the total latency; put differently, the outcome
of selfish behavior can be improved upon with
coordination.

The inefficiency of selfish routing (and of Nash
equilibria more generally) motivates strategies
for coping with selfishness—methods for ensuring
that noncooperative behavior results in a socially
desirable outcome. For selfish routing, an an-
cient strategy—discussed informally as early as
1920 [8]—is marginal cost pricing, also known as
congestion, externality, or Pigouvian taxes. The
principle of marginal cost pricing asserts that on
each edge, each network user on the edge should
pay a tax equal to the additional delay its pres-
ence causes for the other users on the edge. Sev-
eral decades later, researchers showed that this
principle leads to the following rigorous guaran-
tee [1]: assuming all network users choose routes
to minimize the sum of the latency experienced
and taxes paid, it is possible to levy a tax on
each network edge so that the resulting Nash
equilibrium achieves the minimum-possible total
latency. Briefly, the inefficiency of selfish rout-
ing can always be eradicated by pricing network
edges appropriately.

This guarantee, while fundamental, is unsatis-
fying in several respects. First, it assumes a very
strong homogeneity property: even though the
model assumes a very large number of network
users, all users are assumed to trade off time and
money in an identical way. How should edges be
priced with heterogeneous network users?

Second, the guarantee ignores the algorith-
mic aspect of edge pricing: how can edge prices
be efficiently computed? When many different
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sets of edge prices induce a minimum-latency
Nash equilibrium, can we efficiently compute the
“best” one?

Finally, even assuming that all traffic is homo-
geneous, the principle of marginal cost pricing
assumes that (possibly very large) taxes cause
no disutility to network users. This assumption
is only appropriate when collected taxes can be
feasibly returned (directly or indirectly) to the
network users, for example by refunding taxes
equally to all users (a “lump-sum refund”). This
assumption is not always reasonable, for exam-
ple if refunding the collected taxes to network
users is logistically or economically infeasible,
or if taxes could represent quantities of a non-
monetary, non-refundable good such as time de-
lays. In such settings, when we aim instead to
minimize the total user disutility (latency plus
taxes paid)—the total cost—how should we price
the network edges? Intuition may suggest that
taxes should never be able to improve the cost
of a Nash equilibrium, but the famous Braess’s
Paradox [4] shows this intuition to be incorrect.

1.2 Our Results

In this work, we study how to price the edges of
a network in the absence of one or both of these
assumptions. For heterogeneous traffic, with dif-
ferent agents trading off time and money in dif-
ferent ways, we prove the following.

• The edges of a single-commodity network
can always be priced so that an optimal
routing of traffic arises as a Nash equilib-
rium, even for very general heterogeneous
populations of network users.

• When there are only finitely many different
types of network users and all edge latency
functions are convex, we show how to com-
pute such edge prices efficiently.

• We prove that an easy-to-check mathemat-
ical condition on the population of het-
erogeneous network users is both neces-
sary and sufficient for the existence of edge
prices that induce a minimum-latency rout-
ing while requiring only moderate taxes.

We also consider the setting of homogeneous
traffic with no possibility of refunding taxes. Our
goal is then to minimize the total user disutility
(latency plus taxes paid)—the total cost. We
prove the following results.

• Taxes cannot improve the cost of a Nash
equilibrium by more than a factor of ⌊n/2⌋,
where n is the number of nodes in the net-
work. This upper bound is tight.

• In networks with linear latency functions,
taxes cannot improve over removing edges.
There are networks with nonlinear latency
functions, however, in which taxes are radi-
cally more powerful than edge removal.

• Taxes that minimize the cost of the Nash
flow cannot be computed by an efficient
algorithm. In fact, no polynomial-time
heuristic can significantly outperform the
trivial heuristic of assigning zero tax to ev-
ery edge.

On the one hand, our results imply that taxes
can be a powerful and useful tool for minimiz-
ing latency, even with heterogeneous traffic. On
the other, taxes are not useful for minimizing
cost with non-refundable taxes, even for homo-
geneous traffic (assuming only polynomial com-
putation is allowed).

1.3 Selfish Routing and Peer-To-Peer

Networks

The model of selfish routing studied here applies
in two different ways to routing in peer-to-peer
networks. Most obviously, this model is relevant
if each machine in the network is routing its traf-
fic on minimum-latency paths. This assumes,
however, that each machine has (at least approx-
imate) knowledge of the state of the entire net-
work; this assumption is clearly unrealistic even
in networks of moderate size.

More interestingly, the Nash equilibria of the
routing game studied in this paper also arise
via distributed shortest-path algorithms that are
prevalent in commonly-used network protocols,
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such as OSPF [7]. Specifically, these Nash equi-
libria are precisely the fixed points of a shortest-
path protocol in which all nodes of the network
define the length of their incident edges as their
current latency or delay (the shortest paths com-
puted by the protocol are of course a function
of how routers define edge length) [3]. Such
delay-based routing schemes are in some sense
incentive-compatible, since in effect each node is
acting to minimize the delay encountered by the
traffic that it must route, and in particular by
the traffic emanating at that node.

There are, of course, many criticisms that ap-
ply to this model of selfish routing. For exam-
ple, a machine may, instead of routing purely
based on delay, give priority to traffic for which
it is a source (relative to traffic for which it is
an intermediate node). In addition, delay infor-
mation must be at least approximately correct
for a fixed point of the shortest-path protocol to
(approximately) correspond to the Nash equilib-
ria studied here. Finally, the theory presented in
this paper is only relevant to delay-based rout-
ing when the shortest-path protocol is assumed
to (at least approximately) converge to a fixed
point. Indeed, convergence issues are one the pri-
mary reasons that dynamic edge metrics such as
delay are uncommon in the Internet. While rea-
sonable sufficient conditions for convergence are
known (see e.g. [3]), it is not clear that these con-
ditions hold in practice, especially in networks
where the traffic distribution and the network
itself are changing rapidly over time. Neverthe-
less, we feel that the model studied in this paper
captures the spirit of delay-based routing, a nat-
ural performance-sensitive routing scheme, and
is therefore worthy of analysis.

We note that there are many additional prob-
lems in implementing a taxation scheme in a
peer-to-peer network, and we do not propose any
solution here. Rather, in our work we ask the
more basic question: is it even worth attempting
to implement such a taxation scheme in networks
with selfish routing? As we shall see, the answer
depends crucially on whether the collected taxes
are refundable (e.g. by a lump-sum refund) or
are a social loss.

2 The Model

2.1 Congested Networks and Flows

We consider a directed graph G = (V,E) with
source s and sink t. We denote the set of sim-
ple s-t paths in G by P, which we assume is
nonempty. We allow parallel edges but have no
use for self-loops. There is one unit of traffic
wishing to travel from s and t, modeled as the
unit interval [0, 1] endowed with Lebesgue mea-
sure λ.1 Each point a ∈ [0, 1] will be called an
agent, and is thought of as a noncooperative and
infinitesimal unit of traffic.

By a flow, we mean a Lebesgue-measurable
function f : [0, 1] → P describing who goes
where. There are two ways to ignore some of the
information provided by a flow to recover more
familiar combinatorial objects. A flow naturally
induces a flow on paths, which we define to be
the vector {fP}P∈P indexed by s-t paths, with
fP = λ({a ∈ [0, 1] : f(a) = P}) the amount of
traffic assigned to the path P by f . A flow on
paths then induces a flow on edges, defined as
a vector {fe}e∈E on edges with fe =

∑

P :e∈P fP

the amount of traffic using edge e en route from
s to t. A flow on edges may correspond to many
different flows on paths, and a flow on paths may
correspond to many different flows.

The network G suffers from congestion effects;
to model this, we assume each edge e possesses a
nonnegative, continuous, nondecreasing latency
function ℓe that describes the delay incurred by
traffic on e as a function of the edge conges-
tion fe. The latency of a path P in G with
respect to a flow f is then given by ℓP (f) =
∑

e∈P ℓe(fe). A common way to measure the
quality of a flow is by its total latency L(f), de-
fined by L(f) =

∑

P∈P ℓP (f)fP or, equivalently,
by L(f) =

∑

e∈E ℓe(fe)fe. Evidently, any two
flows inducing the same flow on edges have equal
total latency. A minimum-latency flow always
exists, for the set of flows on edges is a compact
set and L(·) is continuous.

We allow a set of nonnegative taxes {τe}e∈E

1Allowing an arbitrary rate r > 0 of traffic requires
only cosmetic changes to this paper.
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to be placed on the edges of a network G, and
denote the resulting network by Gτ . We will call
a triple (G, ℓ, α) or (Gτ , ℓ, α) an instance.

We assume that agent a has a money/time val-
uation ratio of α(a). Thus, if a set τ of taxes
is placed on the edges of a network, agent a
seeks a shortest s-t path relative to edge lengths
ℓe(fe) + α(a)τe. We will assume that agents
are sorted in order of money-sensitivity, so that
α : [0, 1] → [0,∞] is a nondecreasing func-
tion. We call α a distribution function. We
will not assume that distribution functions are
bounded, and therefore permit functions α with
α(1) = +∞; however, we will always assume
that α is finite on [0, 1).

Finally, for a flow f for an instance (Gτ , ℓ, α),
we define the cost C(f, τ) of the flow f as the to-
tal disutility caused to network users, accounting
for disutility due to both latency and taxes:

C(f, τ) =

∫ 1

0
ca
f(a)(f, τ)da

where ca
P (f, τ) = ℓP (f) + α(a)τP and τP =

∑

e∈P τe.
The functions L(·) and C(·, τ) coincide if and

only if τ = 0 or α(a) = 0 for all agents a.

2.2 Nash equilibria

We assume that noncooperative behavior results
in a Nash equilibrium—a “stable point” in which
no agent has an incentive to unilaterally alter its
strategy (i.e., its route from s to t). To make
this precise, again let ca

P (f, τ) = ℓP (f) + α(a)τP

denote agent a’s evaluation of path P relative to
taxes τ and latencies with respect to the flow f .

Definition 2.1 A flow f : [0, 1] → P is at
Nash equilibrium or is a Nash flow for instance
(Gτ , ℓ, α) if for every agent a ∈ [0, 1] and path
P ∈ P,

ca
f(a)(f, τ) ≤ ca

P (f, τ).

That a Nash flow exists in every network follows
from, for example, the quite general results of
Schmeidler [11, Thm 2]. Nash flows are not in
general unique but are all equivalent for our pur-
poses, so we will ignore the issue of uniqueness
in the sequel (see [6] for a rigorous discussion).

3 Pricing Networks with Selfish

Routing

3.1 Pricing Edges to Minimize Delay

for Heterogeneous Traffic

In this section we seek taxes that induce the
minimum-latency routing as a Nash flow. We
will call such taxes latency-optimal. Our cen-
tral theorem for heterogeneous traffic is that as
long as all agents are sensitive to taxes, then
latency-optimal taxes exist. This theorem re-
lies on Brouwer’s fixed-point theorem and is thus
non-constructive.

Theorem 3.1 If instance (G, ℓ, α) satisfies
α(0) > 0, then it admits a latency-optimal set
of taxes.

Remark 3.2 An interesting open question is
whether latency-optimal taxes always exist in a
multicommodity flow network.

Under mild additional assumptions on the net-
work latency functions and the distribution func-
tion, we can use ideas of Bergendorff et al. [2] to
find a set of latency-optimal taxes efficiently.2 In
fact, we will show this in a very strong way: we
will prove that the set of latency-optimal taxes
can be explicitly described by a polynomial-size
set of linear inequalities. Thus a latency-optimal
tax can not only be efficiently found, but in fact
the latency-optimal tax that optimizes some sec-
ondary linear objective function, such as mini-
mizing the taxes paid by network users, can also
be computed efficiently. This constructive result
complements and does not subsume the previ-
ous existence theorem, even in the special case
of finitely many distinct agent types and convex
latency functions; on the contrary, this existence
result provides the sole assurance that our linear
description of the set of latency-optimal taxes
describes a non-empty set!

Theorem 3.3 Let (G, ℓ, α) be an instance with
convex latency functions in which α takes on

2We assume some reasonable encoding of latency and
distribution functions.
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only finitely many distinct values. Then a lin-
ear description of the latency-optimal taxes for
(G, ℓ, α) can be computed in polynomial time. In
particular, a set of latency-optimal taxes can be
computed in polynomial time.

Theorem 3.3 implies that taxes, if imple-
mentable, can be a powerful tool for minimizing
the total latency of traffic.

3.2 Pricing Edges to Minimize Cost

for Homogeneous Traffic

We next state several results about pricing edges
to minimize the total cost, the sum of the de-
lay and the taxes paid, for homogeneous traffic
(where α(a) = 1 for all a ∈ [0, 1]). In what fol-
lows, we suppress dependence on the (fixed) dis-
tribution function α. We also denote by C(Gτ , ℓ)
the cost C(f τ , τ) of a flow f τ at Nash equilibrium
for (Gτ , ℓ).

That taxes can reduce the cost of a Nash flow
follows from a famous example of Braess [4],
which demonstrates how removing an edge from
a network can improve a Nash flow. Since a suf-
ficiently large tax on an edge effectively deletes
it from the network, taxes are at least as power-
ful as removing edges for improving the cost of
a Nash flow.

We first study the following question: how
much can the cost of a Nash flow improve af-
ter levying taxes on the edges? We resolve this
question by adapting techniques from [9] that
bound the maximum-possible benefit from re-
moving edges from a network.

Theorem 3.4 Let (G, ℓ) be an instance with n
vertices and τ a tax on edges. Let f and f τ be
Nash flows for (G, ℓ) and (Gτ , ℓ), respectively.
Then

L(f) ≤
⌊n

2

⌋

· C(f τ , τ).

Examples from [9] demonstrate that the upper
bound of Theorem 3.4 can be attained, even with
the weaker operation of edge removal.

We next study if taxes can be more powerful
than edge removal for improving the cost of a
Nash flow. Formally, we will say that a set τ of

taxes for the instance (G, ℓ) is 0/∞ if, for some
Nash flow f τ for (Gτ , ℓ), τe = 0 or f τ

e = 0 for
each edge e. We note that 0/∞ taxes are no more
powerful than removing edges from the network,
since if τ is 0/∞ then C(Gτ , ℓ) = C(H, ℓ), where
H is the subgraph of G of the edges with zero
tax. A tax is cost-optimal for an instance (G, ℓ)
if it minimizes C(Gτ , ℓ) over all nonnegative tax
vectors τ .

We show that taxes are no more powerful than
edge removal in a special class of networks, but
are far more powerful in general networks.

Theorem 3.5 (a) An instance with linear la-
tency functions (all of the form ℓ(x) = ax+b
for a, b ≥ 0) admits a cost-optimal set of
taxes that is 0/∞.

(b) For each integer n ≥ 2, there is an instance
(G, ℓ) with general latency functions with
C(H, ℓ) = ⌊n/2⌋ for all subgraphs H of G
but C(Gτ , ℓ) = 1 for some tax τ ≥ 0.

The question now arises: since cost-optimal
taxes can be so powerful, can we compute them
efficiently? Our next result, together with Theo-
rem 3.4, answers this question negatively in a
strong way: no polynomial-time heuristic can
significantly outperform the trivial heuristic of
assigning zero tax to every edge.

Theorem 3.6 Unless P = NP , for every ǫ > 0
there is no O(n1−ǫ)-approximation algorithm for
the problem of computing the cost-optimal tax
in n-node networks with arbitrary latency func-
tions.

This computational complexity inherent in
cost-optimal taxes obviously casts doubt on their
potential for reducing cost in networks with self-
ish routing and unrefundable taxes.

3.3 Pricing Edges to Minimize Cost

for Heterogeneous Traffic

In this section, we study the cost of latency-
optimal taxes for heterogeneous traffic. Our con-
tribution is a complete characterization of the
distribution functions α for which the disutility
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due to latency-optimal taxes is always at most
a constant factor times the disutility due to la-
tency. This is an extremely strong guarantee,
and there is no reason a priori to believe that
any distribution function has this property.

We first formalize the property we desire of a
distribution function.

Definition 3.7 A distribution function α is ρ-
cheap with parameter ρ ≥ 1 if the following
property holds: for every instance (G, ℓ, α) with
α(0) > 0, there is a set τ of latency-optimal taxes
and a minimum-latency flow f τ at Nash equilib-
rium for (Gτ , ℓ, α) such that

C(f τ , τ) ≤ ρ · L(f τ ).

A distribution function is cheap if it is ρ-cheap
for some finite ρ ≥ 1.

We now state our characterization, employ-
ing the notation α(z−) to mean the left limit
limzn↑z α(zn) of a distribution function α at a
point z.

Theorem 3.8 A distribution function α with
α(0) > 0 is ρ-cheap if and only if

∫ z

0
α(a) da ≤ (ρ − 1) · α(z−)[1 − z]

for all z ∈ (0, 1).

Remark 3.9 The condition of Theorem 3.8 is
quite strong and is not satisfied by most distri-
bution functions—the simplest distribution func-
tions satisfying it for some value of ρ are the
functions α(a) = (1 − a)−k for k > 1—and thus
latency-optimal taxes are in general quite costly.
Nonetheless, we find it surprising that any natu-
ral distribution function is cheap, and satisfying
that cheap distribution functions admit such a
crisp mathematical characterization.
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