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Abstract. In this work we initiate the question of whether quantum computers
can provide us with an almost perfect source of classical rand@naed more
generally, suffice for classical cryptographic tasks, such as pticny Indeed,

it was observed [SV86,MP91,DOPSO04] that classical computermsuéficient

for either one of these tasks when all they have access to is a reimipécfect
source of randomness, such as the Santha-Vazirani source.

We answer this question in threegative even in the following very restrictive
model. We generously assume that quantum computation is errorfidell

the errors come in the measurememté further assume that all the measurement
errors are not only small but alstetectablenamely, all that can happen is that
with a small probabilityp, < ¢ the (perfectly performed) measurement will
result in some distinguished symhobl(indicating an “erasure”). Specifically, we
assume that if an elementwas supposed to be observed with probabityin
reality it might be observed with probabilipy, € [(1—§)pa, ps], for some small
§>0(sothatp, =1-3, p, <9).

Our negative “gquantum” result also implies a new “classical” result oéjreh-
dent interest: namely, even a much more restrictive form of (classsaaljha-
Vazirani sources is not sufficient for randomness extraction ayptagraphy.



1 Introduction

Randomness is important in many areas of computer sciencle as algorithms, cryp-
tography and distributed computing. A common abstractypictlly used in these ap-
plications is that there exists some source of unbiased reaependent random bits.
However, in practice this assumption seems to be problemathough there seem
to be many ways to obtain somewhat random data, this datensséhever uniformly
random, its exact distribution is unknown, and, corresjaglg, various algorithms and
protocols have to be based wnperfect sources of randomness

Not surprisingly, a large body of work (see below) has attexaipo bridge the gap
between this convenient theoretical abstraction and theabeality. So far, however,
most of this work concentrated on studyingcissicalcomputers can effectively use
classical imperfect source of randomness. In this work, niteate the corresponding
study regardingjuantum computatiofo motivate our question, we start by surveying
the state of the art in using classical computers, whichdethonstrate that such com-
puters are provably incapable of tolerating even “mildlyiperfect random sources.

CLASSICAL APPROACH TOIMPERFECT RANDOMNESS., The most straightforward
approach to dealing with an imperfect random source det@rministically(and ef-
ficiently) extract nearly-perfect randomness from it. ledemany such results were
obtained for several classes of imperfect random sourdesy include various sim-
ple “streaming” sources [von51,Eli72,Blu86,LLS89], difent flavors of “bit-fixing”
sources [CGFi85,BBR88,AL93,CDH 00,DSS01,KZ03], multiple independent imper-
fect random sources [SV86,Vaz87a,Vaz87b,CG88,DO03,DHECHWO04] and effi-
ciently samplable sources [TV00]. While these results ateré@sting and non-trivial,
the above “deterministically extractable” sources assarw of structure or indepen-
dence in the way they generate randomness. A less resdriatid arguably more real-
istic, assumption on the random source would be to assunyettoati the source con-
tainssomeentropy. We call such sourcestropy sourcesEntropy sources were first
introduced by Santha and Vazirani [SV86], and later geimzdlby Chor and Goldre-
ich [CG88], and Zuckerman [Zuc96].

The entropy sources of Santha and Vazirani [SV86] are thst legerfect (which
means it is the hardest to show impossibility results fohseurces) among the entropy
sources considered so far (e.g., as compared to [CG88,Jusd6sources, as they are
called, requireavery bit output by the sourde have almost one bit of entropy, even
when conditioned on all the previous bits. Unfortunatelseady the original work of
[SV86] (see also a simpler proof in [RVWO04]) showed that deiaistic randomness
extraction of even a single bit it possible from all SV sources. This can also be con-
sidered as impossibility of pseudo-random generatorsadtiess to only an SV source.
Moreover, this result was later extended by Mclnnes anddiifikiP91], who showed
that in the classical setting of computationally unlimitadiversaries, one cannot have
secure symmetric encryption if the shared key comes from\aadsirce. Finally and
most generally, Dodis et al. [DOPS04] showed that SV sourcéact cannot be used
essentially for any interesting classical cryptograpasktinvolving privacy (such as en-
cryption, commitment, zero-knowledge, multiparty congtian), even when restricting
to computationally bounded adversaries. Thus, even faently most restrictive en-



tropy sources, classical computation does not seem toaifi@pplications inherently
requiring randomness (such as extraction and cryptogjdphy

We also mention that the impossibility results no longerdhehen the extracting
party has a small amount of true randomness (this is the stiusty called probabilistic
randomness extractofNZ96]), or if severalindependentntropy sources are avail-
able [SV86,Vaz87a,Vaz87b,CG88,D003,DEOR0O4,BIW04].

QuUANTUM COMPUTERS? Given the apparent inadequacy of classical computers to
deal with entropy sources — at least for certain importasikdauch as cryptography
—, it is natural to ask if quantum computers can be of help. Mgecifically, given
that quantum computation isherently probabilistic can we use quantum computers
to generate nearly perfect randomness? (Or maybe just “gaodgh” randomness
for cryptographic tasks like encryption, which, as we knd5p2], do not require
perfectrandomness?) For example, to generate a perfectly randofrobi a fixed
qubit|0), one can simply apply the Hadamard transform, and then me#sairesult in
the standard basis. Unfortunately, what prevents thislsisgution from working in
practice is the fact that it is virtually impossible to perfothe above transformation (in
particular, the measurement) precisely, so the resuliirig likely to be slightly biased.
More generally, noise is a very serious issue in quantum ctatipn, which means
that certain error-correction and fault-tolerance musapglied in order to overcome
such noise. Indeed, fault-tolerance is one of the majorlprodin quantum computing
(see [NCO0Q]), so we will have to address it as well. Jumpirgpahhowever, what will
differentiate us from all the prior work in the area is thetfdwatwe do not assume
largely independent noiggvhich can be dealt with by quantum error-correction).

But, first, let us explain why there are good reasons to hopgdantum comput-
ers to be useful despite the noise. When dealing with cldssiqrerfect sources, we
usually assume that the source comes from some family afilditibns “outside of
our control” (e.g., “nature”), so we would like to make as fassumptions about these
distributions as we can. For example, this is why the studynpferfect randomness
quickly converged to entropy sources as being the mostiplausources one could get
from nature. In contrast, by using a quantum computer to gg@eur random source
for us, we areproactively designin@ source of randomness which is convenient for
use, rather thapassively hopinghat nature will give us such a source. Indeed, if not
for the noise, it would be trivial to generate ideal randosmi@ our setting. Moreover,
even with noise we have a lot of freedoneidaptingour quantum computer to generate
and measure quantum statésur choice depending on the computation so far.

OUR MODEL. We first define a natural model for using a (realisticallysydiquantum
computer for the task of randomness extraction (or, moreigdly, any probabilistic
computation, such as the one needed in classical cryptografs we will see shortly,

we will prove anegativeresult in our model, despite the optimism we expressed in the
previous paragraph. Because of this, we will make the naissall and as restrictive

1 n contrast, a series of celebrated positive results [VV85,SV86,(Z5@886] show that even
very weak entropy sources are enough for simulating probabilistic poliai-time algorithms
— namely, the task which does nioherentlyneed randomness. This result was extended to
interactive protocols by [DOPS04]. [DOPS04] also show that undtaicestrong, but reason-
able computational assumptions, secure signatures seem to be podsildetvopy sources.



as we can, even if these restrictions are completely “gersérand unrealistic. Indeed,
we will assume that the actual quantum computation is efnee; and all the errors
come in the measuremerftghich are necessary to extract some classical result out of
the system). Of course, in reality the quantum computatidhalso be quite noisy,
but our assumption will not only allow us to get a strongeutedut also reduce our
“quantum” question to a natural “purely classical” questid independent interest.
Moreover, we will further assume that all the measuremawrg@re not only very
small, but alsadetectable namely, all that can happen is that with a small probabil-
ity p. < 4 the (perfectly performed) measurement will result in soristirtjuished
symbol L (indicating an “erasure”). Specifically, we assume thanifeéement: was
supposed to be observed with probabifity in reality it might be observed with prob-
ability p!, € [(1—9)p.,p<), forsome smald > 0 (sothatp, =1-3"_ p! <6). Thus,
the adversary is not allowed to completely “remove” unddde events of small proba-
bility, or increase the probability of some event. Moregesrcompared to the classical
SV model, in our model the state to be measured can be pregduig@rily, irrespective
of the computational complexity of preparing this staterter, such quantum states
can even be generated adaptively and based on the meastseméar. For compari-
son, in the SV model the “ideal” measurement would alwaysssmond to an unbiased
bit; additionally, SV model allows for “errors” while we onbllow “erasures”.

OUR RESULT. Unfortunately, our main result will show that even in tlestremely
restrictive noise model, one cannot extract evesirgle nearly uniform bit. In other
words, if the measurement errors coulddmerelated quantum computers do not help
to extract classical randomness. More generally, we extentechnique of [DOPS04]
to our model and show that one cannot generate two (clagsicaiputationally in-
distinguishable distributions which are not nearly ideaitito begin with. This can be
used to show the impossibility of classical encryption, otitment, zero-knowledge
and other tasks exactly as in [DOPS04]. We notice, howekat,dur result doerot
exclude the possibility of generating perfect entangleimehich might be used to en-
crypt a message intoguantum stateNevertheless, our result implies that, even with
the help of such perfect entanglement, the user will not ke t@bgenerate a (shared)
classical key that can be used for cryptographic tasks. fforgrize, we only rule out
the possibility ofclassicalcryptography withquantumly generated randomngk=sav-
ing open the question of (even modelinghantumcryptography with noise.

Of independent interest, we reduce our “quantum” problerié¢ostudy of a new
classical source, which is considerably more restricthantthe SV source (and this
restriction can really be enforced in our model). We themshalassical impossibility
result for our new source, which gives a non-trivial genieagion of the correspond-
ing impossibility result for the SV sources [DOPS04,SV86Db summarize, our main
results can be viewed in three areas:

1. A model of using noisy quantum computers for classicababilistic computation.

2. Areduction from a “quantum” question to the classicalgjio® concerning a much
more restrictive variant of the SV source.

3. The non-trivial impossibility result for the classicalsce we define.

2 Indeed, our proof isonsiderablymore involved than the above mentioned results, and we
were unable to find any simplification.



RELATION TO QUANTUM ERROR-CORRECTION As we stated, what differentiates us
from the usual model of quantum computation with noise isfélcethat our errors are
not assumed independent. In particular, conventionalteesn fault-tolerant quantum
computation (such as threshold theorensee [NCO00] for more details) do not apply
in our model (as is apparent from our negative results). Froother perspective, our
impossibility result is not just a trivial application ofdtprinciple that one can always
and without loss of generality postpone all the measuresnartil the end (a useful ob-
servation true in the “perfect measurement” case). For pi@yif all the measurements
are postponed to the end, then the adversary can cause usetv®h single “useless”
L symbol with non-trivial probabilitys, while with many measurements we are bound
to observe a lot of “useful” non- symbols which exponentially high probability.

Nevertheless, in our model one can trivially simulate pholistic algorithms com-
puting deterministic outputs, just as was the case for thesatal computation, where
this was true even for much weaker sources than SV sourceB2ZGc96]. For exam-
ple, here we actuallgan postpone all the measurements until the end, and then either
obtain an error (with probability at mostin which case the computation can be re-
peated), or the desired result (with probability arbityeciose tol — §). Of course, this
“positive” result only holds because our noise model wasenattealistically restric-
tive (since we proved aimpossibility result. Thus, it would be interesting to define a
less restrictive (and more realistic!) error model — forreypde where the actual quan-
tum computation is not error-free — and see if this feadibitesult would still hold.

Finally, the problem of detection errors has been studiethéncontext of non-
locality testing [CH74,MSS83,Mas02], which tries to eXpentally prove the intrigu-
ing phenomenon that the behavior of certain distant butngiead particles cannot be
explained by classical randomness. These results are sthe flavor as our impossi-
bility result. Indeed, they show that, if certain detectmobability is too low, then the
outputs might be chosen in a malicious way such that thetiegidtatistics does not
imply non-locality. To our knowledge, this is the only reswhere some impossibility
is proved, based on the assumption that certain errors.occur

2 Definition of the source

A source withn outputsXy, X, ..., X, is specified by a joint probability distribution
Px,...x, . However, for most realistic sources, the actual distiduPy, ... x, can usu-
ally not be fully determined. Instead, only a few charastés of the source are known,
e.g., that the conditional probability distributiénBXi‘Xifl have certain properties. A
well-known example for such a characterization are thet@akazirani sources.

Definition 1 ([SV86]). A probability distributionPx,...x, on{0,1}"is ana-SV source
if4

PXi‘X'i—lzzi—l(O) S [OL, 1-—- Oz} s
foralli € {1,...,n} andz’~! € {0,1}~1

3 We write X* to denote theé-tuple (X1, ..., X).
4 Px,|xi-1=gi—1 denotes the probability distribution df; conditioned on the event that the
i—1

(i —1)-tuple X" = (X1,...,X;_1) takes the value’ ™ = (z1,...,zi_1).



We will define a more general class of sources which, in somseséncludes the
SV sources (cf. Section A). The main motivation for our déifimi is to capture any
kind of randomness that can be generated using imperfeahfgon) physical devices.
Indeed, we will show in Section 3 that the randomness geegray any imperfect
physical device cannot be more useful than the randomnéamet from a source as
defined below.

Intuitively, a source can be seen as a box which sequentiatputs symbols(y, ..., X,
from some alphabet’. Each outputX; is chosen according to some fixed probability
distribution which might depend on all previous outpis, ..., X;_1. The “imper-
fectness” of the source is then modeled as follows. Eachubutp is “erased” with
some probability, i.e., it is replaced by some fixed symhbl This erasure probability
might depend on the actual outpkit as well as on all previous outpuls, ..., X;_1,
but is upper bounded by some fixed paraméter

Before stating the formal definition, let us introduce sorotation to be used in the
sequel. For any set, we denote byt the setY := X U { L} which contains an extra
symbol L. For a probability distributiorPyx on X andé > 0, let P?(Px) be the set of
probability distributionsPx on X’ such that

(1= 48)Px(z) < Px(z) < Px (),

forall z € X In particular, the probability of the symbadl is bounded by, that is,
Px(1) <.

Definition 2. Leté > 0 and let, for anyi € {1,...,n}, Qx,x,_, be a channel from
X'~! to X. A probability distributionPy, ...x,, on X" is a (8, {Qx, | xi-1 })-sourceif

PXi|X'i*1:x'i*1 S Pé(QXi‘X'i—lzzifl) ,
foralli e {1,...,n}andz’"! = (2q,...,25_1) € X7L.

In Appendix A, we show thats, {Qx,|xi-1 })-sources can be used to simulate
SV sources, for some appropriately choseiThis means that, {Q x,| xi-1 })-sources
are at least as useful as SV sources. The other directiorowgever, not true. That
is, (0, {Qx,|x:-1})-sources have a strictly less "malicious” behavior than S\Mrees
(which makes our impossibility proofs stronger).

3 The quantum model

In this section, we propose a model that describes the ¢xnaof classical informa-
tion from imperfect quantum physical devices. Clearly, comsiderations also include
purely classical systems as a special case.

First, in Section 3.1, we review the situation where the quiardevice is perfect. In
this case, the process of extracting randomness can mastdigive seen as a sequence
of perfect quantum operations and perfect measuremenrgs, ThSection 3.2, we con-
sider the general case where the quantum device is subjgottizious) noise. We will
argue that, in order to state strong impossibility resitlis, sufficient to generalize the
standard notion of measurements such as to include thebgitgsif detectable failures
in the measurement process.



3.1 The perfect case

Let us briefly review some basic facts about quantum mechamlestateof a quan-
tum system is specified by a project@y,, onto a vectof:) in a Hilbert spacé{. More
generally, if a system is prepared by choosing a state framedamily {|¢.)}.cz ac-
cording to a probability distributio®, on Z, then the behavior of the system is fully
described by theensity operatop := .. > Pz(z)P_y. The most generaperation
that can be applied on a quantum system is specified by a family {F, },.cx of
operators ort{ such thab .. ElE, = idy (see, e.g., [NC00]). Whefiis applied to

a system which is in statg then, with probabilityPx (z) := tr(E,pE}), the classical
outputz € X is produced and the final state of the system i, := %@EIpEl.
Hence, when ignoring the classical outpytthe statef(p) of the system after apply-
ing the operatiort is the average of the statps, that is,£(p) := >, Px(z)p. =
>, EupEL.

It is important to note that also the action of preparing anfuia system to be in a
certain state, can be described by a quantum operatiofio see this, lepy be given
by po = >_.cz Pz(2)Py.), for some family of vectorg|v.) }.c = and a probability
distribution Pz on Z. Additionally, let{]7) };c(1,....ay be an orthonormal basis &f. It
is easy to verify that the quantum operatién= {E. ;}.cz icq1.... qy defined by the

operators
E.i =/ Px(2)[¢:) (il

maps any arbitrary stageto py, that is,£(p) = po.

We are now ready to describe the process of randomnesst@tricom a quantum
system. Consider a classical user with access to a quantysicphdevice. The most
general thing he can do is to subsequently apply quantunatipes, where each of
these operations provides him with classical informatidriciv he might use to select
the next operation. To describe this on a formal levelHdbe a Hilbert space and let
X be a set. The strategy of the user in each stephen defined by the quantum opera-
tion&7" = {E*"'},cx he applies depending on the classical outpiits ¢ xi~1
obtained in the previous steps. Note that, according to loeeadiscussion, this de-
scription also includes the action of preparing (partsto)quantum system in a certain
state. We can thus assume without loss of generality thaitied state of the system is
given by some fixed projectd?,,,,. The probability distributionPy, | x:-1_,i-1 of the
classical outcomes in thi¢h step conditioned on the previous outputs® as well as
the quantum state,: after theith step given the outputs is then recursively defined
by pyo := Py, and

PXi|X’L*1:z’i*1(37) = tr(EgiilpxiflE;iilT) (1)

1 i1 i1
= Plaiot gy = EX pua BT, 2
Pz P(zi—1z) PX71|X’i*1:zi*1 (JJ) z  Pxi-1Ly ( )

3.2 Quantum measurements with malicious noise

We will now extend the model of the previous section to inelsituations where the
guantum operations are subject to noise. As we are inter@steroving theimpossi-
bility of certain tasks in the presence of noise, our results aveggr if we assume that



only parts of the quantum operation are noisy. In particul@rwill restrict to systems
where only the classical measurements are subject to patioins®

Formally, we define an imperfect quantum device by its baedravhen applying any
operatior€. Letd > 0 and let€ = {E, ,, } zcx wcus De @ quantum operation which pro-
duces two classical outcomesandu, wherez is the part of the output that is observed
by the user. The operatighacts on the imperfect device as it would in the perfect case,
except that each outputis, with some probability\, < §, replaced by a symbal,,
indicating that something went wrong. Additionally, we @®® that, whenever such
an error occurs, the state of the system remains unch&nblee resulting probability
distribution Px of the outputs when applying to an imperfect device in stateis thus
given by

Px(x) =Y (1= Xa) tr(EsupEl ),

u

foranyz € X'. Note that the probability of the symbalis Px (L) = 1-) ., Px(z) <
J.

Let us now consider the interaction of a user with such an ifepequantum device.
In each step, he either observes the correct outcome or he gets the autndicating
that something went wrong. The user might want to use th@nétion to choose the
subsequent operations. His strategy is thus defined by ayfa{mff’_l}ml_leg,:_l of
guantum operation§® ' = {Eggl}wex7ueu.7 The conditional probability distribu-
tions Py, | xi-1—i—1 of the observed outputs in thith step, forz'~! € X*~!, and the
statesp,: after theith step are recursively defined, analogously to (1) and §2), b

PXilxi—lzwi—l(m) = (]_ — )\xi—17I)QXi|X1‘,—1:wi—1($) forzre X

1 i—1 .
—QX‘ X’Fll_’ P ) EuEZ/t E;c’u pmi—lE;;)u T freX

Pzi = p(z'ifl,x) = il =® i
Pri—1 if v =1.

5 To see that our model leads to strong impossibility results, consider éongle an adversary
who is allowed to transform the quantum statef the device into a statg’ which has at
most trace distancé&to the original state. Let M be a fixed measurement and Rtbe the
distribution resulting from applying\ to p. It is easy to see that, for any given probability
distribution P’ which isé-close toP, the adversary can set the device into a statich that
a measurememt of p’ gives raise to the distributio®?’. Consequently, such an adversary is
at least as powerful as an adversary who can only modify the distibafithe measurement
outcomes, as proposed in our model. In particular, our impossibilitytsesiso apply to this
case.

5 This means that, even if a measurement error occurs, the state ofahkigusystem is not
destroyed. (Recall that, as we are interested in impossibility results, wiel fikeito have a
model for imperfect devices which is as close as possible to perfetrag.)

" Note that, unlike in the perfect case, the measurements cannot be rpbtipothe end of
the protocol. For example, if the user performs many measurementgdioe protocol, it is
very unlikely thatall the outcomes are wrong, i.e., he still gets some useful information with
probability almost one. On the other hand, if the user replaces all hisurezasnts byone
single overall measurement (at the end of the protocol) it might fail witkgbility J.



whereQ x| xi-1—,:-1 are the conditional probability distributions given by
QXilXiflz(T/ifl(CC) = Z tI‘(E;j;lpmiflEg;:lT) , forxe X,
ueU

and where\,i-1 , € [0, 4].

Let Px» = Px,...x, be the probability distribution of the observed outcoméeraf
n steps. It follows directly from the above formulas thag- is a (6, {Qx,|xi-1})-
source. On the other hand,Hx is a (4, {Qx,|x:-1)-source, then there exist weights
Azi-1, € [0,0] such that the conditional probabilities are given by thevatiormu-
las. This reduces our “quantum” problem to a totally cleaigicoblem for an imperfect
source considerably more restrictive than an SV sourcd &®ena 2). The correspond-
ing impossibility result is given in the next section.

4 Main technical lemma

Our main technical result can be seen as an extension of lapesved for SV sources
(cf. Lemma 3.5 of [DOPSO04]). Roughly speaking, Lemma 1 bedtates that a task
g which requires perfect random bits can generally not beacsul by another task
which only uses imperfect bits. Note that this impossipilg particularly interesting
for cryptography where many tasks do in fact use randomness.

More precisely, ley be an arbitrary strategy which uses imperfect randomiéss
and, in addition, some perfect randomn&séwhose probability distribution might be
chosen depending on the values Xf). Let f be another strategy which only uses
imperfect randomnesX™. Furthermore, assume that, for afdy {Q x, x:-1 })-source
Px,...x,, the output distributions of the strategigand f are (almost) identical. Then
the strategyy is (roughly) the same a§, that is, it (virtually) does not use the random-
nessy'.

Lemma 1. Let f be a function from¥™ to Z and letg be a function from¥™ x ) to
Z.Foranyi € {1,...,n}, letQx, xi-1 be a channel fromt’~! to X, let Qy | x~ be
a channel from¥™ to )V, and letd > 0. LetI" be the set of all probability distributions
Pxny onX"™ x Y such thatPx« is a (6, {QXi|X7:_1})-sourcé and Py |x» = Qy|xn.
If, for all Px»y € I,

|Pr(xn) — Pyxnyyh <€,

then there exist®s,. ¢ € I" such that

Pr  [f(z") # g(z",y)] < bems ",

(@"y)—=Pgny
wherem = [log,(|Z])].

8 Similarly to the argument in [DOPS04], the proof can easily be extendedtatement which
holds for an even stronger type of sources, where the conditionbabpildy distributions of
eachX; given all other source outputs, and not only the previous affes , is contained in a
certain sefP’.



Proof. Assume first that the functionsandg are binary, i.e.Z = {0,1}. The ideais to
define two probability distributionBy ~y , Py € I" such that the output distributions
of the functionf, f(V™) and f(W™), are “maximally different”. Then, by assumption,
the output distributions of (V™,Y") andg(W™,Y") must be different as well. This will
then be used to conclude that the outputg ehdg are actually equal for most inputs.

In order to define the distributionB; -~y and Py, »y, we first consider some “in-
termediate distribution’P..¢. It is defined as the unique probability distribution on
X™ x Y such thatPy z. = Qy|x~ and, foranyi € {1,...,n} andz’~! € X1,

L (1 - %.)QX’i‘Xi—lzli—l(.’L') ifeeX
Pz w0 = {3 itz =1 .
Note thatPg | ¢i-1_,:—: is indeed a probability distribution because

N Pg gt (@) = (1= 8) Y en Qxjxiigina (@) + 5 =1
xe??

Moreover,Pg. ¢io1_,i-1 € Pé(QXi‘Xi_lzmi_l), i.e.,Pg.isa(d,{Qx, x:-1})-source,
and thusPz.,.y € I,

The distributionPy~ is now defined fronPy., by raising the probabilities of all val-
ued z™ € f~1(0) that f maps to0 and lowering the probabilities of ati* € f~1(1).
Similarly, Py~ is defined by changing the probabilities B, in the other direction.
For the formal definition, we assume without loss of gensrétiat P, ¢, (0) < 5 and

set
Pr(xn)(0)

P

o= ,
pxemy (1)

i.e.,a < 1. Py~ and Py~ are then given by

wy o [Po@)r) i e f0)
Pyn(2™) = {P~"(m”)(1 —ar) ifa"e f7(1)

v [P =7) et e 0
Pyn(z") == {p,”(xn)(l—l—cw) if 27 e f71(1),

wherer := 2. Because

S Pun(a®)= Y Pxo(@(A+7)+ Y, Pxa(z")(1-oar)
)

zneXn znef=1(0 znef-1(1)
= Pf(Xn)(O)(]. + T) + Pf(Xn)(l)(l — OzT) =1,

Py~ and, similarly,Py -, is indeed a probability distribution.

®Forz € {0,1}, f'(2) := {x € &" : f(z) = 2} denotes the preimage efunder the
mappingyf.



We claim thatPy» and Py are (6, {Qx,|xi-1 })-sources. To see this, note first
that, foranyi € {1,...n} andz® € X*,

(1 - ar)Pgi(2') < Pyi(a’) < (1+7)Pg. () .
Hence, for any: € X andz’~! € X1,

Pyyio(x, 2"t
Prgviciaior (1) = =5 =0y~
N (1-— O‘T)Pfgi(iﬂ (2,2 1)
= (]_ + 7—) )E'i—l(xiil)
1—ar
= T, Prugiime (@)

(1= 2)Qx i1 (2)
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Becauser < 1, we havePy, jyi-1_zi-1(x) > (1 — 0)Qx,|xi-1—gi—1 (). Similarly,

1+7 1+7

P\/’i‘vi—lzmi—l(x) S mPXi‘Xl—lin—l(x)

= 1 O(T(l — g)QXi‘Xi—lza:i—l(I)
which implies Py, jyi-1_gi-1(2) < Qx, xi-1=2-1 (7). Combining these inequalities,
we COﬂClUdePVi|Vi71:xi71 S Pé(QXilxi—lzzi—l), i.e., Py~ is a ((5, {QXi‘Xi—l})'
source. A similar computation shows that also the disti@ouPy, - is a(d, {Q x, xi-1})-
source. Consequently, the probability distributiéiis.y and Py defined byPy|y» =
Qy|x» and Py~ = Qy | xn, respectively, are contained in the et

Next, we will analyze the behavior of the functigrior inputs chosen according to
Pyr~y and Pyy, respectively, and compare it fo For this, let

Qun 1= Pr [9(z™,y) =0].

y<—QY|XTL:z"

be the probability that, given some fixett € X", the output ofy is zero. Because, by
definition,Plen = Py|yn = Pyjw» = Qy|x~, this quantity does not depend on the
distribution we consider, that is,

Qen = Pg(X",{/)‘X"iﬁn (0) = Pg(V",Y)\V":m" (O) = Pg(W'r17Y)|Wn:I'1L (0) .

The probability that the output gfis zero for the distribution®,» and Py~ can then,
obviously, be written as

Prymy(0)= Y Pga(a")(1+7)
znef=1(0)

Prwn(0)= > Pga(@)(1-7)

zmef~1(0)



Similarly, for g, we have

Pyveyy(0)= > Pr(@)(1+7)ger + »  Pga(@™)(1 - ar)gen

znef~1(0) znef-1(1)
Pywnyy(0) = > Pg.(@)(1=7)gan + »_  Pga(a™)(1+ar)ge .
znef—1(0) znef=1(1)

By assumption of the lemma, because,»y and Py »y are contained in the sét, the
output distributions off andg must be close, that is,

|Prvny(0) = Pyevn,y)(0)

|Prwny (0) = Pyewn vy (0)

VANEWAN
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and hence

(Prvn)(0) = Pyvn v)(0)) = (Prwny (0) — Pyawn v)(0)) <e.

Replacing these probabilities by the above expressions lga

> Pra(@™)27(1 = gen) + Z Pg, (z™)207qm < €. (3)

znef—1(0) znef-1

Note that this imposes some restrictions on the possibieesadfq,». Roughly speak-
ing, if f maps a certain input™ to 0, then the probability — ¢,» thatg mapsz™ to 1
must be small. In fact, as we shall see, (3) implies a boundhermptobability that the
outputs off andg are different.

With the definit?onpz,w = Ppgnygxny) (2 w), for (z,w) € {0, 1}? and using
again the assumption of the lemma,

[po,1 — p1,0| = |(Po,0 + Po,1) — (Po,o + P1,0)]
€
=|P f(xn) 0) — Pg()”(n,f/)(oﬂ < 3

hence,

&
Pr  [f(a") # g(z",y)] = po,1+p1,0 < Po,1+Po,1+|P1,0—Po,1| < 2P0+ =

(zm,y)«—P Xny 2

(4)
Using (3) and the fact that the second sum is nonnegative eivargupper bound for
Po,1, that is,

Po,1 = Z Py, Xn)an_In(O)PQ(XW,,Y/)‘XW,:J;H(I)
x"lGXfL

S Pen@™) (1 gun) < Qi = %E .

-
znef=1(0)



Combining this with (4), we conclude

5e

P [f") Ay < E S

(z™,y)Pgny

<

N ™

which proves the lemma for the binary case wh&re- {0,1}.

To deduce the statement for arbitrary s&tonsider an (injective) encoding func-
tion ¢ which maps each elemente Z to anm-tuple (ci(2),...,cm(2)). Since the
norm| - |; can only decrease when applying a function, the assumpfitredemma
implies that, for all probability distribution®x -y € I,

[Py (xm) = Pyxny)h <e€,

where, fr := ¢y o f andgy := ¢ o g, foranyk € {1,...,m}. The assertion then
follows from the binary version of the lemma and the unionrxhu

As an immediate corollary, we deduce the impossibility afd@mness extraction.
The impossibility of other cryptographic tasks such as yptaon follows exactly the
same argument as in [DOPS04].

Corollary 1. Let f be a function from¥™ to {0,1}. For anyi € {1,...,n}, let
Qx,xi-1 be achannel front’’~! to X and letd > 0. Then there exists@, {Q x,|xi-1 })-
sourcePx~ such that

)
Prixny — Pyli > —
| Pr(xn) vl > 0
wherePy; is the uniform distribution 040, 1}.
Proof. Assume by contradiction that, for ay, {Q x,| x:-1 })-sourcePx=,

5
J— 2
1Prexmy = Puli < 45

Let g be the function orit™ x {0, 1} defined byy(z"™, u) := u. Then, for any probability
distribution Px~yy = Px» x Py, wherePxx is a(é, {Qx, x:-1 })-source, we have

5
Pjxn) — Pyixn 2
[Prxm) = Poxmnh < g5

Lemma 1 thus implies that there exist§ia{Q x, | x:-1 })-sourcePg., with

Pr [f(z") # g(=",u)] <

(z™,u)«—Pgn X Py

)

N

that is,

N |

Pro [f@a") #u] <

(z™,u)«—Pgn X Py

This is a contradiction becaugg; is the uniform distribution 040, 1}.
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A Relation to Santha-Vazirani sources

Let Px» be a(d, {Qx,|xi-1})-source, for somé > 0 and channel€) x, x:-1. It is
easy to verify that, it < ﬁ then the entropy of théth outputX; conditioned on
any value of the previous outpufs,, ..., X;_; is lower bounded by the entropy of

QXi‘Xi—lzzi—l, ie.,
H(Xi‘Xi_l = mi_l) = H(PX%lXi—l:mi—l) > H(QX7,|X1*1::H*1) s (5)

for anyzi—! € Xi~1, This holds with respect to any “reasonable” entropy measlr
as, for instance, the Shannon entropy, the min-entropynore generally, the &yi
entropy of ordeky, for anya € [0, co].

Itis thus not surprising thdt, {Q x, x:-1 })-sources are at least as useful as Santha-
Vazirani sources. More precisely, Lemma 2 below states fbatany o, there exist
channel®) x| x:-1 and a deterministi€ strategyy which allows to simulate an-SV
source from any(, {Qx, x:-1})-source, ford = 1 — 2a. Hence, any impossibility
result for (0, {Qx,|x:-1 })-sources also holds fer-SV sources.

Lemma 2. For anyd > 0, there exist channel®x, xi-1, fori € {1,...,n}, and

a functiony such that the following holds: L&y~ be an arbitrary(d, {Qx, xi-1})-

source. Then the probability distributidp, » defined byy; := v(X;), fori € {1,...n},
1-6

is ana-SV source, forv = =5°.

Proof. Let Ps be the binary probability distribution witi®s(0) = %5 For anyi €
{1,...,n}, let the channe@) x, x:-1 be defined byQ x,|xi-1—i-1 := Ps. Addition-
ally, let~ be the function o0, 1, 1 } defined by

_Jz ifzxe{0,1}
7(%)'_{1 if o =1 .

10 Note that any probabilistic strategy would require additional (perfectjoamess.



It is easy to verify that, for any € {1,...,n} andx’~! € {0,1, L}*~1,

1+6
Pyxpixisi=ai-1(0) S B5(0) = ——=1-a

146
Pyxyixi-1=zi-1(0) 2 B5(0)(1-0) = ——(1-9) 2 a,

i.., Py (x,)|xi-1=2i-1(0) € [, 1—a]. By convexity, it follows thatPy, |y 1,1 (0) €
[, 1 — o], for anyy’~! € {0,1}'~!, which concludes the proof.

Note that the converse of Lemma 2 is not true, i.e., Santlz@rdfa sources are gen-
erally weaker thai, {Q x,|x:-1 } )-sources. To see this, let, e.g., forany {1,...,n},
Qx, xi-1 be the channel defined by the uniform distribution oker= {0, 1}, i.e.,
Qx| xi-1=7i-1(0) = %, forall z'~1 € X~ It follows from (5) that the entropy of
any (9,{Qx,|xi-1})-sourcePx, ...x, is at least, for any small enough > 0. On the
other hand, the entropy of anSV sourcePy;, ...y, , for anya # % is generally smaller
thann. As the entropy of a random variable can only decrease whglyiag a (deter-
ministic) function, the valuegys, .. .,Y;) cannot be used to simulat&’;, ..., X,,).



