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Abstract o if at leastg players are honest, théh[b = 0], Pr[b =
1< % +¢
We investigate coin-flipping protocols for multiple pastie _ _ L ) )
in a quantum broadcast setting: ¢ is called thebias a small bias !mplles that colluding dis-
honest players cannot strongly influence the outcome of the
e We propose and motivate a definition for quantum protocol. Players may abort the protocol.
broadcast. Our model of quantum broadcast channel

IS new.

e We discovered that quantum broadcast is essentiallyl'z' Related work

a combination of pairwise quantum channels and a

classical broadcast channel. This is a somewhat sur-  Classically, if a (weak) majority of the players is bad

L. . . i 1 i -
prising conclusion, but helps us in both our lower and then no bias< 3 can be achieved and hence no mean

upper bounds. ingful protocols exist [15]. For_ exa_\mple, if we only have
two players and one of them is dishonest, then no proto-
cols with bias< % exist. For a minority of bad players,
quite non-trivial protocols exist. For example, Feige [B] e
Y 9 egantly showed tha(t% + §)-fraction of good players can
1<g<ke=35-0(%). achieve bias, — ©(6'-%%), while achieving bias better than
Thus, as long as a constant fraction of the players are hon- % — ¢ isimpossible.
est, they can prevent the coin from being fixed with at least  Allowing quantum bits (qubits) to be sent instead of clas-
a constant probability. This result stands in sharp coritras sical bits changes the situation dramatically. Surpriging
with the classical setting, where no non-trivial coin-flipg already in the two-party case coin flipping with bias} is
is possible wheg < % possible, as was first shown in [2]. The best known bias is
% and this is optimal for a special class of three-round pro-
tocols [3]; for a bias of: at leastQ(log log %) rounds of
) communication are necessary [3]. Recently, Kitaev (unpub-
1. Introduction lished, see [12]) showed that in the two-party case no bias
smaller than% — 3 is possible.

A weak version of the coin-flipping problem is one in
Considerk parties out of which at least > 1 are honest which we know in advance that outcome 0 benefits Alice
. S = _ and outcome 1 benefits Bob. In this case, we only need to
and at mostk — g) are dishonest; which players are dishon- bound the probabilities of a dishonest Alice convincing Bob

estis fixed in advance but unknown to the honest players..that the outcome is 0 and a dishonest Bob convincing Alice

Th|? plrz]':lyerds can cohmmunicgte over brtc))ad(;]ast Cha””?'s- I?"that the outcome is 1. In the classical setting, a standard ar
t'f”l y t_ey. onots areé randomness, Ut_t ey can private ygument shows that even weak coin flipping with a bm%

ﬂ'p coins; the probabnmes _beI(_)w are with respect t(_) the is impossible when a majority of the players is dishonest.
private rﬁniom comls. A cou;)—_fllppr:nﬁ protocol establishes In the quantum setting, this scenario was first studied under
among the honest players a bsuch that the nameguantum gambling9]. Subsequently, Spekkens
and Rudolph [16] gave a quantum protocol for weak coin
flipping with bias% — 1 (i.e., no party can achieve thie-

¢ We providdight upper and lower bounds on the opti-
mal biase of a coin which can be flipped by par-
ties of which exactly parties are honest: foany

1.1. The problem

o if all players are honesBr[b = 0] = Pr[b = 1] =

. . . | .
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11234, and RESQ), IST-2001-37559, and a NWO grant this is a better bias than in the best strong coin flipping pro-

t supported in part by an NSF CAREER Award tocol of [3]



We also remark that Kitaev's lower bound for strong coin
flipping does not apply to weak coin flipping. Thus, weak
protocols with arbitrarily smal > 0 may be possible. The
only known lower bounds for weak coin flipping are that
the protocol of [16] is optimal for a restricted class of pro-
tocols [4] and that a protocol must use at l€@6log log %)
rounds of communication to achieve biagshown in [3]
for strong coin flipping but the proof also applies to weak
coin flipping).

1.3. Our contribution

In this paper, we focus on quantum coin flipping for more
than two players. However, for our multiparty quantum pro-
tocols we will first need a new two-party quantum protocol
for coin flipping with penalty for cheatingn this problem,
players can be heavily penalized for cheating, which wll al
low us to achieve lower cheating probability as a function
of the penalty. This primitive and the quantum protocol for

that the fact that we obtain tight bounds in the quantum
setting is somewhat surprising. For comparison, such tight
bounds are unknown for the classical setting.

In the remainder of the paper, we assume some famil-
iarity with quantum computing. We recommend the book
of Nielsen and Chuang [14] for background information on
this topic.

1.4. Semidefinite programming

Some of our proofs make use of duality in semidefinite
programming. For a review of semidefinite programming,
see e.g., [13]. Semidefinite programming is a generaliza-
tion of linear programming. In addition to the usual linear
constraints, it is allowed to require that a square matrix of
variables is positive semidefinite, i.e., all its eigeneslare
nonnegative.

We make use of the following basic properties of
semidefinite matrices. Let, B, andC denote square ma-

itare presented in Section 2; they may be of independentin-trices of the same dimension. K is positive semidefi-
terest. nite, we writeA > 0. We defined > B :& A - B > 0.
One way to classically model communication between Then
more than two parties is by a primitive calldédoadcast
When a player sends a bit to the other players he broad-
casts it to all the players at once [6]. However, when we
deal with qubits such a broadcast channel is not possible
since it requires to clone or copy the qubit to be broadcast
and cloning a qubit is not possible [18]. In Section 3we de-  In the Lagrange-multiplier approach, a constrained opti-
velop a proper quantum version of the broadcast primitive, mization problem (called therimal problem)
which generalizes the classical broadcast. Somewhat sur-
prisingly, we show that our quantum broadcast channel is
essentially as powerful as a combination of pairwise quan-
tum channels and a classical broadcast channel. This coulds reformulated as a unconstrained optimization problem
also be of independent interest.
Using this broadcast primitive we obtain our main result:

A= B e V) : (YAY) > (Y| Bly))
A > B = try A > try B for every subspac¥
A=B+CandC>0=A>1B

max f(z) subjecttog(x) < a forfixeda >0

max inf f(z) —A-(g(x) —a) ,
which is bounded from above by the constrained optimiza-

Theorem 1 For k parties out of whicly are honest, the op- tion problem (thedual problem)

timal achievable bias i$1 — ©(£)).

k

We prove Theorem 1 by giving an efficient protocol with
bias (4 — €(£)) in Section 4 and showing a lower bound
of (3 — O(£)) in Section 5. Our protocol builds upon our  In linear programmingf — A - g)(x) < 0 forall z > 0 if
two-party coin-flipping with penalties which we develop in and only if f — A g < 0. Therefore the preceding optimiza-
Section 2, and the classical protocol of Feige [8] which al- tion problem can be simplified to
lows to reduce the number of participants in the protocol
without significantly changing the fraction of good players
present. Our lower bound extends the lower bound of Ki-
taev [12]. The same construction applies to SDPs using matrices as

To summarize, we show that quantum coin flipping is variables andd - B := tr(A” B). A feasible solution of the
significantly more powerful than classical coin flipping. dual yields an upper bound on the optimal value of the pri-
Moreover, we giveight tradeoffs between the number of mal problem. Strong duality (i.e., that the optimal values c
cheaters tolerated and the bias of the resulting coin achiev incide) does not hold in general, however, we will not need
able by quantum coin-flipping protocols. We also remark this below.

IAn>i%1)\-asubjeCtt0(f—)\-g)(x) <Oforallz >0 .

in A - a subjecttof —X-¢g <0 .
in A - a Subj f g=<



2. Two-party coin flipping with penalty for a. Finally, let pinitial € X ® A ® B denote the state that Al-

cheating ice prepares initially and of which she sends theart to

Bob.
We consider the following model for coin flipping. We ~ Then we have the following constraints. The initial state

have two parties: Alice and Bob, among whom at least onejs an arbitrary density matrix:
is assumed to be honest. If no party is caught cheating, the
winner gets 1 coin, the loser gets 0 coins. If honest Alice tr(pinitial) = 1 (1)
catches dishonest Bob, Bob losesoins but Alice wins 0

coins. Slmllarly, if honest Bob catches dishonest A||Ce':‘, sh When Alice |earn$, she cannot toucB anymore, but she

losesv coins but Bob wins 0 coins. can apply an arbitrary unitar/, on X ® A to store her
Theorem 2 If Alice (Bob) is honest, the expected win by choicea in X and to prepare thel register in the desired
dishonest Bob (Alice) is at mogt+ -, forv > 4. state:

Proof. The protocol is as follows. Let = \% Define tr x4 (pinitial) = traa(pp) forallb e {0,1} (2)

o) = Véla)|a) + V1 =105]2)[2). _ o _ _
o) ) | _>| > | >|_ > She will then measur&’ register in the computational basis
1. Alice picksa € {0, 1} uniformly at random, generates g gptaina. Therefore we have

the statdv,) and sends the second register to Bob.

2. Bob stores this state in a quantum memory, picks tra(pp) = poo + pr1 forallb e {0,1} . (3)
{0, 1} uniformly at random and senddo Alice.

3. Alice then sends and the first register to Bob and Bob  Note that this impliesr(pyo) + tr(ps1) = 1, so thatin gen-
verifies if the joint state of the two registers|is,) by ~ €al then,, are not density matrices.
measuring it in a basis Consisting ma> and every- Now Bob CheCk$ba. This giveS rise to the fOIIOWing ob-
thing orthogonal to it. If the test is passed, the result of jective function for Alice’s optimal cheating strategy:
coin flip isa & b, otherwise Bob catches Alice cheat-
ing. max Z Z Pr[b = 8] Prla = alb = j]-

Theorem 2 follows immediately from the following two AEe{0.1} ac{0,1}

lemmas. O (0ap Prlpsa passels— v Prlpg, fails]) (4)
Lemma 3 Bob cannot win with probability more thah+ Here the Kronecker-Deltd.s = 1 iff o = 3 measures
= thus his expected win is at mast+ —-. whether Alice managed to getandb to match. Maximiz-

Proof. Let p, be the density matrix of the second register "9 (4) is équivalent to maximizing

of |¢,). Then, for the trace distance betwegnandp; we

have||po — p1: = 26. max Z Z Pr[b = [] Prla = a|b = 5]
Aharonov et al. [1] showed that the trace distance is a pe{0,1} ac{0,1}
measure for the distinguishability of quantum states analo Pripge passesdas +v) . (5)

gously to the total variation distance of probability distr
butions; in particular, the probability of Bob winning is at Bob plays honestly, therefoier[bp = 0] = Pr[b = 1] =

[N

mostd 4 leozenlle — 1 81 % O Moreover,Pr[a = a|b = 3] = tr(ps.) and
Lemma 4 Dishonest Alice’s expected win is at m(%sH— 03

1 Pr[ps, passels= t o (g | —2—
. tlpsa paSSES= tx (w b |tr(pﬁ_’a))

Proof. Alice is trying to achieve © b = 0, which is equiv-

alent toa = b. We describe the optimal strategy of Alice as Hence,Pr(a = alb = 8] Prlpsa passes= (Yalppalta)-

a semidefinite program. Substituting this into (5) and discarding the constantdiact
The variables are semidefinite matrices over subspaces 9ives the final objective function

of ¥ ® A ® B, whereX’ is Alice’s private storage4 holds

the first qutrit of the state to be sent in the protocol #hd max Z Z (Yalppalta) (bap +v) . (6)
holds the second qutrit. Fas b € 01, let p,, € A ® B de- B€{0,1} ac{0,1}

note the state that Bob has in the last round, when he has

senth and Alice has sent (and some qutrit). Fdr € {0, 1}, We now proceed to constructing the dual of the SDP formed

let pp, € X ® A® B denote the state before Alice decides on by the objective function (6) together with the constraints



(2), (2), and (3). The Lagrange ansatz is Moreover, we also impose the restrictidp = 14 ® M,
forb € {0,1}. Since them > mg + my, our goal reduces

max i%f Z tr ((0ab + v) %) (Val|pba) to minimizingm andm, subject to
a,be{0,1}
I — o — Lo — (v +1)[ho) (o] = 0 (14)
" o ) = o = ) Lo — vt} (] > 0 (15)
_ R L1 — v[tho)(to| > 0 (16)
be%;l}tr (My traea(py — pinitial)) Li— (0 + D)) (| >0 . (17)

— tr(A(piiial — 1)) (7) Constraints (14) and (17) are satisfied if

whereP are the primal variables as before, i.e.,

mo > (v+1)8 (18)
P = {(Pinitial,po,pmpompm#w,pu) : mg 2 (U + 1)(1 - 6) (19)
Pinitial; Po, p1 € S(X @ A® B), momz > (v + 1)(1 = d)mo + (v + 1)dmz . (20)
poos pot, pr0; 11 € S(A @ B)} Similarly, Constraints (15) and (16) require that
and the dual variables (Langrange multipliers) are
my > vo (21)
D:{(L07L11M01M17)\) : ma ZU(I—(S) (22)
Lo, Ly € H(A® B), My, M, € H(B),\ € R} . mima > v(l — §)my + véms . (23)
Here H(V) and S(V) denote the Hermitian and semidefi- A solution to the system (13),(18)-(23) is
nite matrices, respectively, operating on the linear space
Collecting the primal variables in (7), we get fafitial mo = %(1 + ) (2 —d(1+2v)
tr ((Mo—‘er —/\I[B) Pinitial) . +\/4—4d+ (d+2dv)2)
Forpy, b € {0,1}, we obtain my = %0(2 +d + 2dv - \/4 —4d+ (d+ 2dv)2) :
tr ((Lp — (La @ My)) trx(pp)) - From this and the definition af, we get that there is feasi-

) ble solution of the dual SDP with
For ppa, a,b € {0,1}, we obtain

tr ((—=Lo + (0ab + v)[Ya) (Yal) ppa) -

/\:m0+m1
—14 v =20+ /1 — 2\/v + 5v + 4v?2

=2v+

The terms in (7) not involving primal variables are just Vo
Hence, the following dual SDP will give an upper bound on <9 1
; - <2414 — .
the optimal value of our primal SDP: 4\/v
minimize A subject to (8) From the earlier transformations of the primal objective
Mo+ M; < Mg 9) function, it follows that the optimal expected payoff of Al-
H H 1 1
Ly <14® M, forallbe {0,1} (10) ice is bounded from above bg/)\ —v <5+ WO O
(v + 0ap)[tha) (Ya| < Ly, foralla,be {0,1} (11)
(Lo, L1, Mo, My, A) € D (12) 3. The multiparty model

We now construct a feasible solution for the dual SDP. We

restrict our attention td/, and M, of the form 3.1. Adversaries
mg my In this work, we assume computationally unbounded ad-
My = mi andM; = mo versaries. However, they have to obey quantum mechan-
Mo mo ics and cannot read the private memory of the honest play-
] ers (but they can communicate secretly with each other).
for somermy, m, m, with Moreover, we assume that they can only access the mes-

1 sage space in between rounds or when according to the pro-
mo>0, mp>0, mg= §(m0 +m1) . (13)  tocolitis their turn to send a message.



3.2. The broadcast channel 1.

A classical broadcast channel allows one party to send
a classical bit to all the other players. In the quantum set-
ting this would mean that a qubit would be sent to all the
other players. However, when there are more than two play-
ers in total we would have toloneor copythe qubit in or-
der to send it to the other players. Even if the sender knows
a classical preparation of the state he wants to send, we can-
not allow him to prepare copies because he may be a cheater
and send different states to different parties. It is wethkn
that it is impossible to clone a qubit [18], because cloning
is not a unitary operation. This means that we will have to
take a slightly different approach. Quantum broadcast-chan
nels have been studied in an information-theoretic context
before [5, 17] but not in the presence of faulty or malicious
parties.

Our quantum broadcast channel works as follows. Sup-
pose there aré players in total and that one player wants
to broadcast a qubit that is in the statf®) + 3|1). What
will happen is that the channel will create thejubit state

a|0%) + B|1*) and send one of the qubits to each of the 3.

other players. The state0*) + 3|1%) can be easily created
from «|0) + 5|1) by takingk — 1 fresh qubits in the state
|0F=1). This joint state can be written ag0*) + 3|10¥~1).
Next we flip the lastt — 1 bits conditional on the first bit
being al, thus obtaining the desired stai¢0*) + 3|1%).
This last operation can be implemented with a series of
controlled-not operations. Note that this state is not poad
ing k copies of the original state, which would be théold
product statéa|0) + 5]1)) ® ... ® («|0) + B|1)).

Theorem 5 In the following sense, a quantum broadcast
channel betweeh parties is comparable to models where

the parties have a classical broadcast channel and/or pair-
wise quantum channels:

o If all parties are honest:

1. One use of the quantum broadcast channel can
be simulated witl2(k — 1) uses of pairwise quan-

2.

The sender takds- 1 fresh qubits in stat®*). He ap-
plies k — 1 times CNOT where the subsystem to be
broadcast is the control of the CNOT and the fresh
qubits are the destination. He then sends each of the
k — 1 qubits via the pairwise quantum channels to the
k — 1 other parties. Each recipiepjtflips a (private)
classical random bit; and if r; = 1 performs ao,

1 0

0 -1

is the Pauli matrix that multiplies the relative phase be-
tween thg0) and the 1) state by—1. He then sends;

back to the sender. The sender computes the parity of
ther; and if it is odd, he performs a, phase flip on

his part of the broadcast state, thus restoring the cor-
rect relative phase. (This randomization is a counter-
measure; its utility is explained below.)

phase flip on the received qubit. Here = (

When the sender wants to broadcasbhit {0,1}, he
uses the quantum broadcast channel on dupifThe
recipients immediately measure their qubit in the com-
putational basis to obtain the classical bit.

The quantum broadcast channel can be used to create
an EPR pair\/ii(|00> + |11)) between two player®;
andP; with the assistance of the othir— 2) players.
1 andj are determined by the protocol.

First one player broadcasts the st@@ﬂo) + (1)),
resulting in thek qubit stately) = —(|0%) + [1%)).
Now one after the other, the — 2 remaining play-
ers perform a Hadamard transformation on their qubit,
measure it in the computational basis, and broadcast
the classical result. Next, iP; receives a he applies
aphase fligr, to his part oflp) (P; does nothing). Af-
ter this operation|y) will be an EPR state betwedr)
and P; unentangled with the othér — 2 parties. Us-
ing a shared EPR pair, a protocol calleteportation
[7] can be used to simulate a private quantum channel
betweenP; and P;. Teleportation requires the trans-
mission of two bits of classical information.

tum channels. For the case of all but one party being dishonest:

2. One use of a classical broadcast channel can be
simulated with one use of the quantum broadcast
channel.

3. One use of a pairwise quantum channel can be
simulated byt + 1 uses of the quantum broadcast
channel.

o If all but one of the parties are dishonest, using one
of the simulations above in place of the original com-
munication primitive does not confer extra cheating
power.

Proof. We first give the simulations and argue that they 2.

work in case all players are honest.

1.

If the sender is honest, the recipients obtain exactly the
same subsystems as for the quantum broadcast chan-
nel.

If one of the recipients is honest, he may receive
an arbitrary quantum subsystem up to the random-
ized relative phase. However, exactly the same can be
achieved with a quantum broadcast channel with1
cheating parties, who each perform a Hadamard trans-
formation on their subsystem followed by a measure-
ment in the computational basis.

If the sender is honest, all recipients obtain the same
computational-basis state.



If one of the recipients is honest, he obtains a classi- coin-tossing protocol by Ambainis [3]. If there is only one
cal bit that is possibly randomized in case the dishon- good player, the probability that he makes it to the last dbun
est sender does not broadcast a basis state. Since this
sender can flip a coin himself, this does not give more 1\ [ 1Hleek]
cheating power. (1 o ﬁ)

3. If the sender is honest, we can assume without lossin this case, the probability that the bad players can deter-
of generality that all cheating action is done after the mine the output coin i§. In case the good player gets elim-
EPR pair has been established, because the (mergedhated, the bad players can completely determine the coin.

cheaters can easily recreate the original broadcast statgience, the overall probability that the bad players can de-
and also compensate any phase flipping of the hon-termine the coin is

est sender. However, after the EPR pair has been es-

)

tablished, the sender unilaterally performs his part of 1 1 (1 _ L) [=1+logk] <1_

the teleportation circuit and measurements and sends 4 V2 - 4K178
the two bits of classical information. So the most gen-

eral cheating action is to apply a quantum operation af- Which corresponds to bias

ter the reception of the two classical bits. Furthermore, 1 1

we can even assume that the cheating action is dbne 3~ Q(W) .

ter the correction circuit of teleportation (this is similar
to the teleportation of quantum gates [10]) and, hence, To improve the above naive bound to the desired value
amounts to cheating on a pairwise quantum channel. % — Q(%), we will use our coin-flipping protocol with

If one of the recipients is honest, the best the penalty from Section 2. The idea is that in current quantum
cheaters can aim for is to give an arbitrary quan- coin-flipping protocols for two parties, there are three-out
tum state to the honest recipient. This they can alsocomes for a given player: “win,” “lose,” and “abort.” Now,
achieve over a pairwise quantum channel. looking at the elimination tournament above, if an honest
player loses a given coin flipping round, he does not “com-
plain” and bad player win the game. However, if the hon-
est player detects cheating, he can and will abort the en-
tire process, which corresponds to the failure of the dishon
4. Multiparty quantum protocols est players to fix the coin. Of course, if there are few elim-

ination rounds left, bad players might be willing to risk the

We will first consider the case of only one good player aport if they gain significant benefits in winning the round.

(i.e.,g = 1) amongk players and later extend our results to  However, if the round number is low, abort becomes pro-

general. hibitively expensive: a dishonest player might not be will-

One Honest PlayerRecall, we need to construct a protocol ing to risk it given there are plenty more opportunities for
with bias 3 — Q(+). Before proceeding to our actual pro- the honest player to “lose normally.” Thus, instead of regu-
tocol, let us consider a simple protocol which trivially ex- lar two-party coin-tossing protocols, which do not differe
tends the previous work in the two-party setting, but does tiate between losing and abortion, we can employ our pro-
not give us the desired result. The protocols is as follows: tocol for coin flipping with penalty, where the penalties are
player1 flips a random coin with playet, player3 flips a very high at the original rounds, and eventually get lower
random coin with player and so forth. In each pair, the towards the end of the protocol. Specific penalties are cho-
player with the higher id wins if the coin is and the one ~ sen in a way which optimizes the final bias we get, and al-
with the lower id if the coin i$). The winners repeat the pro- lows us to achieve the desired bigs- (7).

cedure. With each repetition of the tournament, half of the 1.0 5rem 6 There is a strong quantum coin-tossing proto-

remaining players are eliminated (if there is an odd num- col for k parties with bias at mos} _ < for some constant
ber of players at any moment, the one with the highest id ¢, even with(k — 1) bad parties k

advances to the next round). When there are only two play-
ers left, the coin they flip becomes the output of the proto- Proof. We assume that = 2™ for somen > 0, as it
col. (Above we assume we have private point-to-point quan- changes: by at most a constant factor. L&, be the max-
tum channels and a classical broadcast channel which is justimum expected win in a two-party protocol with penaity
tified by Theorem 5.) Consider the following protocol with rounds.

Now, the elimination rounds can be implemented using  In thei*® round, we hav@"*'~* parties remaining. We
the weak two-party coin-tossing protocol by Spekkens anddivide them into pairs. Each pair performs the two-party
Rudolph [16] and the last round by the the strong two-party coin-flipping protocol with penalty2™—¢ — 1), with Alice



winning if the outcome isl and Bob winning if the out-  we have
come is0. The winners proceed t@ + 1) round.

In the (n—2)"4 round, there are justparties remaining. 1—-P > 1 H(l Qi)

At this stage, they can perform three rounds of regular coin "~ 64 s B

flipping with no penalty of [3, 11] in which no cheater can n—1

bias the coin to probability more th@ which will result > 1 (1 _ #)

in maximum probability of$2 of fixing the outcome. The T4 \2 Vi1

result of this last two-round protocol is the result of @tir n—1 9

party protocol. > — ( — 7)
Assume that the honest player has won the fiist j) 8-2 71;[3 V2l —1

coin flips and advanced {g + 1)* round. Assume that the _ ) )
all other players in th¢j + 1)t round are dishonest. L The last term in the brackets is at leq$f; (1 — 57— ),
be the maximum probability with whic{2/ — 1) dishonest which is a positive constant. Therefore, for some constant
players can fix the outcome to O (or 1). c > 0 we havel — P, > 5% = £, which means that the
bias is at most — Q(1). |
Lemma 7
Extending to many honest playefd/e can extend Theo-

1-P>(1—=Pi1)(1—-Qa-1_1) (24) rem 6 to any numbey > 1 of good players by using the
classical lightest-bin protocol of Feige [8]. This protbab
lows us to reduce the total number of players until a sin-
gle good player is left without significantly changing the
o _ ) fraction of good players, after which we can run the quan-
Pw + pi + pe = 1. Then, the probability’; of 27 — 1 dis- tum protocol of Theorem 6 to get the desired result. Specif-
honest parties fixing the coin is at mestt-p,, Pj—1. (Ifthe ey | emma 8 from [8] implies that starting from= 6k
honest player loses, they win immediately. If he wins, they 4444 players out of players, the players can (classically)
can still bias the coin i — 1 remaining rounds to proba-  cgjact a sub-committee ﬂ(%) _ O(%) players contain-

bility at mostP;_; . If he catches his opponent cheating, he . . .
exits the protocol and the dishonest players have no more"Y atleast one good player with probability atIe@sNow

chances to cheat him.) Usigg, = 1 — p; — p., we have this sub-committee can use the quantum protocol of Theo-
' " = Pr=Pe rem 6 to flip a coin with biag — €2(£), provided it indeed
P <pi+pwPj1=Pi_1+(1—Pj_)p — Pi_1p. contains at least one honest player. But since the latter hap
7= ! ! '7P‘_1 ! pens with probability at leas}, the final bias is at most
=Pi_1+(1—Pj_1) (pl - uﬁpc) (25) 3 —3-Q(%) =3 —Q(%), as desired.

Proof. Let p., p;, p. be the probabilities of the honest
player winning, losing and catching the other party cheat-
ing in the (j + 1)%* round of the protocol. Notice that

Next, notice thaf?;_; > 1 — . This is becaus®/~! — 1 5. Lower bound
bad players could just play honestly when they face the
good player and fix the coin flip if two bad players meetin 5.1. The two-party bound

the last round. Then, the probability of the good player win-

ning all j — 1 rounds iss--+. Therefore; 251 > 2i-1 1 For completeness and to facilitate the presentation of
and Equation (25) be<2:]0mes 1P = our generalization, we reproduce here Kitaev’'s unpubtishe

proof [12] that any two-party strong quantum coin-flipping
P <P+ (1—Pi1)(p — (29’—1 — 1pe) (26) protocol must have bias at Iea%. The model here is that
the two parties communicate over a quantum channel.

Finally, the termin brackets is at magg; -1 _, which gives o )
Definition 8 Let H := A ® M ® B denote the Hilbert

Py <P+ (1= P_1)Qai1y 27) space of the coin-flipping protocol composed o_f Alice’s pri-
o _ . _ _ vate space, the message space, and Bob’s private space. A
Wh|Ch Inturnis equ|Va|ent to the des|red Equat|0n (243 2N -round two_party Coin_ﬂipping protoco' isa tup|e

By applying the claim inductively, we get
y applying y 9 Wan,--- Uan,UB1,...,UB N,

1 n HA,O7HA,17HB,01HB71)
L=Py > o [[0-Qui)
4 where

where the; term comes from the naive protocol we use in -~ ® Ua,;is aunitary operatorod@Mforj =1,.... N,
the last three rounds. Now, using the bound in Theorem 2 e Ug ; is aunitary operatorooM@Bforj =1,..., N,



e 1140 andIl4 ; are projections fromA onto orthog- trag pa,i = traq p/y o- In the next round, honest Alice ap-
onal subspaces ofl (representing Alice’s final mea- pliesUy4 o, then Bob can do some operation that preserves
surements for outconeand1, respectively), the partial trace, and so forth. The probability for Alicg-ou

puttingl istr((IL4,1 ® 1am)pa,n) because the final state for

Alice is p 4,y and she performs an orthogonal measurement

on A with projectionslIs o, 14,1, andl g — T4 0 — a1

e IIp o andIlp ; are projections from3 onto orthogo-
nal subspaces d# (representing Bob'’s final measure-
ments for outcome and 1, respectively),

(which represents “abort”). O
so that for ) ]
Lemma 11 The dual SDP to the primal SDP in Lemma 10
[Yn) == (1a®@UBN)(Uan ®15)(1a @ U N-1) is
(Uan-1@1p)- (1a@Up1)(Uas ©15)|0) minimize  (0|Z4|0) subject to (34)
holds Zaj®@Im 2 U} j41(Zaje1 @ IMm)Ua (35)
(forallj:0<j<N-1)
(a0 @ 1m @ 1p)[YNn) = (1a @ Ipm @ 1B 0)|[YN) Zan =Tlas (36)
(28) ’ ’
(Ma1 ® Ip @ 18)|1hn) = (14 ® 1y @ pp)|thn) over the Hermitian matrices 4 o, ... Z4,n Operating on
(29) A
(M0 @1 @ 18) YN = [[(Ta1 @ 1a @ 1) [n) || Proof. We form the dual of the SDP in Lemma 10 as fol-
(30) lows: it is equivalent to maximizing over the, ; the mini-
mum of

The first two conditions ensure that when Alice and Bob
are honest, they both get the same value for the coin and the tr((TI4,1 ® 1a)pa.n) —tr(Zao(tra pa,o—10){(0|m))
third condition guarantees that when Alice and Bob are hon- N

est, their coin is not biased. A player aborts if her or hislfina - Ztr(ZA,j tram(pa; —Uajpaj—1Us ;) (37)
measurement does not produce outcOroel; of course, it j=1

is no restriction to delay this action to the end of the proto- subject to the operatotg, ; on M being Hermitian (for
col. 0 < j < N). In the sum above, the terms containjng
Lemma9 Fix an arbitrary two-party quantum coin- for0 <j <N are

flipping protocol. Letp,. and p,; denote the probabil-
ity that Alice or Bob, respectively, can force the outcome
of the protocol to bd if the other party follows the proto-
col. Denote by, the probability for outcomé when there  which equals
are no cheaters. Them .p.1 > p1.

—tr(Za,j(trm paj))
+tr(Zaj+1 tram(Ua j+1p4,5U% j11))

. tr( —(Za,; @ 1p)+
Hence, ifp; = 3, thenmax{pi.,p.1} > \/% To prove (=(Zai @ 1m)

Lemma 9, we construct the view of a run of the protocol Urj+1(Zaj+1 ® 1M)UA,j+1)pA,j) . (38)
from an honest Alice’s point of view, with Bob wanting
to bias the protocol towards The problem of optimizing
Bob's strategy is a semidefinite program (SDP).

Since this term must be non-positive, we arrive at the in-
equality (35).

Forj = N, we obtain the dual equality constraint (36)
Lemma 10 The optimal strategy of Bob trying to force and the dual objective function becomes the only summand
outcomel is the solution to the following SDP over the of (37) that does not involve amy ;. O

semidefinite matrices, o, . . ., pa, ;v Operating ond @ M: Proof of Lemma 9. Let Z4, and Zz; (0 < j < N)

maximize  tr ((Tl41 ® 1a)pa,n) Subjectto (31) denote the optimal solutions for the dual SDPs

traq pao = |0)(0]4 (32) for Ia cheatingh Bob and a c:heatingI Al|ice,> respec-

tr o trag U ioa s U . (1<i<DN) (33 tively. For eachj, 0 < j < N, let |[¢;) =

MPA,j mUajpa;—1Uy; (1<j<N) (33) (1A Up ) (Un; @ 15) - (La®Up1)(Uar @ 15)[0) de-

Proof. Alice starts with her private memory in stal@ 4 note the state of the protocol in rourjdwhen both par-
and we permit Bob to determine thie( part of the initial ties are honest. Lef; := (1;[(Za,; ® 1y ® Zg5)|v)).
state. Therefore all Alice knows is that initially, the spac  We claim
accessible to her is in stapey, o with traq pa,o = [0)(0] 4.
Alice sends the first message, transforming the state to P1pa = Fo ) (39)
P'a0 = UaipaoU} ;. Now Bob can do any unitary op- Fj 2 Fin (0<j<N) (40)
eration onM @ B Iea{ding top4 1, SO the only constraint is Fy =p1. (41)



Combining (39)—(41), we obtain the desired.p.1 > p:. o forl < i <k, 1I, o andIl; ; are projections fromA;

We now proceed to prove these claims. to orthogonal subspaces of; (representing the mea-
Note that the primal SDP from Lemma 10 is strictly fea- surement that partyperforms to determine outcorfie
sible: Bob playing honestly yields a feasible solution that or 1, respectively),

is strictly positive. The strong-duality theorem of senfiide

nite programming states that in this case, the optimal value%O that forfyy) :=
of the primal and the dual SDPs are the same, and there?! < kandany € {
forepi. = (0[4Z4,0/0).4 andp.. = (0]5Zp 0|0)5 and

Uiy --- Ui, |0) and each painl < i <
0,1} holds

iplion) = Mir pleow) (42)

P1aps1 = (0]4Z4,0/0).4 - (Olm1m[0) a1 - (0]8ZB,0(0)5 1T o) | = (1L s [0 ) |- (43)
=(0[(Zao®@1m @ Zp)|0) = Fp. }

Here U; denotes the extension bf; to all of 7{ that acts

The inequalities (40) hold because of the constraints (35).55 identity on the tensor factord, for i/ £ 5 My, =
Equality (41) holds because by constraint (36) we have (A, ® @l , @ ®1a,, © - @14,)is the ex-

tension ofll; ;, to H.
(@l(Zan @1m @ Zp,N)lp) = ’

[(Ma1 ®Ipm @15) (14 @ 1a @ 1151)|0)|? Lemma 14 Fix an arbitrary quantum coin flipping proto-

. ] col. Forb € {0,1}, letp, be the probability of outcome
forany|y); [1n) is the final state of the protocol when both i, case all players are honest. Lgt, denote the probabil-

players are honest, so by equation (29), ity that partyi can be convinced by the other parties that
the outcome of the protocol tsc {0,1}. Then
(a1 @ 1w @ 15)(1a © La @ T 1) [eow) |12 P 01
|

= |(HA-,1®1M®1B)W)N>”2:I)1- Pip--- " Pkb = Db
= Proof of Lemma 14. The optimal strategy fok — 1 bad
players trying to force outconieis the solution to the SDP
5.2. More than two parties from Lemma 10 where all the cheating players are merged
into a single cheating player.
We will now extend Kitaev’s lower bound tb parties. Let (Z; ;)o<,<n denote the optimal solution for the dual

As with the upper bounds, we first start with a single honest Spp for good playet, 1 < i < k. For eachj, 0 < j < N,
player g = 1), and then extend the result further to any let |¢;) := U, - -- U3 |0) denote the state of the protocol in
round;j when all parties are honest. LE} := (¢;|(Z1,; ®

- ®Zk,;®1Mm)|9;). By asimilar argumentas in the proof
of Lemma 9, we have

Theorem 12 Any strong quantum coin-tossing protocol for
k parties has bias at least

1 In2 1
5_7_()(@) P pPe1=Fo (44)
Fy > Fj (0<j<N) (45
if it has to deal with up tdk — 1) bad parties. Fy =p; (46)

Wei ct())n5|der thhe modgl gft)pr|vr?te pa|rW|sr:e quanltum chagj Hencepi: - ... pr1 > p1. Repeating the argument with
nels between the parties; by Theorem 5 the results immediy,g cpegters aiming for outcome 0 completes the proof.
ately carry over to the quantum broadcast channel.

Definition 13 LetH == A, ® - -- @ A, ® M denote the Theorem 12 is an immediate consequence.

Hilbert space composed of the private spaces phrties
and the message space. Arround k-party coin-flipping
protocol is a tuple

Proof of Theorem 12. Using the notation of Lemma 14,
we havep, = % Let g = max; p; o denote the maximum
probability of any player forcing outpuit. By Lemma 14,

. . k> L > L from which follows that
(7’17"'7ZN7U17'";UN7H1,07H1,17"'7Hk,07Hk,l) q _p170 pk70_ 2
where q> (l)l/k>1_1n_2_o(i)
. - —\2 - k k2
e i; withl <i4; <k, 1< j <N, indicates whose turn
itis to access the message space in rogind By Theorem 5 this result applies both to private pairwise

e U;isaunitary operator om;, @ M forj =1,..., N, guantum channels and the quantum broadcast channel.



Extending to many honest playef8xtension to any num-  [15] M. Saks. A robust noncryptographic protocol for cotiee

ber of honest players follows almost immediately from The- coin flipping. SIAM J. Discrete Math 2(2):240-244, 1989.
orem 12. Indeed, take any protoddifor & parties tolerat-  [16] R. W. Spekkens and T. Rudolph. A quantum protocol for
ing (k — g) cheaters. Arbitrarily partition our players into cheat-sensitive weak coin flippin@hysical Review Letters

k' = % groups and view each each as one “combined _ 89:227901, 2002, quant-ph/0202118.
player” We get an induced protocdl’ with & “super- [17] R. Wilmink. Quantum Broadcast Channels and Crypto-

players” which achieves at least the same bias1I, and graphic Applications for Separable Staté3hD thesis, Uni-

;o versitat Bielefeld, 2002.
Za>n }olerélzel l)Jp_tcEk O(lg))bad players. By Theorem 12, [18] W. K. Wootters and W. H. Zurek. A single quantum cannot
=2~ Vw) =3 =V

2 be copied.Natureg 299:802—803, 1982.
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