
No Time to Hash:

On Super-Efficient Entropy Accumulation

Yevgeniy Dodis
New York University
dodis@cs.nyu.edu

Siyao Guo
New York University Shanghai

siyao.guo@nyu.edu

Noah Stephens-Davidowitz
Cornell University
noahsd@gmail.com

Zhiye Xie
New York University Shanghai

zx572@nyu.edu

Abstract

Real-world random number generators (RNGs) cannot afford to use (slow) cryptographic
hashing every time they refresh their state R with a new entropic input X. Instead, they use
“superefficient” simple entropy-accumulation procedures, such as

R← rotα,n(R)⊕X,

where rotα,n rotates an n-bit state R by some fixed number α. For example, Microsoft’s RNG
uses α = 5 for n = 32 and α = 19 for n = 64. Where do these numbers come from? Are they
good choices? Should rotation be replaced by a better permutation π of the input bits?

In this work we initiate a rigorous study of these pragmatic questions, by modeling the
sequence of successive entropic inputs X1, X2, . . . as independent (but otherwise adversarial)
samples from some natural distribution family D. Our contribution is as follows.

• We define 2-monotone distributions as a rich family D that includes relevant real-world
distributions (Gaussian, exponential, etc.), but avoids trivial impossibility results.

• For any α with gcd(α, n) = 1, we show that rotation accumulates Ω(n) bits of entropy
from n independent samples X1, . . . , Xn from any (unknown) 2-monotone distribution with
entropy k > 1.

• However, we also show some choices of α perform much better than others for a given n.
E.g., we show α = 19 is one of the best choices for n = 64; in contrast, α = 5 is good, but
generally worse than α = 7, for n = 32.

• More generally, given a permutation π and k ≥ 1, we define a simple parameter, the
covering number Cπ,k, and show that it characterizes the number of steps before the rule

(R1, . . . , Rn)← (Rπ(1), . . . , Rπ(n))⊕X

accumulates nearly n bits of entropy from independent, 2-monotone samples of min-entropy
k each.

• We build a simple permutation π∗, which achieves nearly optimal Cπ∗,k ≈ n/k for all
values of k simultaneously, and experimentally validate that it compares favorably with
all rotations rotα,n.

1

1 Introduction

Good random number generation is essential for cryptography and beyond. In practice, this difficult
task is solved by a primitive called a Random Number Generator (RNG, or RNG with input), whose
aim is to quickly accumulate entropy from various physical entropic sources in the environment with
unknown distributions (such as timing of interrupts, etc.). The RNG then converts this high-entropy
state into the (pseudo)random bits that are needed for applications. In this work we focus on the
first step: entropy accumulation. This is usually achieved by a procedure S ← Refresh(S,X),
where S is the state of the RNG, and X is the entropic input whose entropy we are trying to
“accumulate” into the fixed-length RNG state S.1 Intuitively, we wish to design Refresh so that S
converges to a high-entropy, and eventually (almost) uniform distribution, provided that the input
samples X1, X2, . . . collectively have enough entropy, without too many additional assumptions
about the Xi.

In the context of RNGs, the requirement of entropy accumulation was formalized by Dodis et
al. [DPR+13] (building on prior influential work of [BH05]), and there has been much follow-up
work [DSSW14, GT16, Hut16, CDKT19]. Most of these works consider a very powerful adversary,
who tries to choose the worst possible entropy source for the Refresh subject to satisfying the
overall entropy constraints. As such, all existing Refresh procedures in the literature are relatively
expensive, using either a cryptographic hash function Hash which simply sets S ← Hash(S,X) for
the new input X, or, under some additional assumptions [DPR+13], a full field multiplication over
a finite field GF[2N] for large values of N (on the order of 500-1000).

Unfortunately, the Refresh procedures from these theoretical works appear to miss the following
critical consideration, making them insufficient for real-world RNG design. Many practical entropy
sources — such as interrupt timings — come at a very rapid pace (but possibly with relatively
low entropy per sample). Hence, running a cryptographically secure hash function (or doing a
very large finite field multiplication) every time we receive such an input X would be not only be
prohibitively expensive, but completely infeasible for an operating system RNG, for example.

As a result, practitioners use the following elegant compromise, not yet modeled by the theory of
RNGs (prior to our work), but found in every major operating system including /dev/random [Wik04]
for Linux, Yarrow [KSF99] for MacOs/iOS/FreeBSD, and Fortuna [FS03] for Windows [Fer13,
Fer19]. The state of the RNG will consist of two pieces: a relatively long state S for the “slow” en-
tropy accumulation procedure we denote by Slow-Refresh, and a small array of very short states R —
sometimes called registers — for the “superefficient” entropy accumulation procedure Fast-Refresh.
On every single interrupt timing X, one always updates one of the registers R (usually in some
round-robin manner):

R← Fast-Refresh(R,X)

Since interrupts could happen very frequently, the mandatory requirement for the fast refresh
operation is extreme speed and simplicity. We comment on this below, but first complete the
refresh procedure description. Less frequently, one would accumulate the state of all the registers
{R} into the long RNG state S:

S ← Slow-Refresh(S, {R})
1Equivalently, one can think of the refresh procedure as a randomness condenser [RR99, RSW00], which condenses

|S|+|X| bits back to |S| bits, while trying not to lose the overall entropy in both S andX (and therefore “accumulating”
the fresh entropy brought by X back into the state S).

1

The latter function is typically implemented as a cryptographic hash function Hash, and can afford
to be much slower. It is then this longer state S that will be used to generate (pseudo)random bits.
This in particular means that the registers R do not need to achieve the same guarantees as the
larger state S.

All existing theoretical modelings of RNGs with input only focused on the slow accumulation
procedure Slow-Refresh. As such, it completely abstracted away a key question concerning the
design of all practical RNGs:

What is the best way to design extremely fast and practical refresh procedures Fast-Refresh to
accumulate entropy as fast as possible?

The goal of this work is to model these super-efficient entropy accumulators, and to build the
theoretical foundations for this very important primitive. Hence, for much of this work (with the
exception of Section 8), we will completely ignore Slow-Refresh (and all other details of RNGs),
and focus exclusively on the clear question of understanding the design of super-efficient entropy
accumulation.

Existing Designs: Cyclic Rotation. To dig into our question a bit deeper, it is helpful to see
what is typically done in practice. As we said, the fast-refresh procedure has to be blazing fast, and
can realistically involve just a few simple bit-level operations applied to the entropic input and the
register. In fact, most RNGs we know, such as the one used by Windows 10 [Fer19], implement the
following “rotate-then-xor” procedure. The register R is typically an n = 32 or n = 64-bit value.
The raw input X—such as the timing of the previous interrupt—is also an n-bit string. To refresh
the register (quickly!), one simply cyclically rotates the bits of the register by some fixed constant
α (e.g., rotation by two would map the bit string (1, 1, 0, 1, 0, 1) to (0, 1, 1, 1, 0, 1)), and then XORs
the input X to the result:

R← rotα,n(R)⊕X

Concretely, Microsoft uses α = 5 for n = 32 and α = 19 for n = 64. [Fer19].

Our Questions. While this design appears reasonable, it raises a lot of questions that we would
like to answer.

• How were these (seemingly mysterious) rotation numbers α selected?

• Is there some rigorous metric/model that can help compare different rotation amounts to
each other, either practically, or theoretically, or both?

• In particular, are Microsoft’s choices of α = 5 for n = 32 and α = 19 for n = 64 “good”?

• How should one model the distributions of the entropic inputs X to properly study these
refresh procedures?

• Is rotation really the best way to permute the bits of the state for entropy accumulation?

• In particular, can rotation be replaced by a “better” permutation π of the n register positions:
(R1, . . . , Rn)← (Rπ(1), . . . , Rπ(n))⊕X?

2

To start answering these questions informally, let us make some simple observations to get some
intuition for why Microsoft might have chosen these seemingly mysterious numbers, 5 and 19. First,
it seems clear that we should take the rotation amount α relatively prime to n, to make sure every
bit eventually affects every other bit. Second, we claim that it is unwise to take α very small (e.g.,
α = 1), since practical sources will tend to “have most of their entropy in the lower-order bits,” so
that small values of α will take a lot of time to affect all the bits of the register. For example, even
if every sample of X is uniform in its n/2 least significant bits, rotation by 1 will only accumulate
n/2 + ` − 1 bits after ` steps. For a similar reason, one should avoid values of α where a small
multiple of α is very close to n; such as α = 11 for n = 32, or α = 21 for n = 64. For example, after
three such steps with α = 11 for n = 32, a fresh sample which is uniform in its 5 least-significant
bits will contribute only one fresh bit of entropy, just as if we had α = 1.

Choosing between the remaining possibilities of, e.g., α = 5, 7, 9, . . . , yields subtle tradeoffs.
Indeed, while it is clear that there is something interesting going on here, it is not immediately
clear how to formalize this.

1.1 Our model

In this work, we use the tools of modern information theory and cryptography to make the above
ad-hoc arguments more systematic and theoretically sound, so that we have higher confidence in
the quality of our answers. In the process, we will uncover some interesting theory.

Syntax and Efficiency. First, we restrict our attention to entropy accumulation of the form

(R1, . . . , Rn)← (Rπ(1), . . . , Rπ(n))⊕X

for some permutation π : [n] → [n] of the n-bit register R, as this model is quite natural in our
context of super-efficient constructions. For conciseness, we let Aπ(R) = (Rπ(1), . . . , Rπ(n)), with
cyclic rotation rotα,n(R) being of most immediate interest to us.

Modeling of Entropic Inputs X. Given the extreme simplicity of our accumulation procedure,
it is clear that we will not be able to withstand the same level of generality and “malicious” attacks
that are modeled in prior work addressing the complementary question of “slow refresh”. For
example, even if the marginal distributions of Xi are completely uniform in {0, 1}n, we will fail to
accumulate a single bit of entropy if, for example, the Xi satisfy Aπ(X2i−1) = X2i. (The state will
be zero after every even number of steps when starting from R = 0n!)

Hence, as the first modeling assumption we will assume that the inputs Xi are independent.
This is a common abstraction in the randomness extraction literature dating back to [CG88].2

While it might not be entirely accurate in practice, we believe that it captures some of what is
useful about natural sources such as interrupt timings, which do not appear fully adversarial.

Second, to minimize the number of parameters, and also to focus on the high-level picture, in
our analyses we will assume that the entropy of each (independent) sample is lower bounded by
some parameter k. (Once again, this is standard in the randomness extraction literature; with very
few exceptions, such as [KRVZ11].) The key point is that our refresh procedure does not know/use
anything about k, and a “good” result should yield quick entropy accumulation for all values of k;
presumably in roughly n/k steps, which is the best possible. Thus, even if the quality of source is

2See also [BIW04, KRVZ11, CZ19] for some exciting advances in the area of randomness extraction from indepen-
dent sources.

3

unknown, a “good” result of this type will tell us that our entropy accumulation always works to
the best extent possible.

Finally, we will further restrict each sample to come from some (natural) family of distributions
D. (This is also common in the literature. E.g., [BTRS02] did so in the context of slow refresh.)
Indeed, it is easy to see that our refresh procedure is too simple to work for arbitrary (even
independent) distributions of entropy k. For example, if only k bits of X0 have entropy, it is
trivial to see where these k bits “travel” after i mixing steps given by π. Say, for rotation by
1, after i such rotations the first k bits (1, . . . , k) go to locations (1 + i mod n, . . . , k + i mod n).
Thus, in this example (which is easy to generalize to any π) one can define Xi to be uniform over
positions (1 + i mod n, . . . , i+k mod n). This gives k independent bits of entropy, but this entropy
is repeatedly added to the same place (just shifted over and over). Hence, we can never accumulate
any entropy beyond the first k bits in this example.

Two-Monotone Distributions. Of course, the example above seems rather artificial, and un-
likely to occur in the actual distributions encountered by these RNGs. (E.g., it seems implausible
that the distribution of interrupt timings could have, say, the 10th bit uniformly random but the
least significant bit fixed.) Thus, we must choose an appropriate family of distributions. We need
some restriction on our sources to avoid the counterexamples above, but we would of course like
to work with the most general class of distributions possible.

As our first main contribution, we provide a definition that is quite general but sufficient for
our purposes. Indeed, as we will discuss more below, for this class of distributions, we are able to
formalize the intuitive requirement that “natural distributions have most of their entropy in the
lower-order bits.”

Specifically, we define a very wide class of distribution, which we call 2-monotone. These are
n-bit distributions such that the probability mass function over {0, . . . , 2n − 1} (i.e., interpreting
the n bits as an integer written in binary) “has at most one peak.” (Formally, the distribution
is 2-monotone if we can divide Z2n into two intervals such that the probability mass function is
monotone on the two intervals. See Section 3.) This is a large class, and it includes, e.g., Gaussians
over Z2n , exponential distributions over Z2n , and uniform distributions over an interval — three
natural distributions that one might use to model, e.g., the timing of interrupts.

We then show that any such distribution does in fact “have most of its entropy in the lower
order bits.” (The precise statement is Fourier analytic. See Lemma 3.2.) This will help us overcome
the impossibility result sketched above, while maintaining a (surprisingly!) large level of generality.
To summarize, we will instantiate our family of distributions to be Dk,n — all two-monotone
distributions on n bits having entropy at least k, and will allow arbitrary independent (but not
necessarily identical) choices of entropic inputs X1, X2, . . . ∈ Dk,n.

Goal: Entropy Accumulation. We must also select the notion of entropy for the register R
for our goal of entropy accumulation. As our default choice, we will use the standard notion of
min-entropy, Hmin(R). This is a conservative notion of entropy which is enough to be composed
with any Slow-Refresh procedure (or any other randomness extractor [NZ96]) from the literature.
However, some RNGs [DPR+13, CDKT19],3 and all randomness extractors based on the famous
leftover hash lemma [HILL99], can work for a less conservative notion of entropy, called collision
entropy H2(R). Hence, in our results we will keep track of both the min- and the collision entropy of

3This is not stated in the results of [DPR+13, CDKT19], but is implicit from the technical analysis.

4

R.4 Indeed, our collision entropy results will be, as expected, slightly better than the min-entropy
bounds.

Putting everything together, we arrive at the following clean question:

Main Question: For given n, k, permutation π, and number of iterations `, what is the min-
/collision entropy of R`, where R0 = 0n, Ri = AπRi−1⊕Xi, and X1, X2, . . . , X` are indepen-
dent two-monotone distributions from Dk,n?

Bigger Picture. We stress once again that our question is largely complementary and incom-
parable to the analyses of “slow refresh” procedures from all the prior work [DPR+13, DSSW14,
GT16, Hut16, CDKT19]. Slow refresh operates on much larger block size N � n, is concerned
with randomness extraction rather than accumulation, and attempts to defend against much more
powerful attacks. In order to achieve this, the slow-refresh procedure must necessarily be much
slower than our fast-refresh procedure. In particular, the two procedures are used in different,
complementary places in the overall RNG design: the array or registers becomes an input to the
slow-refresh procedure after many fast-refresh calls. In Section 8, we briefly discuss how our results
might start filling the “missing link” in the prior RNG work, but stress once again that they cannot
be meaningfully compared to each other.

We also note that our question is similar but largely complementary to our follow up work
in [DGSX21], which focuses on the feasibility of extracting from general entropic sources in an
online linear manner. With the strong assumption that the independent inputs are assumed to
be additionally identically distributed, their result requires roughly n2/k samples with k bits of
entropy each in order to accumulate roughly n bits of entropy for n-bit inputs. While [DGSX21]
handles arbitrary k-sources, the large number of required samples and the strong assumption of
identically distributed samples make the result of [DGSX21] less relevant in practice.

1.2 Our contributions

Rotation performs reasonably well. Recall that we show a key property of 2-monotone distri-
butions: they “have most of its entropy in the lower order bits.” (The precise statement is Fourier
analytic. See Lemma 3.2.) Using this characterization, we can then relatively easily show that any
rotation on n bits (with α coprime to n, or, indeed, any cyclic permutation) can accumulate nearly
a full n bits of entropy in n steps.

Theorem 1.1 (Informal, see Theorem 4.1). Any rotation on n bits (with rotation number α coprime
to n) will accumulate (approximately) n(1 − 2−2k+2) bits of collision entropy and (approximately)
n(1− 2−k+1) bits of min-entropy from any n independent sources in Dk,n, for k > 1.

Comparing different rotations using covering number. Theorem 1.1 justifies the use
of rotation, but only if we are willing to wait n steps (regardless of how large k is) and fails to
distinguish between different rotation numbers α. Indeed, as we discussed above, when α = 1, we

4Our results will eventually give standard randomness extractors, when R accumulates nearly a full n bits of
entropy (see Appendix ??). However, we choose to focus on entropy accumulation, as (1) this is the use of superefficient
entropy accumulators in real-world applications; (2) the restrictive format of our accumulators—while sufficient to
quickly get to nearly n bits of entropy (which is our goal!)—will be wasteful in “squeezing the last few bits” of entropy
needed for extraction.

5

do in fact need roughly n steps in order to accumulate nearly n bits of entropy, even if the input
already has very high entropy. So, if we wish to do better, we must somehow distinguish between
different rotation numbers.5

To do this, we introduce a simple, efficiently computable quantity Cα,n,k, which we call the
covering number. Intuitively, Cα,n,k is the number of steps needed for rotation by α to accumulate
full entropy when the input is uniform on {0, 1}k × {0}n−k. Equivalently, Cα,n,k is the minimal
number m such that {i+ αj mod n : 0 ≤ i < k, 0 ≤ j < m} = [n], i.e., the minimal m such that
“m rotations of the first k bits are sufficient to cover all bits.” It is easy to see that the covering
number is at least n/k and at most n− k + 1.

Notice that the covering number is exactly the number of steps needed to accumulate full entropy
from the (two-monotone) distribution in which the first k bits are uniform and independent, while
the remaining n− k bits are fixed. We show (using Fourier-analytic techniques) that the covering
number actually characterizes the performance of rotation by α on all 2-monotone distributions
with entropy k, up to a factor of 2 in k. In other words, up to this factor of 2 in k (and ignoring the
specific notion of “accumulating enough entropy”), the uniform distribution on {0, 1}k × {0}n−k is
“the worst case”.

Theorem 1.2 (Informal, see Theorem 5.2). Let m := Cα,n,bk/2c and k ≥ 2. After m steps, rotation

by α accumulates at least n ·(1−2−k) bits of collision entropy and n ·(1−2−k/2) bits of min-entropy
from any distribution in Dk,n. Alternatively, it accumulates at least n− 1 bits of collision entropy
after m(1 + log(n/k)/k) steps, and n− 1 bits of min-entropy after m(1 + 2 log(n/k)/k) steps.

Theorem 1.2 suggests comparing rotations according to their covering numbers Cα,n,k, effec-
tively reducing a seemingly very difficult problem to a simple calculation. Therefore, we compute
these covering numbers for different rotations. While there is no unambiguous ranking of the dif-
ferent rotations,6 we show that some rotations perform well in general, while others do not. (E.g.,
C11,32,k > n − 3k for n = 32.) In particular, Microsoft’s choice of α = 19 when n = 64 is quite
reasonable (though α ∈ {15, 23, 27} also seem like reasonable choices). Microsoft’s choice of α = 5
for n = 32 is also reasonable, though we observe that certain other choices, particularly α = 7 and
α = 9, also perform reasonably well for all k and perform noticeably better when the input has
high entropy. See Figures 4 and 5 for the data. (See [sup] for a table with all covering numbers for
n = 32 and n = 64.)

Other Permutations and Tightness. Our analysis of the covering number above extends
immediately to any cyclic permutation π : [n] → [n]. Specifically, the covering number Cπ,k of π
essentially characterizes its behavior as an entropy accumulator when its input is a 2-monotone
source with entropy k (up to a factor of 2 in k). In fact, in Theorem 5.3 we show that this
generalization of Theorem 1.2 is quite tight. In particular, there exists a distribution D ∈ Dk,n
(in fact, the same distribution that we use for our empirical results discussed below) such that no
permutation π (including all rotations and the new permutation we discuss below) accumulates
more than n− 1 bits of collision entropy from D in fewer than n log(n)/(k2 + 4) steps. Similarly, it
takes at least 2n log(n)/(k2+4) steps to accumulate n−1 bits of min-entropy from this distribution.

5It is easy to see that all rotations perform identically if we wait exactly n steps. So, this question is essentially
only interesting for fewer than n steps.

6Some rotations will perform very well for some k, and others will perform well for other k. E.g., for α = k,
Cα,n,k = dn/ke is always minimal. So every rotation has an optimal covering number for at least one choice of k.

6

Notice, in particular, that our upper and lower bounds nearly match when one sets m ≈ n/k.
(While m = Cπ,bk/2c cannot be smaller than 2n/k, as we describe below in more detail, we expect
that this factor of two is an artifact of our proof and that taking m ≈ Cπ,k is a good heuristic.
Since Cπ,k can be as small as dn/ke, this suggests taking m ≈ n/k.)

A different permutation: bit-reversed rotation. Our characterization of condensing in terms
of Cπ,k motivates us to find a permutation π whose covering number Cπ,k is small for all k; ideally,
Cπ,k ≈ n/k, which is the minimal possible covering number. Indeed, in this regime, our condensing
is provably the best possible: we accumulate almost all k bits of input entropy for each of the first
nearly n/k steps.

To that end, we construct a permutation that we call bit-reversed rotation. This is the permu-
tation obtained by (1) associating the ith bit with the (log2 n + 1)-bit string i written in binary;
(2) setting σ(i) to be the number obtained by reversing this bit string; and (3) sending the ith
bit to the unique position j with σ(j) + 1 = σ(i) mod 2n. See Figure 1 for an illustration. This
permutation actually arises naturally from a simple greedy construction in this context,7 and it
satisfies Cπ,k = n/k whenever n and k are both powers of two. I.e., it has optimal covering number
Cπ,k for all powers of two k simultaneously! (For general k, the covering number is always bounded
by 2n/k; see Theorem 6.2.)

In Figure 6, we compare covering numbers of bit-reversed rotation against covering numbers of
rotation-by-5 for n = 32 and rotation-by-19 for n = 64 used by Microsoft (and the optimal value
n/k). We see that bit-reversed rotation seems to perform at least as well as rotation, and better
in several regions. Thus, while we leave it to practitioners to determine whether implementing our
new permutation would be preferable in the context of their RNGs, our study suggests that it seems
to be the most natural choice from a theoretical perspective. (More on this in our experimental
results below.)

7It also arises naturally in other contexts, such as in the fast Fourier transform (in the form of the bit-reversed
involution, which we call σ above).

7

Figure 1: An illustration of bit-reversed rotation for n = 32. Red squares denote the position of
lower-order bits (first four bits in our example) for different iterations of bit-reversed rotation. Blue
squares denote positions that have been “covered” by these low-order bits.

8

Experimental results to compute the exact number of samples needed. Theorem 1.2 (and
its generalization in Theorem 5.2) gives strong theoretical justification for using a cyclic permutation
with low covering numbers. However, this loss of a factor of 2 in k (i.e., the fact that the theorem
requires Cπ,bk/2c samples instead of Cπ,k steps) is unfortunate—especially for the practical case that
interests us most, in which n is a small constant like n = 32 or n = 64. For practical applications,
we care about the fine-grained detail of the performance, and we expect that Cπ,k is in fact the
right answer, as in the following heuristic.

We expect that (just slightly more than) Cπ,k steps should be sufficient to accumulate nearly full
entropy from 2-monotone sources with entropy at least k.

This is of course true—essentially by definition—for the special case of the uniform distribution
over {0, 1}k × {0}n−k, and also gives us a lower bound for the general class Dk,n.

To that end, in Theorem 7.2 we use the Fourier-analytic theoretical machinery that we used
to prove Theorem 1.2 in order to derive a closed form expression for the exact (min- or collision)
entropy accumulated by any permutation when the input source is an exponential distribution.
(In other words, the distribution in which the probability that an interrupt happens at time t is
proportional to e−t/σ for some σ > 0.) This is a natural example of a 2-monotone distribution
(and far less trivial than the uniform distribution), and this closed form lets us compute exactly
the number of samples needed to accumulate, say, (n− 1) bits of min-/collision entropy.8

These exact calculations allow us to answer three interesting questions, at least for the clean
and natural case of exponential distributions:

1. Exactly how close is Cπ,k to the actual number of samples to accumulate nearly n (say, (n−1))
bits of entropy close?

2. Does bit-reversed rotation perform at least as well as any rotation by α?

3. How much faster does collision entropy accumulate compared to min-entropy?

Our empirical results show that (at least for this natural distribution), (1) the true number of
samples needed to accumulate from k bits of entropy to nearly n bits of entropy is very close to
Cπ,k; (2) bit-reversed rotation compares quite favorably with rotation by α; and (3) collision entropy
accumulates slightly but notably faster than min-entropy. There are some subtleties, though. (See
Figure 2 for the high-level picture.)

First, as we see in Figure 7, for the case of collision entropy the number of samples is nearly
exactly Cπ,k, verifying for the intuition that Cπ,k (rather than Cπ,k/2 or something in between)
controls the number of steps needed to accumulate nearly full entropy. In fact, the results are quite
striking. The results for min-entropy in Figure 8 are less striking, especially for low values of k,
but still indicate that Cπ,k is the right parameter to look at.

Second, although there is no strict dominance, it is clear that bit-reversed rotation compares
favorably with all rotation-by-α results, including Microsoft’s choices α = 5 for n = 32 and α =
19 for n = 64. This holds for both min- and collision entropy. See Figure 2 (or, for a more
detailed comparison, Figures 9 and 10). Combined with its theoretical motivation, this suggests
that bit-reversed rotation might be a better permutation choice than rotation for superfast entropy

8As we see from both our theoretical and our experimental results, our accumulators quickly collect almost n
bits of entropy, at nearly optimal pace of k bits per sample, but squeezing the last couple of bits (i.e., becoming an
extractor) takes many more samples. This is why we stop our experiments at (n− 1) bits of entropy.

9

� �� �� �� �� ��

�

�

�

�

�

��

��

��

��
�

�

��
��
��
	�

��
��

n=32, k≥ 4

rot32, 5(Hmin)

rot32, 5(H2)

tor32(Hmin)

tor32(H2)

(n− 1)/k

� �� �� �� �� �� ��

�

�

�

��

��

��

��

��

��

��
�

�

��
��
��
	�

��
��

n=64, k≥ 4

rot64, 19(Hmin)

rot64, 19(H2)

tor64(Hmin)

tor64(H2)

(n− 1)/k

Figure 2: Comparison between the exact number of samples needed to condense to 31 bits of
collision/min- entropy (or 63 bits) from the exponential distribution, for bit-reversed rotation and
the rotations used by Microsoft with input entropy k.

accumulation, at least pending the question (see Section 6.1) of whether it can be implemented
efficiently enough to be used inside the RNG.

Finally, our exact results in Figure 2 (and the more detailed comparison in Figures 11 and 12)
also confirm the intuition that collision entropy accumulates notably faster than min-entropy. While
this gap is much less than the worst case factor-of-two gap between the two notions of entropy (see
Section 2), it could be noticeable enough to have a significant impact on applications where collision
entropy is enough, such as those that rely on the leftover hash lemma [HILL99].

Summary. Overall, we believe that our work provides both theoretical and practical results to
shed light on a previously unexplored, but significant aspect of all practical RNGs: the design of
“superefficient” entropy accumulation functions.

2 Preliminaries

For an integer n ≥ 1, we write [n] := {0, . . . , n − 1}. For a distribution D over {0, 1}n and
x ∈ {0, 1}n, we write D(x) := PrX∼D[X = x] for the probability that D assigns to x.

The statistical distance between two distributions D1 and D2 over {0, 1}n is

SD(D1, D2) :=
1

2
·
∑

x∈{0,1}n
|D1(x)−D2(x)| .

The min-entropy and collision entropy of D are

Hmin(D) := min
x∈{0,1}n

log2(1/D(x)) and H2(D) := log2(1/
∑
x

D(x)2) .

We say that D1 is ε-close to D2 if SD(D1, D2) ≤ ε, and that D has smooth min-entropy k,
denoted as Hε

min(D) := k, if D is ε-close to some D′ with Hmin(D′) = k. The collision entropy

10

of a distribution D over {0, 1}n provide useful bounds for its (smooth) min-entropy and statistical
distance from uniform distribution U over {0, 1}n.

Fact 2.1. Hmin(D) ≤ H2(D) ≤ 2Hmin(D), and Hε
min(D) ≥ H2(D)− log2(1/ε).

Fact 2.2. SD(D,U) ≤ 1
2 ·
√

2n−H2(D) − 1, and SD(D,U) ≤ 2n−Hmin(D) − 1.

In this work we will consider the problem of converting independent samples from a distribution
D with some min-entropy into a new distribution with large min-/collision entropy, and will use
tools from discrete Fourier analysis to prove our results.

Fourier Analysis. For a distribution D over {0, 1}n and w ∈ {0, 1}n, we define the Fourier
coefficient of D at w as

D̂(w) := E
X∼D

[(−1)〈X,w〉] = Pr
X∼D

[〈X,w〉 = 0 mod 2]− Pr
X∼D

[〈X,w〉 = 1 mod 2] .

Fact 2.3. For any distribution D over {0, 1}n, and x in {0, 1}n,

D(x) =
1

2n

∑
w∈{0,1}n

D̂(w)(−1)〈x,w〉 .

Theorem 2.4 (Parseval’s theorem). For any distribution D over {0, 1}n,∑
x∈{0,1}n

D(x)2 = 2−n
∑

w∈{0,1}n
D̂(w)2 .

Corollary 2.5. For any distribution D over {0, 1}n,

H2(D) = n− log2

(∑
w∈{0,1}n

D̂(w)2
)
,

and
Hmin(D) ≥ n− log2

(∑
w∈{0,1}n

|D̂(w)|
)
.

Corollary 2.5 shows that the sum of the squares of Fourier coefficients characterizes the collision
entropy, and the sum of the absolute values of Fourier coefficients is useful for bounding min-entropy.

Proof. By Parseval’s theorem, we have

H2(D) = log2(1/
∑
x

D2(x)) = log2(2
n/

∑
w∈{0,1}n

D̂2(w)) ,

which implies the desired conclusion. By Fact 2.3,

Hmin(D) = min
x∈{0,1}n

log2(1/D(x))

= min
x∈{0,1}n

log2(2
n/

∑
w∈{0,1}n

D̂(w)(−1)〈x,w〉)

≥ log2(2
n/

∑
w∈{0,1}n

|D̂(w)|)

as desired.

11

The Fourier coefficients arise naturally in our context because they interact nicely with both
convolution and linear transformations, as this next well-known claim shows.

Claim 2.6. For distributions D1, . . . , Dm over {0, 1}n and linear transformations A1, . . . , Am ∈
Fn×n2 , let D be the distribution given by

Pr
X∼D

[X = x] = Pr
X1∼D1,...,Xm∼Dm

[A1X1 ⊕ · · · ⊕AmXm = x] ,

where the Xi are independent. Then,

D̂(w) = D̂1(A
T
1 w) · · · D̂m(ATmw) .

for any w ∈ {0, 1}n.

Proof. We have

E[(−1)〈w,X〉] = E[(−1)〈w,A1X1⊕···⊕AmXm〉]

= E[(−1)〈w,A1X1〉] · · ·E[(−1)〈w,AmXm〉]

= E[(−1)〈A
T
1 w,X1〉] · · ·E[(−1)〈A

T
mw,Xm〉]

= D̂1(A
T
1 w) · · · D̂m(ATmw) .

For a distribution D over {0, 1}n, integer ` ≥ 1, and linear transformation A : Fn2 → Fn2 ,

we write D
(`)
A for the distribution obtained by sampling X1, . . . ,X` independently and returning

X1 ⊕AX2 ⊕ · · · ⊕A`−1X`.

3 Capturing natural distributions

In this section, we consider natural distributions over the integers (e.g., the kinds of distributions
that one might expect for interrupt timings). We associate with each integer 0 ≤ x < 2n the vector
x = (x0, . . . , xn−1) ∈ {0, 1}n given by its binary representation. In other words, the xi ∈ {0, 1}
are the unique bits that satisfy x =

∑
2ixi. For example, x might correspond to the timing of a

keystroke.
We observe that many natural distributions are captured by the general class of 2-monotone

distributions, which we define below. See Section 7 for examples of natural distributions that are
2-monotone.

Definition 3.1 (2-monotone distributions over Z2n). A function p : [2n]→ [0, 1] is monotone over
an interval {i1, i1 + 1, . . . , i2} if

p[i1 mod 2n] ≤ · · · ≤ p[i2 mod 2n] or p[i1 mod 2n] ≥ · · · ≥ p[i2 mod 2n] .

We say that p is 2-monotone over Z2n, if there exist 0 ≤ i1 < i2 ≤ 2n − 1 such that p is monotone
on the interval {i1, . . . , i2} and on the interval {i2, . . . , 2n − 1, 2n, . . . , 2n + i1 − 1}.

We say that a distribution D over {0, 1}n is 2-monotone over Z2n if it is obtained by sampling an
integer 0 ≤ X ≤ 2n− 1 (interpreted as a bit string as above) according to a 2-monotone probability
mass function.

12

Figure 3: A depiction of a 2-monotone distribution over Z2n

Intuitively, 2-monotone distributions “change direction at most twice” when viewed as functions
on the cycle Z2n , so that they have “at most one peak” (and “at most one trough”). (For example,
all unimodal distributions are 2-monotone.)

A very nice feature of 2-monotone distributions D is that |D̂(w)| is small if wi = 1 for some small
index i. This formally captures the intuition that the lower-order bits of “natural distributions”
should have high entropy.

Lemma 3.2. For any 2-monotone distribution D over {0, 1}n with min-entropy k, and w ∈ {0, 1}n
with wi = 1, ∣∣D̂(w)

∣∣ ≤ min{1, 2i+1−k} .

The lemma follows immediately from the following two claims.

Claim 3.3. If
∑2n−1

j=1 |D(j)−D(j − 1)| ≤ ε, then for any w with wi = 1,

|D̂(w)| ≤ min{1, 2i · ε} .

13

Proof. We have

|D̂(w)| =
∣∣∣ E
X∼D

[(−1)〈X,w〉]
∣∣∣

=
∣∣∣ ∑
X:Xi=0

(−1)〈X,w〉(D(X)−D(X + ei))
∣∣∣

≤
∑

X:Xi=0

|D(X)−D(X + ei)|

=
∑

X:Xi=0

|D(X)−D(X + 2i)|

≤
∑

X:Xi=0

2i∑
j=1

|D(X + j)−D(X + j − 1)|

≤ 2i ·
2n−1∑
j=1

|D(j)−D(j − 1)|.

Claim 3.4. If D is 2-monotone over Z2n with min-entropy k, then

2n−1∑
j=1

|D(j)−D(j − 1)| ≤ 21−k .

Proof. Suppose p is monotone on {0, . . . , i} and {i, . . . , 2n − 1} for 0 < i < 2n − 1.

2n−1∑
j=1

|D(j)−D(j − 1)| =
i∑

j=1

|D(j)−D(j − 1)|+
2n−1∑
j=i

|D(j)−D(j − 1)|

= |D(i)−D(0)|+ |D(2n−1)−D(i)|
≤ 21−k

where the second inequality is by monotonicity of p, and the last inequality is because D has min-
entropy k, so |D(x) − D(y)| ≤ 2−k for every 0 ≤ x, y ≤ 2n − 1. Similarly, if p is monotone on
{i1, . . . , i2} and {i2, . . . , 2n − 1, 0, . . . , i1} for 0 < i1 < i2 < 2n − 1, we have

2n−1∑
j=1

|D(j)−D(j − 1)| ≤ 2|D(i1)−D(i2)| ≤ 21−k.

The desired conclusion follows.

4 Rotation condensers

In this section, we set out to understand the power of rotation condensers generically. For integers
0 < α < n, we write rotα,n for the linear transformation over {0, 1}n defined by

rotα,n((x1, . . . , xn)) := (x1+α, x2+α, . . . , xn, x1, . . . , xα) .

14

I.e., rotα,n rotates the coordinates of a vector x by α. Notice that rotTα,n = rotn−α,n and rotkα,n =
rotkα mod n,n.

Theorem 4.1. For any 1 ≤ α < n with gcd(α, n) = 1, and any 2-monotone distribution D over
{0, 1}n with min-entropy k > 1, it holds that

H2(D
(n)
rotα,n) ≥ n(1− log2(1 + 2−2k+2)) ≈ n(1− 2−2k+2) ,

Hmin(D
(n)
rotα,n) ≥ n(1− log2(1 + 2−k+1)) ≈ n(1− 2−k+1) .

Theorem 4.1 provides some basic theoretical justification for the use of rotα,n as a condenser.
It shows rotation provably condenses to Ω(n) bits entropy within n steps.

Note that the theorem works for any rotation with gcd(α, n) = 1, which means it also works
for rotation whose rotation number is α = 1. Although we typically think of rotation by 1 as the
worst condenser (and we will show this in the next section), our result shows it can still condense
2-monotone distributions to linear entropy within n steps. What’s more, the proof of Theorem 4.1
immediately generalizes to any cyclic permutation,9 so that any cyclic permutation can condense
to Ω(n) bits of entropy within n steps. (In particular, this can be applied to the cyclic permutation
torn that we define in Section 6.)

Proof. Let A := rotα,n. For w ∈ {0, 1}n, we say that w hits e0 if w0 = 1, and say that
(w, ATw, . . . , (AT)n−1w) hits e0 j times if there are j choices of i such that (AT)iw hits e0.
By Lemma 3.2, for every w hitting e0, it holds that |D̂(w)| ≤ 2−k+1.

Claim 4.2. For w ∈ {0, 1}n, (w, ATw, . . . , (AT)n−1w) hits e0 exactly |w| times.

Proof. It suffices to notice that for every i, there exists a distinct 0 ≤ j < n such that (AT)jei = e0
since A = rotα,n and gcd(α, n) = 1. For such an i and j, (AT)jw hits e0 if and only if wi = 1.
Therefore, the total number of hits is exactly the number of non-zero coordinates in w.

Given the claim, we note that

|D̂(n)
A (w)| =

∣∣∣ n−1∏
i=0

D̂((AT)iw))
∣∣∣ ≤ ∏

i:(AT)iw hits e0

|D̂((AT)iw)| ≤ (2−k+1)|w|

where the equality is by Claim 2.6, and the last inequality is by the claim and Lemma 3.2. Therefore,∑
w∈{0,1}n

|D̂(n)
A (w)|2 ≤

∑
w∈{0,1}n

(2−k+1)2|w| =

n∑
j=0

(
n

j

)
(2−k+1)2j = (1 + 2−2k+2)n ,

∑
w∈{0,1}n

|D̂(n)
A (w)| ≤

∑
w∈{0,1}n

(2−k+1)|w| =
n∑
j=0

(
n

j

)
(2−k+1)j = (1 + 2−k+1)n .

Finally, by Corollary 2.5, we have

H2(D
(n)
A) = n− log(

∑
w∈{0,1}n

|D̂(n)
A (w)|2) ≥ n− log(1 + 2−2k+2)n

9A cyclic permutation is a permutation σ : [n]→ [n] such that for all x ∈ [n], σi(x) = x if and only if n divides i.

15

Hmin(D
(n)
A) ≥ n− log(

∑
w∈{0,1}n

|D̂(n)
A (w)|) ≥ n− log(1 + 2−k+1)n

which imply the desired conclusion.

5 Comparing different rotations and permutations

In this section, we show how to compare the performance of different permutations on two-monotone
distributions. For a permutation π : [n]→ [n], we write Aπ for the linear transformation over {0, 1}n
defined by

Aπ(x1, . . . , xn) := (xπ(1), . . . , xπ(n)) .

I.e., Aπ permutes coordinates of a vector x by π.
We show that the rate of convergence of the condenser associated with a permutation π when

run on two-monotone distributions with min-entropy k is governed by what we call the covering
number Cπ,k.

To get some intuition behind the covering number, consider the simple case when we want to
extract from the distribution D that is uniform on [2k] (or, in terms of bit strings, uniform on

{0, 1}k × {0}n−k). Notice that D
(m)
Aπ

is the distribution that is uniform over the space spanned by

{ei : ∃0 ≤ j < k, 0 ≤ ` < m, π`(j) = i}.
In particular, the distribution D

(m)
Aπ

has full entropy n if and only if {π`(j) : 0 ≤ j < k, 0 ≤
` < m} is the full set of coordinates [n]. We call the minimal such m the covering number of π,
and the above discussion shows that it arises naturally in this context.

Definition 5.1 (Covering number). For a permutation π : [n] → [n], and an integer 1 ≤ k ≤ n,
the covering number Cπ,k is the smallest natural number m such that

{π`(j) : 0 ≤ j < k, 0 ≤ ` < m} = [n]

where πi = π ◦ πi−1 for i ≥ 1, π0 is the identity function. (If no such m exists, we say Cπ,k =∞.)

Since the permutation π associated with rotα,n is π(i) = i+ α mod n, we also define Cα,n,k to
be the covering number of this permutation and call it the covering number of rotα,n. To get some
intuition for the covering number, first notice that we must have Cπ,k ≥ dn/ke. (This corresponds
to the fact that we need at least dn/ke sources with k bits of entropy each in order to have any
hope of extracting n bits of entropy.) Of course, the covering number can be much worse than this,
e.g., C1,n,k = n− k + 1, which is the worst possible.

Also, notice that Ck,n,k = dn/ke. In other words, the optimal covering number dn/ke is always
achieved for fixed k by rotation by exactly k bits. (This suggests that, if your input is “nice enough,”
e.g., 2-monotone, and you happen to know it has k bits of entropy, then rotating by α = k is a
good idea. And, indeed, this is the case.) So, every choice of α has an optimal covering number for
at least one choice of k, and we will not be able to unambiguously say that one choice of α is the
“best”. Still, the performance of different choices of α over all 1 ≤ k ≤ n does vary considerably.

As we explained above, the covering number arises naturally when considering how quickly
we can extract from the uniform distribution on [2k], which is perhaps the simplest 2-monotone
distribution.

16

The following theorem shows that the covering number actually characterizes how quickly we
converge to a high-entropy distribution for any 2-monotone distribution. In the proof, “we lose a
factor of two in k,” so that we need to take at least Cπ,k/2 steps, rather than Cπ,k steps. And, we are
of course only able to condense, not to extract. But, otherwise the result is tight. In Section 7.2, we
show empirically that roughly Cπ,k steps is already enough for very strong condensing for natural
distributions, suggesting that the factor of two loss is an artifact of the proof. Put together, the
empirical data and the theoretical justification below strongly suggest that

The covering number Cπ,k is the right measure of how well a permutation π condenses for natural
real-world distributions.

To partially validate the above thesis, in Section 5.1 we prove the following upper bound showing
how the min-/collision entropy of the distribution grow relative to the covering number of a given
permutation π.

Theorem 5.2. Let D be a two-monotone distribution with min-entropy at least k for some k ≥ 2.
Let π : [n] → [n] be a permutation with covering number m := Cπ,k′, where k′ := bk/2c. Then for
any ` ≥ m,

H2(D
(`)
Aπ

) ≥ n− (bn/k′c+ 1) · log2(1 + 2k
′−kb`/mc) ≈ n(1− 2k/2−k`/m) ,

Hmin(D
(`)
Aπ

) ≥ n− (bn/k′c+ 1) · log2(1 + 2k
′−(k/2)b`/mc) ≈ n(1− 2k/2−k`/(2m)) .

Furthermore, there exists a two-monotone distribution D with min-entropy k such that for all
1 ≤ ` < Cπ,k

Hmin(D
(`)
Aπ

) = H2(D
(`)
Aπ

) ≤ n− (Cπ,k − `) .

In Section 5.2, we prove the following better lower bound on condensing (using the techniques
developed in Section 7), showing that the results in Theorem 5.2 are quite tight. In fact, the
distribution that we use to prove the theorem is exactly the same as the distribution that we use
in our empirical results in Section 7.2. (This distribution arises naturally in this context.)

Theorem 5.3. For every integer 1 ≤ s ≤ n, there is a 2-monotone distribution D (in fact, a
monotone distribution) with min-entropy k > s− 1 + 1/2s such that

H2(D
(`)
Aπ

) ≤ n · (1− 2−s
2`/n−4`/n) ≈ n(1− 2−k

2`/n−4`/n)

Hmin(D
(`)
Aπ

) ≤ n · (1− 2−s
2`/(2n)−2`/n) ≈ n(1− 2−k

2`/(2n)−2`/n) .

Notice how close these bounds are to the bounds in Theorem 5.2 with m := n/k.

Covering numbers of different rotations when n = 32, 64. In Figures 4 and 5, we show the
covering numbers of rotations with different rotation number α when n = 32, 64. In both cases, we
compare the rotation numbers α chosen by Microsoft (α = 5 for n = 32 and α = 19 for n = 64)
with other rotations that also perform well. (In Section 6, we show a different cyclic permutation,
which is not a rotation, but has optimal covering number Cn,k = n/k when both n and k are powers
of two.) We also compare the covering numbers with the natural lower bound of dn/ke.

17

� � �� �� �� �� ��

�

�

�

�

��

��

��

��

��

��

�
��
�

��
��
��

	�
�

n=32, α=5,Microsoft′s choice
n/k

Cπ, k

� � �� �� �� �� ��

�

�

�

�

��

��

��

��

��

��

�
��
�

��
��
��

	�
�

n=32, α=7

n/k

Cπ, k

� � �� �� �� �� ��

�

�

�

�

��

��

��

��

��

��

�
��
�

��
��
��

	�
�

n=32, α=9

n/k

Cπ, k

� � �� �� �� �� ��

�

�

�

�

��

��

��

��

��

��

�
��
�

��
��
��

	�
�

n=32, α=13

n/k

Cπ, k

Figure 4: Covering numbers of different rotations when n = 32

18

� �� �� �� �� �� ��

�

�

�

��

��

��

��

��

��

��

�
��
�

��
��
��

	�
�

n=64, α=15

n/k

Cπ, k

� �� �� �� �� �� ��

�

�

�

��

��

��

��

��

��

��

�
��
�

��
��
��

	�
�

n=64, α=19,Microsoft′s choice
n/k

Cπ, k

� �� �� �� �� �� ��

�

�

�

��

��

��

��

��

��

��

�
��
�

��
��
��

	�
�

n=64, α=23

n/k

Cπ, k

� �� �� �� �� �� ��

�

�

�

��

��

��

��

��

��

��

�
��
�

��
��
��

	�
�

n=64, α=27

n/k

Cπ, k

Figure 5: Covering number of different rotations when n = 64

5.1 Proof of Theorem 5.2

Proof. The “furthermore” part of the theorem is trivial. Indeed, it holds for the uniform distribution
over [2k], which is clearly 2-monotone with min-entropy k. So, it remains only to prove the first
statement.

Let k′ = bk/2c and let B0, B1, . . . , Bm−1 be a partition of [n] such that Bi ⊆ πi([k′]) . Observe
that 0 ≤ |Bi| ≤ k′. We use wS to denote the projection of w onto S ⊆ [n]. Let b be either 1 or 2.

Claim 5.4.
∑

w |D̂
(`)
Aπ

(w)|b ≤
∑

w |D̂
(m)
Aπ

(w)|bb`/mc .

19

Proof.

∑
w

|D̂(`)
Aπ

(w)|b =
∑
w

`−1∏
i=0

|D̂((ATπ)iw)|b

≤
∑
w

b`/mc−1∏
j=0

m−1∏
i=0

|D̂((ATπ)jm+iw)|b

=
∑
w

b`/mc−1∏
j=0

|D̂(m)
Aπ

((ATπ)jmw)|b

≤
b`/mc−1∏
j=0

(∑
w

|D̂(m)
Aπ

((ATπ)jmw)|bb`/mc
)1/b`/mc

=

b`/mc−1∏
j=0

(∑
w′

|D̂(m)
Aπ

(w′)|bb`/mc
)1/b`/mc

=
∑
w

|D̂(m)
Aπ

(w)|bb`/mc

where the first line is by Claim 2.6, the fourth line is by Claim A.1 and the fifth line is because
(ATπ)jm is a permutation over {0, 1}n.

Claim 5.5. |D̂(m)
Aπ

(w)|bb`/mc ≤ 2−aw·(bk/2)b`/mc, where aw := |{i : wBi 6= 0}|.

Proof. We say that w hits [k′] if there exists an i ∈ [k′] such that wi = 1. By Lemma 3.2, for any
2-monotone distribution with min-entropy at least k, and any w which hits [k′], it holds that

|D̂(w)| ≤ 2(k
′−1)+1−k ≤ 2−k/2 .

For w, let Sw := {i ∈ [m] : (ATπ)iw hits [k′]}. Observe that, if wBi 6= 0, because Bi ⊆ πi([k′]),
then (

(ATπ)iw
)
[k′]

= wπi([k′]) 6= 0

where πi([k′]) := {πi(j) : j ∈ [k′]}. I.e., (ATπ)iw hits [k′]. Therefore, |Sw| ≥ aw. Moreover,

|D̂(m)
Aπ

(w)|bb`/mc =
m−1∏
i=0

|D̂((ATπ)i(w))|bb`/mc

≤
∏
i∈Sw

|D̂((ATπ)iw)|bb`/mc

≤ 2−|Sw|·(bk/2)b`/mc

≤ 2−aw·(bk/2)b`/mc

as needed.

20

We then prove Theorem 5.2 given above claims.∑
w

|D̂(`)
Aπ

(w)|b ≤
∑
w

|D̂(m)
Aπ

(w)|bb`/mc

≤
∑
w

2−aw·(bk/2)b`/mc

=
∑
S⊆[m]

∑
w:{i:wBi

6=0}=S

2−|S|·(bk/2)b`/mc

=
∑
S⊆[m]

2−|S|·(bk/2)b`/mc
∏
i∈S

(2|Bi| − 1)

=
∑
S⊆[m]

∏
i∈S

(
(2|Bi| − 1)2−(bk/2)b`/mc

)
=

m−1∏
i=0

(
1 + (2|Bi| − 1) · 2−(bk/2)·b`/mc

)
where the first inequality is by Claim 5.4, and the second inequality is by Claim 5.5. Furthermore,
by Claim A.2, when 0 ≤ |Bi| ≤ k′ and

∑m−1
i=0 |Bi| = n,

m−1∏
i=0

(
1 + (2|Bi| − 1) · 2−(bk/2)·b`/mc

)
≤ (1 + (2k

′ − 1) · 2−(bk/2)·b`/mc)bn/k′c+1.

Finally, by Corollary 2.5, we have

H2(D
(`)
Aπ

) ≥ n− log
(∑

w

|D̂(`)
Aπ

(w)|2
)
≥ n− (b n

k′
c+ 1) · log

(
1 + 2k

′−kb`/mc) ,
Hmin(D

(`)
Aπ

) ≥ n− log
(∑

w

|D̂(`)
Aπ

(w)|
)
≥ n− (b n

k′
c+ 1) · log

(
1 + 2k

′−(k/2)b`/mc) .
as needed.

5.2 Proof of Theorem 5.3

We now prove Theorem 5.3. In fact, our example distribution is simply the exponential distribution
D := Eσ, as defined in Section 7, where σ := 2s. (This distribution arises naturally in this context
as a monotone distribution that nearly minimizes the ratio εi/εi−1 of consecutive biases.) The
result then follows by applying appropriate bounds to the closed-form expressions in Corollary 7.3

for Hmin(D
(`)
Aπ

) and H2(D
(`)
Aπ

).
In particular, from the corollary, we see that

Hmin(D) = n−
n−1∑
i=0

log2(1 + εi) ≥ s−
s−1∑
i=0

log2(1 + εi) ,

where

εi :=
1− exp(−2i/σ)

1 + exp(2i/σ)
.

21

Then, for i ≤ s− 1,
log2(1 + εi) < 1− exp(−2i/σ) < 2i/σ .

Therefore,

Hmin(D) > s−
s−1∑
i=0

2i/σ = s− 1 + 1/σ ,

as claimed.
We now turn to the upper bound on H2(D

(`)
Aπ

). Again by Corollary 7.3, we have

H2(D
(`)
Aπ

) = n−
n−1∑
i=0

log2

(
1 +

`−1∏
j=0

ε2πj(i)

)
≤ n− n ·

n−1∏
i=0

log2

(
1 +

`−1∏
j=0

ε2πj(i)

)1/n
,

where we have used the inequality
∑
ai/n ≥

∏
a
1/n
i , valid for a1, . . . , an ≥ 0. Next, recall that for

all 0 ≤ x ≤ 1, log2(1 + x) ≥ x. Therefore,

n−1∏
i=0

log2

(
1 +

`−1∏
j=0

ε2πj(i)

)1/n
≥

n−1∏
i=0

`−1∏
j=0

ε
2/n

πj(i)
=

n−1∏
i=0

ε
2`/n
i .

Now, notice that
n−1∏
i=0

εi ≥
1

2
·
s∏
i=0

εi .

Finally, notice that for i ≤ s, εi ≥ 2i−2/σ, so that

s∏
i=0

εi ≥ σ−s ·
s∏
i=0

2i−2 = (1/2) · (4/σ)s · 2s(s+1)/2 ≥ σ−s/2/2 .

The upper bound for H2 follows.
The proof of the upper bound for Hmin is essentially identical, with ε2i replaced by εi.

6 A new recommendation: bit-reversed rotation

Our characterization in terms of the covering number suggests the following “greedy” construction
of a permutation with small covering number. Recall that we can write a cyclic permutation π in
cycle notation as

a0 := 0→ a1 := π(0)→ a2 := π(π(0))→ · · · → an−1 := πn−1(0)→ an := 0 .

So, suppose that n is a power of two, and suppose that we want to build some permutation
π : [n] → [n] such that Cπ,2 = n/2 is as small as possible. Notice that this holds if and only if
an/2 = 1. I.e., “0 and 1 should be maximally far apart on the cycle”:

a0 = 0→ a1 → · · · → an/2−1 → an/2 = 1→ an/2+1 → · · · → an−1 → an = 0 .

Similarly, Cπ,4 = n/4 if and only if {an/4, an/2, a3n/4} = {1, 2, 3}, i.e., if and only if “0, 1, 2, and
3 are maximally far apart on the cycle” so that no two of them are within distance less than n/4.

22

Therefore if we simultaneously have Cπ,2 = n/2 and Cπ,4 = n/4, then the permutation must have
either the form

a0 = 0→ · · · → an/4 = 2→ · · · → an/2 = 1→ · · · → a3n/4 = 3→ · · · → 0, (1)

or
a0 = 0→ · · · → an/4 = 3→ · · · → an/2 = 1→ · · · → a3n/4 = 2→ · · · → 0. (2)

Continuing in this way, we see that we can build a cyclic permutation π : [n] → [n] such that
Cπ,2a = n/2a for all integers 0 ≤ a ≤ log2 n. In fact, we get a family of permutations (where the
different members of the family vary as in Eqs. (1) and (2)), which represents all permutations that
satisfy Cπ,2a = n/2a for all a. And, it is not hard to see that every such permutation has covering
numbers given by Cπ,k = n/k′, where k′ := 2blog2 kc is the largest power of two smaller than k. (We
prove this carefully below for one particular member of the family.)

Since all such permutations are essentially identical from our perspective, we choose one with a
particularly elegant description. This elegant description might also help with efficient implementa-
tions. In particular, our choice, which we call bit-reversed rotation, is obtained by conjugating rot1,n
with the well-studied and very efficient bit-reversal permutation. See Figure 1 for an illustration.

Definition 6.1 (Bit-reversed rotation). For a power of two n = 2a, the bit-reversal permutation
σn : [n]→ [n] is defined by

σn

(
b0 + 2b1 + · · ·+ 2a−1ba−1

)
= ba−1 + 2ba−2 + · · ·+ 2a−1b0

for bi ∈ {0, 1}. (E.g., σ8(3) = 6, and σ16(10) = 5.) Notice that σn is an involution, i.e., σ−1n = σn.
We nevertheless sometimes write σ−1n when this seems more natural.

Then, the bit-reversed permutation taun : [n]→ [n] is given by taun(i) = σ−1n (σn(i)+1 mod n).
E.g., in cyclic notation, tau8 is

0→ 4→ 2→ 6→ 1→ 5→ 3→ 7→ 0 .

Equivalently, taun can be defined recursively via the recurrence tau2n(i + n) = taun(i) for i < n
together with the identity tau2n(i) = i + n. (These two rules describe incrementing a number
written in binary, except with the bits reversed. I.e., “if the highest-order bit is 0, set it to 1;
if it is 1, then set it to 0 and perform the same operation on the remaining bits.”). Finally,
we define bit-reversed rotation torn as the linear transformation of bit-reversed permutation, i.e.,
torn := Ataun = Aσ−1

n
◦ rot1,n ◦Aσn.

Theorem 6.2. For a power of two n and 1 ≤ k ≤ n,

Ctaun,k = n/k′ ≤ 2n/k ,

where k′ := 2blog2 kc is the largest power of two that is no larger than k.

Proof. The result follows from the recurrence relation Ctau2n,k = 2Ctaun,k for k ≤ n, together with
two base cases, Ctaun,n = 1 and Ctaun,` = 2 for n/2 ≤ ` < n.

The first base case, Ctaun,n = 1 is trivial. The second base case Ctaun,` = 2 for n/2 ≤ ` < n
follows the simple observation that for all i < n/2, taun(i) ≥ n/2. This in particular implies that

23

Ctaun,n/2 = 2, and since 1 < Ctaun,` ≤ Ctaun,n/2 for n/2 ≤ ` < n, we must have Ctaun,` = 2 for all
such `.

To see the recurrence relation, notice that the recursive formula for taun implies that tau22n(i) =
taun(i) for i < n. Applying this identity repeatedly gives tau2`2n(i) = tau`n(i). Similarly, tau2`+1

2n (i) =
tau`n(i)+n. It follows that i ∈ {tau`n(0), . . . , tau`n(k−1)} if and only if i, i+n ∈ {tau2`2n(0), . . . , tau2`2n(k−
1), tau2`+1

2n (0), . . . , tau2`+1
2n (k − 1)}, which immediately implies the recurrence relation.

Applying Theorem 5.2 immediately yields the following corollary, which shows that the bit-reversed
rotation yields quite a good condenser. (In Section 7.2, we show empirical results that suggest even
better performance, suggesting that the factor of 2 loss in k′ is unnecessary.)

Corollary 6.3. For any power of two n, and any 2-monotone distribution D with min-entropy at
least k ≥ 2, then for any ` ≥ m

H2(D
(`)
torn) ≥ n− (bn/k′c+ 1) · log2(1 + 2k

′−kb`/mc) ≈ n · (1− 2−k
2`/(2n)) ,

Hmin(D
(`)
torn) ≥ n− (bn/k′c+ 1) · log2(1 + 2k

′−(k/2)b`/mc) ≈ n · (1− 2−k
2`/(4n)) ,

where k′ := bk/2c, and m := n/2blog2 k
′c is the smallest power of two that is no smaller than n/k′.

In Figure 6, we plot the covering numbers Ctaun,k together with Cα,n,k for comparison.

� � �� �� �� �� ��

�

�

�

�

��

��

��

��

��

��

�
��
�

��
��
��

	�
�

n=32

n/k

rot5, 32

tor32

� �� �� �� �� �� ��

�

�

�

��

��

��

��

��

��

��

�
��
�

��
��
��

	�
�

n=64

n/k

rot19, 64

tor64

Figure 6: The covering numbers of bit-reversed rotation and the two rotations rot5,32 and rot19,64
used by Microsoft. The n/k line represents the best possible value of dn/ke.

6.1 A brief note on efficient implementation

We leave it to practitioners to determine whether bit-reversed rotation can be implemented effi-
ciently enough for their applications. However, we do note two things. First, we note that the
bit-reversal permutation σn on which bit-reversed rotation is based is well-studied (in part because
of its relationship with algorithms for the Fast Fourier Transform), with many fast implementations
known (see, e.g., [Kar96]).

24

Second, recall that we have defined our extractor according to the state updating procedure
Si+1 ← torn(Si)⊕X = Aσn(rot1,n(Aσn(Si)))⊕X, where σn is the bit-reversal permutation. (Here,
we have used the fact that σn = σ−1n , to replace Aσ−1

n
◦ rot1,n ◦Aσn with simply Aσn ◦ rot1,n ◦Aσn ,

since for implementation it seems quite useful to observe that these are the same map.) However,
we note that one can equivalently use the rule S′i+1 ← rot1,n(S′i) ⊕ Aσn(X). I.e., one can simply
perform the bit-reversal permutation on the input X and rotate the state S′ by one. It is then easy
to see that this rule maintains the invariant Si = Aσn(S′i), and in particular, that Si and S′i have
the same entropy. Therefore, one can use the second rule instead of the first, which could improve
efficiency by replacing two applications of σn with a single application.10

7 Examples of natural distributions and some computational re-
sults

Here, we list some natural distributions, all of which are 2-monotone. We then compute exactly the
number of steps necessary to condense for the special case of the exponential distribution, which
has a particularly nice form that makes such exact computation feasible.

Discrete Gaussian. For s > 0, we write DZ,s for the discrete Gaussian distribution over the
integers with parameter s, i.e., defined by

Pr
X∼DZ,s

[X = z] =
exp(−πz2/s2)∑∞

z′=−∞ exp(−π(z′)2/s2)

for all integers z ∈ Z.
Similarly, for σ > 0, the exponential distribution EZ,σ with parameter σ is the distribution over

Z≥0 defined by

Pr
X∼Dσ

[X = z] =
exp(−z/σ)∑∞

z′=0 exp(−z′/σ)

for all integers z ≥ 0.

Uniform distribution over an interval. For 0 ≤ N1 < N2 ≤ 2n, let UN1,N2 be the distribution
over {0, 1}n obtained by sampling an integer N1 ≤ X < N2 uniformly at random (interpreted as a
bit string as above).

Shifted exponential distribution. For any σ ≥ 1 and any integer 0 ≤ N < 2n, let Eσ,N be the
distribution over {0, 1}n obtained by sampling an integer Y from an exponential distribution with
parameter σ and setting X := N + Y mod 2n (and interpreting this as a bit string).

Shifted discrete Gaussian distribution. For any s ≥ 1 and any integer 0 ≤ N < 2n, let
Ds,N be the distribution over {0, 1}n obtained by sampling an integer Y from the discrete Gaussian
distribution DZ,s with parameter σ and setting X := N + Y mod 2n (and interpreting this as a bit
string).

Claim 7.1. UN1,N2, Eσ,N , and Ds,N are all 2-monotone.

10More generally, for any invertible linear transformations A,B, one can replace the rule Si+1 ← B−1AB(Si)⊕X
with the equivalent rule S′i+1 ← AS′i ⊕BX. This maintains the invariant Si = B−1S′i.

25

Proof. This fact is immediate for the uniform distribution UN1,N2 , by taking the monotone intervals
{N1, . . . , N2 − 1} and {N2 − 1, . . . , . . . , 2n +N1 − 1}. Similarly, for Eσ,N , we can take the intervals
{N − 1, N} and {N, . . . , 2n + N − 1}. For the Gaussian Ds,N , this follows from the fact that the

function t 7→
∑

z∈Z e
−π(z−t)2 has maxima at t ∈ Z, minima at t ∈ Z + 1/2 and no other critical

points, which one can verify, e.g., using the Poisson summation formula.

7.1 Entropy of product distributions under permutations

Below, we show an exact formula for the min-/collision entropy resulting from applying our
permutation-based condensers to a product distribution. This exact formula is of course very
useful, as it allows us to easily compute the min-/collision entropy of the state of our extractor,
without directly computing the sum of 2n Fourier coefficients. Indeed, in Section 7.2, we use
this formula to show empirically that our extractor performs similarly as well with the unshifted
exponential distribution—a product distribution.

Theorem 7.2. Let D be a product distribution over {0, 1}n with Prx∼D[Xi = 0] = (1 + εi)/2 for
εi ≥ 0. Then, for any cyclic permutation π : [n]→ [n],

H2(D
(`)
Aπ

) = n−
n−1∑
i=0

log2

(
1 +

`−1∏
j=0

ε2πj(i)

)
,

Hmin(D
(`)
Aπ

) = n−
n−1∑
i=0

log2

(
1 +

`−1∏
j=0

επj(i)

)
.

Proof. We have

D̂
(`)
Aπ

(w) =
`−1∏
j=0

D̂(πj(w)) =
`−1∏
j=0

∏
wi=1

D̂(eπj(i)) =
`−1∏
j=0

∏
wi=1

επj(i) ≥ 0

where the second equality is because D is a product distribution. Therefore,

D
(`)
Aπ

(x) =
1

2n

∑
w∈{0,1}n

D̂
(`)
Aπ

(w)(−1)〈x,w〉 ≤ 1

2n

∑
w∈{0,1}n

D̂
(`)
Aπ

(w) = D
(`)
Aπ

(0) .

Moreover, ∑
w

|D̂(`)
Aπ

(w)|2 =

n−1∏
i=0

(
1 +

`−1∏
j=0

|D̂(eπj(i))|2
)

=

n−1∏
i=0

(
1 +

`−1∏
j=0

ε2πj(i)

)
,

∑
w

D̂
(`)
Aπ

(w) =
n−1∏
i=0

(
1 +

`−1∏
j=0

D̂(eπj(i))
)

=

n−1∏
i=0

(
1 +

`−1∏
j=0

επj(i)

)
.

The equality for H2(D
(`)
Aπ

) follows from Corollary 2.5, and the equality for Hmin(D
(`)
Aπ

) follows from

Hmin(D
(`)
Aπ

) = log2(1/D
(`)
Aπ

(0)) = log2(2
n/

∑
w∈{0,1}n

D̂
(`)
Aπ

(w)) .

26

Corollary 7.3. For any σ ≥ 1, let D := Eσ be the distribution over {0, 1}n obtained by sampling
an integer Y from an exponential distribution with parameter σ and setting X := Y mod 2n (and
interpreting this as a bit string), as described above. Then, for any cyclic permutation π : [n]→ [n],

H2(D
(`)
Aπ

) = n−
n−1∑
i=0

log2

(
1 +

(`−1∏
j=0

1− exp(−2π
j(i)/σ)

1 + exp(−2πj(i)/σ)

)2)

Hmin(D
(`)
Aπ

) = n−
n−1∑
i=0

log2

(
1 +

`−1∏
j=0

1− exp(−2π
j(i)/σ)

1 + exp(−2πj(i)/σ)

)
.

Proof. For any 0 ≤ x < 2n,

Pr
X∼D

[X = x] =

∑
z≥0 exp(−(x+ 2nz)/σ)∑

z≥0 exp(−z/σ)
= Cσ ·

∏
i

exp(−2ixi/σ) ,

where

Cσ :=

∑
z≥0 exp(−2nz/σ)∑
z≥0 exp(−z/σ)

.

I.e., D is a product distribution. From the above expression, we see that

Pr
X∼D

[Xi = 0] = exp(2i/σ) · Pr
X∼D

[Xi = 1] .

The desired conclusion then follows from Theorem 7.2 with

εi =
1− exp(−2i/σ)

1 + exp(−2i/σ)
.

7.2 Computational results for n = 32 and n = 64

Finally, we use the formula from Corollary 7.3 to directly compute the number of samples needed
to condense to nearly full entropy from the exponential distribution with different starting entropy
and different permutations. At a high level, these results confirm that the covering number Cπ,k
provides a good estimate for the number of steps needed to condense.

In more detail, in Figure 7, we show the exact number of samples needed to condense to n− 1
bits of collision entropy from the exponential distribution with k bits of entropy for rot5,32, rot19,64
(i.e., both rotations used by Microsoft), tor32, and tor64. We plot these relative to the associated
covering numbers, showing the close relationship between the covering number and the number of
samples needed. Indeed, Figure 7 is quite striking in terms of how well the covering number Cπ,k
matches the number accumulation steps needed.

Figure 8 shows the same numbers for min-entropy. While the result is less striking in this case,
it is still clear from the figure that the covering number Cπ,k more-or-less governs the accumulation
behavior.

Figure 9 presents the same information as Figure 7 (i.e., number of steps needed to accumulate
n−1 bits of collision entropy) but shows a direct comparison between rot5,32 and tor32, and between
rot19,64 and tor64. Figure 10 does the same with min-entropy. In particular, the two figures show

27

that bit-reversal rotation compares quite favorably with the rotations used by Microsoft in practice,
suggesting that it might be a good alternative.

Figure 11 presents the same information as the previous plots but shows a direct comparison
between the number of steps needed to accumulate n− 1 bits of collision entropy as opposed to the
number of steps needed to accumulate n− 1 bits of min-entropy. This shows that collision entropy
might be a more useful metric than min-entropy—particularly in the case when the number of
input bits k is small.

Finally, Figure 12 shows the accumulation of entropy over time—rather than just the number
of steps needed to converge to n− 1 bits specifically—from an exponential distribution with 2 bits
of min-entropy. This can be useful, e.g., for applications in which significantly fewer bits of entropy
(e.g., n/2 bits) are needed. It is evident from the figure that H2 outperforms Hmin consistently—
not just for the specific threshold of n− 1 bits. Figures 13 and 14 show the same data for a variety
of different values for the starting entropy k. We note that the difference between H2 an Hmin is
most pronounced in the low-entropy regime (as is also reflected by our theoretical results).

28

� � �� �� �� �� ��

�

�

�

�

��

��

��

��

��

��

��

rot5, 32

Cπ, k

number of samples

� �� �� �� �� �� ��

�

��

��

��

��

��

��

��

��

	�

rot19, 64

Cπ, k

number of samples

� � �� �� �� �� ��

�

�

�

�

��

��

��

��

��

��

��

tor32

Cπ, k

number of samples

� �� �� �� �� �� ��

�

��

��

��

��

��

��

��

��

	�

tor64

Cπ, k

number of samples

Figure 7: The number of steps needed for different permutations to accumulate n − 1 bits of
collision entropy from an exponential distribution with k bits of min-entropy plotted relative to the
covering number Cπ,k. (The fact that the red line is often not visible shows that the number of
samples is often exactly equal to the covering number. The two rotations chosen rot5,32 and rot19,64
are the ones used by Microsoft. Figure 7 shows the analogous numbers for min-entropy. Figure 9
shows the same data plotted together for more easy comparison.)

29

� � �� �� �� �� ��

	

�

�

��

��

��

��

��

��

��

��

rot5, 32

Cπ, k

number of samples

� �� �� �� �� �� ��

�

�

��

��

��

��

���

���

���

���

rot19, 64

Cπ, k

number of samples

� � �� �� �� �� ��

	

�

�

��

��

��

��

��

��

��

��

tor32

Cπ, k

number of samples

� �� �� �� �� �� ��

�

�

��

��

��

��

���

���

���

���

tor64

Cπ, k

number of samples

Figure 8: The number of steps needed for different permutations to accumulate n− 1 bits of min-
entropy from an exponential distribution with k bits of min-entropy plotted relative to the covering
number Cπ,k. (The fact that the red line is often not visible shows that the number of samples is
often exactly equal to the covering number. The two rotations chosen rot5,32 and rot19,64 are the
ones used by Microsoft. Figure 7 shows the analogous numbers for collision entropy. Figure 10
shows the same data plotted together for more easy comparison.)

30

� � �� �� �� �� ��

�

�

�

�

�

��

��

��

��
�

�

��
��
��
	�

��
��

n=32, k≥ 3

rot5, 32

tor32

(n− 1)/k

� �� �� �� �� �� ��

�

�

�

��

��

��

��

��

��
�

�

��
��
��
	�

��
��

n=64, k≥ 3

rot19, 64

tor64

(n− 1)/k

Figure 9: The number of steps needed for different permutations to accumulate n−1 bits of collision
entropy from an exponential distribution with k bits of min-entropy. The (n−1)/k line represents an
approximately theoretical information-theoretically optimal condenser. (The two rotations chosen
rot5,32 and rot19,64 are the ones used by Microsoft. Figure 10 shows the analogous numbers for
min-entropy. Figure 7 shows the same data plotted against the relevant covering numbers Cπ,k.)

� � �� �� �� �� ��

�

�

�

�

��

��

��

��
�

�

��
��
��
	�

��
��

n=32, k≥ 3

rot5, 32

tor32

(n− 1)/k

� �� �� �� �� �� ��

�

�

��

��

��

��

��

��

��

��
�

�

��
��
��
	�

��
��

n=64, k≥ 3

rot19, 64

tor64

(n− 1)/k

Figure 10: The number of steps needed for different permutations to accumulate n− 1 bits of min-
entropy from an exponential distribution with k bits of min-entropy. The (n− 1)/k line represents
a theoretical information-theoretically optimal condenser. (The two rotations chosen rot5,32 and
rot19,64 are the ones used by Microsoft. Figure 9 shows the analogous numbers for min-entropy.
Figure 8 shows the same data plotted against the relevant covering numbers Cπ,k.)

31

� � �� �� �� �� ��

	

�

�

��

��

��

��

��

��

��

��

rot5, 32

Cπ, k

number of samples (H2)

number of samples (Hmin)

� �� �� �� �� �� ��

�

�

��

��

��

��

���

���

���

���

rot19, 64

Cπ, k

number of samples (H2)

number of samples (Hmin)

� � �� �� �� �� ��

	

�

�

��

��

��

��

��

��

��

��

tor32

Cπ, k

number of samples (H2)

number of samples (Hmin)

� �� �� �� �� �� ��

�

�

��

��

��

��

���

���

���

���

tor64

Cπ, k

number of samples (H2)

number of samples (Hmin)

Figure 11: The number of steps needed for different permutations to accumulate n − 1 bits of
min-entropy (Hmin) from an exponential distribution with k bits of min-entropy, and the number
of steps needed to accumulate n− 1 bits of collision entropy (H2) the same distribution. (The two
rotations chosen rot5,32 and rot19,64 are the ones used by Microsoft.)

32

� �� �� �� �� ��

���
�������	��
��

�

�

�

��

��

��

��

��

��

��
��
��
�

k=2, rot5, 32

Hmin

H2

� �� �� �� �� ���

���
�������	��
��

�

�

��

��

��

��

��

��

��

��
��
��
�

k=2, rot19, 64

Hmin

H2

� �� �� �� �� ��

���
�������	��
��

�

�

�

��

��

��

��

��

��

��
��
��
�

k=2, tor32

Hmin

H2

� �� �� �� �� ���

���
�������	��
��

�

�

��

��

��

��

��

��

��

��
��
��
�

k=2, tor64

Hmin

H2

Figure 12: Number of bits of entropy (both H2 and Hmin) accumulated by number of steps, started
with an exponential distribution with two bits of min-entropy.

33

� �� �� �� �� ��

���
����
��	�����

�

�

�

��

��

��

��

��

��

��
���
��
��
��
��
��
��

rot5, 32

k=2

k=3

k=5

k=7

k=9

� �� �� �� �� ��

��������
��
�����

�

�

	

��

��

��

��

�	

��

�
��
��

��
��
��

rot5, 32

k=2

k=3

k=5

k=7

k=9

� �� �� �� �� ��

���
����
��	�����

�

�

��

��

��

��

��

��

��

��
���
��
��
��
��
��
��

rot19, 64

k=2

k=3

k=5

k=7

k=9

� �� �� �� �� ��

��������
��
�����

�

	

��

��

��

��

�	

��

��

�
��
��

��
��
��

rot19, 64

k=2

k=3

k=5

k=7

k=9

Figure 13: Number of bits of entropy (both H2 and Hmin) accumulated by number of steps, starting
with exponential distributions with different min-entropy. The two rotations shown are those chosen
by Microsoft.

34

� �� �� �� �� ��

���
����
��	�����

�

�

�

��

��

��

��

��

��

��
���
��
��
��
��
��
��

tor32

k=2

k=3

k=5

k=7

k=9

� �� �� �� �� ��

��������
��
�����

�

�

	

��

��

��

��

�	

��

�
��
��

��
��
��

tor32

k=2

k=3

k=5

k=7

k=9

� �� �� �� �� ��

���
����
��	�����

�

�

��

��

��

��

��

��

��

��
���
��
��
��
��
��
��

tor64

k=2

k=3

k=5

k=7

k=9

� �� �� �� �� ��

��������
��
�����

�

	

��

��

��

��

�	

��

��

�
��
��

��
��
��

tor64

k=2

k=3

k=5

k=7

k=9

Figure 14: Number of bits of entropy (both H2 and Hmin) accumulated using bit-reversed rotation
by number of steps, starting with exponential distributions with different min-entropy.

35

8 Bigger picture

In this work we abstracted out and analysed the fast entropy accumulation procedures found in
modern RNGs. We can now combine our results with prior RNG literature [DPR+13, DSSW14,
GT16, Hut16, CDKT19] to get a better big picture guarantee of the resulting RNG, but we start
with some observations.

First, every RNG so far used a different (and often incompatible) modeling of the security of
the slow refresh procedure. So, it’s not clear what is the “right” model for slow refresh—let alone
a hybrid fast/slow model. The good news is that all of the slow refresh models share one thing in
common—their rate of convergence depends only on either the overall collision/min-entropy that
they received. So, the fact that our work guarantees entropic output from a fast refresh seems like
a good start in trying to unify the two models.

Indeed, our results do (trivially) combine with every prior RNG work, and for concreteness we
state one such combination below (focusing on the slow refresh RNG work of [DSSW14], but other
combinations are done analogously). The main issue with such naive combinations is that they
appear to only work with a relatively weak RNG adversary, which must output independent (but
not necessarily identical) samples from the family of two-monotone distributions Dk,n, for (fixed but
unknown) min-entropy k per sample. We show a concrete example of a combined slow-refresh and
fast-refresh procedure in Appendix B, but we stress that this is meant only as a proof of concept
and that we do not claim that the model used in Appendix B is the “right” model.

As a positive, this is already a highly non-trivial and quite interesting model. For example, very
related “constant entropy rate” adversaries were mentioned by Fergusson and Schneier [FS03]—and
later formalized by [DSSW14]—in their design and analysis of Fortuna, which directly led to the
Windows 10 RNG [Fer19]. On the negative side, prior work on slow refresh [DPR+13, DSSW14,
GT16, Hut16, CDKT19] worked hard to give a lot of power to the RNG attacker, including the
ability to output correlated samples, and drastically change the entropy of each sample (subject
only to providing enough entropy overall). Thus, it is unfortunate that the naive composition that
follows from using our work did not use all these powerful security guarantees of the slow-refresh
procedures, and resulted in a much weaker overall attacker.

We note that, while the naive composition currently does not capture the ability of the dis-
tribution sampler to change its entropy parameter k, it is clear that the final RNG is at least
somewhat resilient and easily adaptable to this change, as the RNG design does not use the knowl-
edge of k, and simultaneously provides good guarantees for all k. So it feels the actual hybrid
slow-/fast-refresh RNG is much more robust that the current composition states. If nothing else,
the resulting RNGs are basically what is used in the real world, and these RNGs appear to work
well against practical entropy sources. In particular, while it is great that the standards for the
slow refresh procedure in the literature are very high, the existing entropy sources (e.g., modeling
timing of interrupts) appear to be much less adversarial, and likely lie somewhere in between the
independent 2-monotone sources modeled in this paper and the very general classes handled in the
literature on slow refresh procedures.

In summary, we view our current work as only the starting point in trying to understand and
model the overall security of the composed RNG, and believe that finding the “right” model to
combine fast refresh with slow refresh is a great avenue for future work.

36

Acknowledgments. We thank Niels Ferguson, Jonathan Katz, Daniel Apon, and Yuping Ye for
helpful comments.

Yevgeniy Dodis — Partially supported by gifts from VMware Labs, Facebook and Google, and
NSF grants 1314568, 1619158, 1815546.

Siyao Guo — Supported by Shanghai Eastern Young Scholar Program SMEC-0920000169. Parts
of this work were done while visiting the Centre for Quantum Technologies, National University of
Singapore.

Noah Stephens-Davidowitz — Some of this work was done at MIT supported in part by
NSF Grants CNS-1350619, CNS-1414119 and CNS1718161, Microsoft Faculty Fellowship and an
MIT/IBM grant. Some of this work was done at the Simons Institute in Berkeley.

References

[BH05] Boaz Barak and Shai Halevi. A model and architecture for pseudo-random generation
with applications to /dev/random. In CCS, 2005.

[BIW04] B. Barak, R. Impagliazzo, and A. Wigderson. Extracting randomness using few inde-
pendent sources. In FOCS, 2004.

[BTRS02] Ziv Bar-Yossef, Luca Trevisan, Omer Reingold, and Ronen Shaltiel. Streaming compu-
tation of combinatorial objects. In CCC, 2002.

[CDKT19] Sandro Coretti, Yevgeniy Dodis, Harish Karthikeyan, and Stefano Tessaro. Seedless
fruit is the sweetest: Random number generation, revisited. In CRYPTO, 2019.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM J. Comput., 17(2):230–261, 1988.

[CZ19] Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and re-
silient functions. Annals of Mathematics, 189(3):653–705, 2019.

[DGSX21] Yevgeniy Dodis, Siyao Guo, Noah Stephens-Davidowitz, and Zhiye Xie. Online linear
extractors for independent sources. In ITC, 2021.

[DPR+13] Yevgeniy Dodis, David Pointcheval, Sylvain Ruhault, Damien Vergnaud, and
Daniel Wichs. Security analysis of pseudo-random number generators with input:
/dev/random is not robust. In CCS, 2013.

[DSSW14] Yevgeniy Dodis, Adi Shamir, Noah Stephens-Davidowitz, and Daniel Wichs. How to
eat your entropy and have it too - optimal recovery strategies for compromised rngs. In
CRYPTO, 2014.

[Fer13] Niels Ferguson. Private communication, 2013.

[Fer19] Niels Ferguson. The windows 10 random number generation infrastruc-
ture. https://www.microsoft.com/security/blog/2019/11/25/going-in-depth

-on-the-windows-10-random-number-generation-infrastructure/, 2019. [Online;
posted October 2019].

37

https://www.microsoft.com/security/blog/2019/11/25/going-in-depth-on-the-windows-10-random-number-generation-infrastructure/
https://www.microsoft.com/security/blog/2019/11/25/going-in-depth-on-the-windows-10-random-number-generation-infrastructure/

[FS03] Niels Ferguson and Bruce Schneier. Practical Cryptography. John Wiley & Sons, Inc.,
New York, NY, USA, 1 edition, 2003.

[GT16] Peter Gazi and Stefano Tessaro. Provably robust sponge-based prngs and kdfs. In
Eurocrypt, 2016.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM J. Comput., 28(4):1364–1396,
1999.

[Hut16] Daniel Hutchinson. A robust and sponge-like PRNG with improved efficiency. In SAC,
2016.

[Kar96] Alan H. Karp. Bit reversal on uniprocessors. SIAM Rev, 38:1–26, 1996.

[KRVZ11] Jesse Kamp, Anup Rao, Salil P. Vadhan, and David Zuckerman. Deterministic extrac-
tors for small-space sources. J. Comput. Syst. Sci., 77(1):191–220, 2011.

[KSF99] John Kelsey, Bruce Schneier, and Niels Ferguson. Yarrow-160: Notes on the design and
analysis of the yarrow cryptographic pseudorandom number generator. In SAC, 1999.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput. Syst.
Sci., 52(1):43–52, 1996.

[RR99] Ran Raz and Omer Reingold. On recycling the randomness of states in space bounded
computation. In STOC, 1999.

[RSW00] O. Reingold, R. Shaltiel, and A. Wigderson. Extracting randomness via repeated con-
densing. In FOCS, 2000.

[sup] Supplementary material: covering numbers for all rotations with n = 32 and n = 64.
http://noahsd.com/rotation_extractor_supplement.zip.

[Wik04] Wikipedia. /dev/random. http://en.wikipedia.org/wiki//dev/random, 2004.
[Online; accessed 09-February-2014].

38

http://noahsd.com/rotation_extractor_supplement.zip
http://noahsd.com/rotation_extractor_supplement.zip
http://en.wikipedia.org/wiki//dev/random

A Additional missing proofs

Claim A.1. For any integers n,m ≥ 1, it holds that∑
i∈[n]

∏
j∈[m]

|ai,j | ≤
∏
j∈[m]

(∑
i∈[n]

|ai,j |m
)1/m

where ai,j are arbitrary real numbers.

Proof. We prove the claim by induction on m. When m = 1, it holds trivially for any n ≥ 1.
Suppose the statement holds for some m ≥ 1 (and any n ≥ 1). Then, we consider m + 1. By
Hölder’s inequality, for any p, q ≥ 1 such that 1/p+ 1/q = 1, it holds that∑

i∈[n]

∏
j∈[m+1]

|ai,j | =
∑
i∈[n]

|ai,m|
∏
j∈[m]

|ai,j |

≤
(∑
i∈[n]

(∏
j∈[m]

|ai,j |
)p)1/p

·
(∑
i∈[n]

|ai,m|q
)1/q

.

By the induction hypothesis and choosing p = 1 + 1/m and q = m+ 1 = (1− 1/p)−1, we have∑
i∈[n]

∏
j∈[m+1]

|ai,j | ≤
(∑
i∈[n]

(∏
j∈[m]

|ai,j |
)p)1/p

·
(∑
i∈[n]

|ai,m|q
)1/q

=
(∑
i∈[n]

∏
j∈[m]

|ai,j |p
)1/p

·
(∑
i∈[n]

|ai,m|q)1/q

≤
∏
j∈[m]

(∑
i∈[n]

|ai,j |pm
)1/(pm)

·
(∑
i∈[n]

|ai,m|q
)1/q

=
∏

j∈[m+1]

(∑
i∈[n]

|ai,j |m+1
)1/(m+1)

,

as needed.

Claim A.2. For 0 ≤ c ≤ 1, and 0 ≤ a0, . . . , am−1 ≤ k′ such that
∑

i∈[m] ai = n,

m−1∏
i=0

(
1 + (2ai − 1) · c

)
≤
(
1 + (2k

′ − 1) · c
)bn/k′c+1

.

Proof. Suppose that a0, . . . , am−1 maximizes

f(a0, . . . , am−1) =
m−1∏
i=0

(
1 + (2ai − 1) · c

)
.

Without loss of generality, we assume a0 ≥ a1 ≥ · · · ≥ am−1. Let t = bn/k′c. It suffices to show
that ai = k′ for i ∈ [t], at = n− k′t, and ai = 0 for i > t is an optimal solution. Then,

f(a0, . . . , am−1) ≤
(
1 + (2k

′ − 1) · c
)t+1

.

39

Suppose that there exists i ∈ [t] such that ai < k′. Then
∑

i∈[t] ai < n, and there exists j ≥ t such
that aj > 0. Observe that for any b ≥ 0, 0 ≤ c ≤ 1 and ai ≥ aj , it holds that

(1 + (2ai+b − 1) · c)(1 + (2aj−b − 1) · c)− (1 + (2ai − 1) · c)(1 + (2aj − 1) · c)
= (2ai − 2aj−b)(2b − 1)(c− c2)
≥ 0.

So we can increase ai by b := min{k′−ai, aj} and decrease aj by b such that a0, . . . , am−1 is feasible
and f(a0, . . . , am−1) doesn’t decrease. By repeating this process, we will reach the solution that
ai = k′ for i ∈ [t], at = n − k′t, and ai = 0 for i > t, which is therefore an optimal solution as
well.

B A concrete example combining fast and slow refresh

For illustrative purposes, we will use the already-mentioned “constant-rate” RNG work of [DSSW14]
(described in Section 6, Theorem 5 of that work) in order to show one possible way of combining
a slow-refresh model with our fast-refresh model. This work gives the simplest model to state, and
also attempts to model the Windows 10 RNG [Fer19]. The RNG analyzed by [DSSW14] solves a
very difficult “premature next” problem, by splitting its slow refresh state S into multiple “entropy
pools” S = (S1, . . . , Sp), and cleverly selecting which pool Si to use with each given each new
fast-refresh output Rj . For our purposes, we abstract out these details, only focusing on the final
security guarantee from [DSSW14].

Existing Slow Refresh Result. Let λ be the security parameter, which roughly models the
amount of min-entropy needed to result in a random state by cryptographically hashing some
distribution Y having min-entropy λ. Let 0 < γ ≤ λ be the (unknown) entropy of a constant-rate
(slow-refresh) attacker A, and q be the upper bound on the number of such slow-refresh calls that
A can make. Then the RNG from [DSSW14] recovers from state compromise after at most Cλ,q(γ)
slow-refresh calls made by A,11 where:

Cλ,q(γ) ≤ 2.1 log2 q · (λ/γ)

In other words, while at least (λ/γ) slow-refresh calls are needed just to give λ bits of fresh entropy,
the Fortuna (slow-refresh) RNG is multiplicative factor 2.1 log2 q away from this minimal amount.

Combined Slow+Fast Refresh Result. To add fast-refresh to the mix, imagine we have c
registers R1, . . . , Rc (each having n bits), and now our new (also constant-rate) attacker B can
choose arbitrary independent samples X1, X2, . . . from the family of 2-monotone distributions Dk,n,
where k is min-entropy of each such sample. Assume the registers are updated by the fast-refresh
rule R ← AπR ⊕ X in a round-robin manner, using an appropriate permutation π. Moreover,
all c registers R = (R1, . . . , Rc) are emptied into the slow-refresh procedure after each was used `
times.12 This means after c` calls to the fast-refresh procedure by B, we can use Theorem 5.2 to
conclude that each register Ri has min-entropy

γ∗(k) = Hmin(Ri) ≥ n− dn/k′e · log2(1 + 2k
′−kb`/mc/2) ≈ n(1− 2−k`/2m) ,

11Even if A can call the “premature next” oracle defined by [DSSW14], whose details are unimportant here.
12This assumption is made for simplicity of the bound, and can be generalized easily.

40

where k′ := bk/2c and m := Cπ,k′ is the covering number of π w.r.t. k′.
This means that our fast-refresh attacker B translates the original slow-refresh attacker A with

entropy parameter γ = cγ∗(k), and the number of induced slow-fresh queries q = Q/(c`), where Q
is the total number of fast-refresh queries (i.e., actual “interrupts”) output by B.

Putting it all together, and remembering that each slow refresh happens after c` fast-refreshes
(i.e., interrupts), we get the following composition. For given k, λ, Q, `, c, and n, the composed
RNG recovers from compromise after Dλ,Q,`,c,n(k) fast-refresh calls, where:

Dλ,Q,`,c,n(k) ≤ 2.1 log2

(
Q

c`

)
·
(

λ`

γ∗(k)

)
≈ 2.1 log2

(
Q

c`

)
·
(

λ`

n(1− 2−k`/2m)

)
where k′ := bk/2c and m := Cπ,k′ is the covering number of π w.r.t. k′.

A different way to read this result is to remember that, at the minimum, we need λ bits of
entropy, and each sample gives us k bits. So the overhead of this provable result against the
information-theoretic minimum λ/k is roughly

2.1 log2

(
Q

c`

)
·
(

k`

n(1− 2−k`/2m)

)
The first term 2.1 log2

(
Q
c`

)
is an artifact from the slow-refresh work of [DSSW14], so the extra

overhead coming from this work is an additional multiplicative factor

Fn,`(k) ≈ k`

n(1− 2−k`/2m)

Namely, after ` calls per register, we could have hoped to get k` entropy, but due to the
superfast nature of our accumulator (and the fact that it has bounded size n), we “only” got
roughly n(1−2−k`/2m) bits of entropy. Moreover, this is just the provable upper bound we derive in
this work. As we show in Section 7.2, for many setting of parameters the number is actually much
closer to the information-theoretic optimum k`, meaning the fast-refresh analysis adds almost no
overhead in practice: the “real” Fn,`(k) ≈ 1.

41

	Introduction
	Our model
	Our contributions

	Preliminaries
	Capturing natural distributions
	Rotation condensers
	Comparing different rotations and permutations
	Proof of Theorem 5.2
	Proof of Theorem 5.3

	A new recommendation: bit-reversed rotation
	A brief note on efficient implementation

	Examples of natural distributions and some computational results
	Entropy of product distributions under permutations
	Computational results for n=32 and n=64

	Bigger picture
	Additional missing proofs
	A concrete example combining fast and slow refresh

