
Indifferentiability of Permutation-Based

Compression Functions and Tree-Based Modes

of Operation, with Applications to MD6

Yevgeniy Dodis1, Leonid Reyzin2, Ronald L. Rivest3, and Emily Shen3

1 New York University
dodis@cs.nyu.edu

2 Boston University
reyzin@cs.bu.edu

3 Massachusetts Institute of Technology
{rivest,eshen}@csail.mit.edu

Abstract. MD6 [16] is one of the earliest announced SHA-3 candidates,
presented by Rivest at CRYPTO’08 [15]. Since then, MD6 has received
a fair share of attention and has resisted several initial cryptanalytic
attempts [1, 10].
Given the interest in MD6, it is important to formally verify the sound-
ness of its design from a theoretical standpoint. In this paper, we do so
in two ways: once for the MD6 compression function and once for the
MD6 mode of operation. Both proofs are based on the indifferentiability
framework of Maurer et al. [12] (also see [8]).
The first proof demonstrates that the “prepend/map/chop” manner in
which the MD6 compression function is constructed yields a compression
function that is indifferentiable from a fixed-input-length (FIL), fixed-
output-length random oracle.
The second proof demonstrates that the tree-based manner in which
the MD6 mode of operation is defined yields a hash function that is
indifferentiable from a variable-input-length (VIL), fixed-output-length
random oracle.
Both proofs are rather general and apply not only to MD6 but also to
other sufficiently similar hash functions.
These results may be interpreted as saying that the MD6 design has
no structural flaws that make its input/output behavior clearly distin-
guishable from that of a VIL random oracle, even for an adversary who
has access to inner components of the hash function. It follows that,
under plausible assumptions about those inner components, the MD6
hash function may be safely plugged into any application proven secure
assuming a monolithic VIL random oracle.

1 Introduction

In light of recent devastating attacks on existing hash functions, such as MD4 [17,
21], MD5 [19], SHA-0 [20, 6], and SHA-1 [18], NIST recently announced a compe-
tition for a new hash function standard, to be called SHA-3 [13]. NIST received

64 submissions, one of which is MD6. The current status of the SHA-3 compe-
tition can be found on the NIST web site1.

Crutchfield [9] showed that MD6 has many attractive properties required of a
good hash function, such as preservation of collision-resistance, unpredictability,
preimage-resistance, and pseudorandomness. As observed by Coron et al. [8],
however, the above “traditional” properties of hash functions are often insuffi-
cient for many applications, which require that the hash function behaves “like a
random oracle.” Moreover, the initial NIST announcement for the SHA-3 com-
petition [14] states that the candidate submissions will be judged in part by

“The extent to which the algorithm output is indistinguishable from a
random oracle.”

Thus, it is important to show that the design of the hash function is “consistent”
with the proofs of security in the random oracle (RO) model [3]. Such a notion
of consistency with the random oracle model was recently defined by Coron et
al. [8]; it is called indifferentiability from a random oracle and is based on the
general indifferentiability framework of Maurer et al. [12].

Given the importance of the random oracle model in the design of practi-
cal cryptographic schemes and the increased popularity of the indifferentiability
framework in the analysis of hash functions [8, 2, 7, 11, 4], we suggest that it is
critical that the winner of the SHA-3 competition satisfy such an “indifferentia-
bility from a random oracle” property.

The main result of this paper is a formal proof that the design of MD6, both
at the compression function level and at the mode of operation level, provides
indifferentiability from a random oracle. Thus, the MD6 mode of operation and
compression function have no structural flaws that would allow them to be distin-
guished from (VIL or FIL, respectively) random oracles. It follows, from results
due to Maurer et al. [12], that, given reasonable assumptions about the permu-
tation inside the compression function, the MD6 hash function may be safely
plugged into any higher-level application whose security is proven assuming the
hash function is a VIL random oracle.

These results generalize to other hash functions built on permutation-based
compression functions and tree-based modes of operations, if they are sufficiently
similar to MD6 in structure to meet the conditions of our proofs.

To explain our results more precisely, we briefly recall the indifferentiability
framework and the high level design of the MD6 hash function.

1.1 Indifferentiability

The notion of indifferentiability was first introduced by Maurer et al. in [12].
Informally, it gives sufficient conditions under which a primitive F can be “safely
replaced” by some construction CG (using an ideal primitive G). The formal
definition is as follows.

1 http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

Definition 1. A Turing machine C with oracle access to an ideal primitive G is
(t, qF , qS , ǫ)-indifferentiable from an ideal primitive F if there exists a simulator
S such that, for any distinguisher D, it holds that:

∣

∣Pr
[

DC,G = 1
]

− Pr
[

DF,S = 1
]∣

∣ < ǫ

The simulator S has oracle access to F (but does not see the queries of the
distinguisher D to F) and runs in time at most t. The distinguisher makes at
most qF queries to C or F and at most qS queries to G or S.

Indifferentiability is a powerful notion; Maurer et al. [12] show that if CG is
indifferentiable from F , then F may be replaced by CG in any cryptosystem,
and the resulting cryptosystem is at least as secure in the G model as in the F
model.

In this paper, F will always be a random oracle — either fixed-input-length,
fixed-output-length or variable-input-length, fixed-output-length. Thus, we will
be showing that a certain construction C is indifferentiable from a random oracle,
meaning that any cryptosystem proven secure in the RO model will still be secure
in the G model, when the hash function is implemented using CG.

1.2 The MD6 Hash Function: High-Level View

The MD6 function consists of the following two high-level steps. First, there
is a compression function which operates on fixed-length inputs. Second, there
is a mode of operation, which uses the compression functions as a black-box
and to evaluate the hash function on arbitrary-length inputs. Naturally, our
indifferentiability results will consist of two parts as well: (a) that the com-
pression function, under some natural assumptions, is indifferentiable from a
fixed-input-length RO, and (b) that, assuming the compression function is a
fixed-input-length RO, the MD6 mode of operation yields a hash function that
is indifferentiable from a variable-input-length RO.

The Compression Function. The MD6 compression function f maps an input
N of length n = 89 words (consisting of 25 words of auxiliary input followed by
64 words of data) to an output of c = 16 words. Thus, the compression function
reduces the length of its data input by a factor of 4. The compression function
f is computed as a series of operations, which we view as the application of a
random permutation π over the set of 89-word strings, followed by a truncation
operation which returns the last 16 words of π(N).

In each call to f in an MD6 computation, the first 15 words of auxiliary input
are a constant Q (a representation of the fractional part of

√
6). Therefore, in

our analysis, we consider the “reduced” compression function fQ, where fQ(x) =
f(Q||x). For the full specification of the MD6 compression function, we refer the
reader to [16].

In Section 3, we prove that fQ is indifferentiable from a random oracle F ,
assuming that the main operation of the compression function is the application
of a fixed public random permutation π.

The Mode of Operation. The standard MD6 mode of operation is a hierarchical,
tree-based construction to allow for parallelism. However, for devices with limited
storage, the MD6 mode of operation can be iterative. There is an optional level
parameter L which allows a smooth transition between the fully hierarchial mode
of operation and the fully iterative mode of operation. At each node in the
tree, the input to the compression function includes auxiliary information. The
auxiliary information includes a unique identifier U for each node (consisting of
a tree level and index). In addition, there is a bit z which equals 1 in the input to
the root node (the final compression call) and 0 in the input to all other nodes.
For the full specification of the MD6 mode of operation, we refer the reader
to [16].

In Section 4, we prove that the MD6 mode of operation is indifferentiable from
a random oracle F when the compression function fQ is modeled as a random
oracle. In fact, our proof is quite general and applies essentially to any tree-like
construction, as long as the final computation node has a distinguishable input
structure and compression function inputs are uniquely parsable into blocks that
are either raw message bits, metadata, or outputs of the compression function
on “child” nodes.

2 Notation

We first introduce some notation.
Let W = {0, 1}w denote the set of all w = 64-bit words. Let χa(X) denote

a function that returns the last a bits of X. Let γa(X) denote a function that
truncates X by dropping its last a bits.

3 Indifferentiability from Random Oracle of MD6

Compression Function

In this section, we will prove the indifferentiability from a random oracle of
the MD6 compression function construction, under certain assumptions. The
compression function construction involves three steps:

– Prepending a constant value Q to the compression function input.
– Mapping the result by applying a fixed (pseudo)-random permutation π to

it, and
– Chopping (removing) bits off the front of the result, so that what remains

has the desired length as a compression function output.

Our proof applies in general to compression functions constructed in this man-
ner. Our presentation of the proof will use notation shared with the formal
specification of MD6, for convenience.

We view the compression function as based on a fixed public random permu-
tation π(·), i.e., f(N) = χcw(π(N)). (Recall that χcw(·) returns the last cw bits
of its input.) Since the permutation is public, an adversary can compute both π

and π−1 easily. Therefore, we need to consider an adversarial model where the
adversary has these powers.

Note that in this model the adversary can both invert f and find collisions
for f easily, if we do not do something additional. (This is because the adversary
can take the c-word output C, prepend n− c words of random junk, then apply
π−1 to get a valid pre-image for C. He can do this twice, with different junk
values, to get a collision.) However, MD6 does have an important additional
feature: a valid compression function input must begin with a fixed constant Q.
We now proceed to show that this yields a compression function that behaves
like a random oracle when π is a random permutation.

Recall that W = {0, 1}w denotes the set of all w-bit words and that f
takes n-word inputs. We let fQ(x) = f(Q||x) denotes the “reduced” compression
function that takes (n − q)-word inputs, prepends the fixed prefix Q, and runs
f . To make it explicit that in this section we are modeling f and fQ in terms of
a random permutation π on Wn, we will write

fπ
Q(x) = χcw(π(Q||x)) , (1)

where χcw(y) returns the last cw bits of y, and where x is in Wn−q.
Let the ideal functionality be represented by F : Wn−q → Wc, a random

oracle with same signature as fπ
Q. We will show that fπ

Q is indifferentiable from
F , as stated below.

Theorem 1. If π is a random permutation and Q is arbitrary, the reduced MD6
compression function fπ

Q defined by equation (1) is (t, qF , qS , ǫ)-indifferentiable
from a random oracle F , for any number of queries qF and qS, for distinguishing
advantage

ǫ =
(qS + qF)2

2nw
+

qS

2qw
+

qSqF

2(n−c)w
, (2)

and for running time of the simulator t = O(qSnw).

Proof. We use the approach of Coron et al. [8], who showed that the indifferen-
tiability framework can be successfully applied to the analysis of hash functions
built from simpler primitives (such as block ciphers or compression functions).
We note that related results have been obtained by Bertoni et al. [5] in their
proof of indifferentiability of “sponge functions.”

In our case, because π is a permutation, the oracle G contains both π and
π−1, and we need to simulate them both. Slightly abusing notation, we will write
S for the simulator of π and S−1 for the simulator of π−1. Thus, we need to
construct simulator programs S and S−1 for π and π−1 such that no distinguisher
D can distinguish (except with negligible probability) between the following two
scenarios:

(A) The distinguisher has oracle access to fπ
Q, to π, and to π−1.

(B) The distinguisher has oracle access to F , S, and S−1.

We define the simulators S, S−1 for π, π−1 as follows:

1. S and S−1 always act consistently with each other and with previous calls,
if possible. If not possible (i.e., there are multiple answers for a given query),
they abort.

2. To evaluate S(X) where X = Q||x, compute y = F (x), then return R||y
where R is chosen randomly from in Wn−c.

3. To evaluate S(X) where X does not start with Q, return a value R chosen
randomly from Wn.

4. To evaluate S−1(Y): return a random N in Wn which does not start with
Q (i.e., from Wn\(Q||Wn−q)).

The running time of the simulators is at most t = O(qSnw). Next, we argue
the indifferentiability of our construction. To this end, consider any distinguisher
D making at most qS to queries to S/π and S−1/π−1 and at most qF queries
to F/fπ

Q. To analyze the advantage of this distinguisher, we consider several
games G0, G1, . . . , G7. For each game Gi below, let pi = Pr(D outputs 1 in Gi).
Intuitively, G0 will be the “real” game, G7 will be the “ideal” game, and the
intermediate game will slowly transform these games into each other.

Game G0. This is the interaction of D with fπ
Q, π, π−1.

Game G1. The game is identical to G0 except the permutation π is chosen in
a “lazy” manner. Namely, we introduce a controller Cπ which maintains a table
Tπ consisting of all currently defined values (X,Y) such that π(X) = Y . Initially,
this table is empty. Then, whenever a value π(X) or π−1(Y) is needed, Cπ first
checks in Tπ whether the corresponding value is already defined. If yes, it supplies
it consistently. Else, it chooses the corresponding value at random subject to
the “permutation constraint”. Namely, if Tπ = {(Xi, Yi)}, then π(X) is drawn
uniformly from Wn\{Yi} and π−1(Y) is drawn uniformly from Wn\{Xi}. It is
clear that G1 is simply a syntactic rewriting of G0. Thus, p1 = p0.

Game G2. This game is identical to G1 except the controller Cπ does not
make an effort to respect the permutation constraint above. Instead, it simply
chooses undefined values π(X) and π−1(Y) completely at random from Wn, but
explicitly aborts the game in case the permutation constraint is not satisfied. It
is clear that |p2 − p1| is at most the probability of such an abort, which, in turn,
is at most (qS + qF)2/2nw.

Game G3. This game is identical to G2 except the controller Cπ does not
choose values starting with Q when answering the new inverse queries π−1(Y).
Namely, instead of choosing such queries at random from Wn, it chooses them
at random from Wn\(Q||Wn−q). It is easy to see that |p3 − p2| is at most the
probability that Cπ would choose an inverse starting with Q in the game G2,
which is at most qS/2qw.

Game G4. This game is identical to G3 except we modify the controller Cπ

as follows. Notice that there are three possible ways in which Cπ would add an
extra entry to the table Tπ:

1. D makes a query π(X) to π, in which case a new value (X,Y) might be
added (for random Y). We call such additions forward.

2. D makes a query π−1(Y) to π−1, in which case a new value (X,Y) is added
(for random X not starting with Q). We call such additions backward.

3. D makes a query fπ
Q(x) = χcw(π(Q||x)), in which case Cπ needs to evaluate

π(Q||x) and add a value (Q||x, Y) (for random Y). We call such additions
forced.

We start by making a syntactic change. When a forced addition (Q||x, Y)
to Tπ is made, Cπ will mark it with a special symbol and will call this entry
marked. Cπ will keep it marked until D asks the usual forward query to π(Q||x),
in which case the entry will become unmarked, just like all the regular forward
and backward additions to Tπ. With this syntactic addition, we can now make
a key semantic change in the behavior of the controller Cπ.

– In game G3, when a backward query π−1(Y) is made, Cπ scans the entire
table Tπ to see if an entry of the form (X,Y) is present. In the new game
G4, Cπ will only scan the unmarked entries in Tπ, completely ignoring the
currently marked entries.

We can see that the only way the distinguisher D will notice a difference
between G3 and G4 is if D can produce a backward query π−1(Y) such that the
current table Tπ contains a marked entry of the form (Q||x, Y). Let us call this
event E, and let us upper-bound the probability of E. For each forced addition
(Q||x, Y), the value Y is chosen at random from Wn, and the distinguisher D
only learns the “chopped” value y = χcw(Y). In other words, D does not see
(n− c)w completely random bits of Y . Thus, for any particular forced addition,
the probability that D ever “guesses” these missing bits is 2−(n−c)w. Since D
gets at most qS attempts, and there are at most qF forced values to guess, we
get that Pr(E) ≤ qSqF /2(n−c)w. Thus, |p4 − p3| ≤ qSqF

2(n−c)w .

Game G5. We introduce a new controller CF , which is simply imitating
a random function F : Wn−q → Wc. Namely, CF keeps a table TF , initially
empty. When a query x is made, CF checks if there is an entry (x, y) in TF .
If so, it outputs y. Else, it picks y at random from Wc, adds (x, y) to TF , and
outputs y. Now, we modify the behaviors of the controller Cπ for π/π−1 from
the game G4 as follows. In game G4, when a new forward query (Q||x) was made
to π, or a new query x was made to fπ

Q, Cπ chose a random Y from Wn and set
π(Q||x) = Y . In game G5, in either one of these cases, Cπ will send a query x to
the controller CF , get the answer y, and then set Y = R||y, where R is chosen
at random from Wn−c.

We notice that the game G5 is simply a syntactic rewriting of the game G4,
since choosing a random value in Wn is equivalent to concatenating two random
values in Wn−c and Wc. Thus, p5 = p4.

Game G6. Before describing this game, we make the following observations
about the game G5. First, we claim that all the entries of the form (Q||x, Y)
in Tπ, whether marked or unmarked, have come from the explicit interaction
with the controller CF . Indeed, because in game G3 we restricted Cπ to never
answer a backward query so that the answer starts with Q, all such entries in T

have come either from a forward query π(Q||x), or the fπ
Q-query fπ

Q(x). In either
case, in game G5 the controller Cπ “consulted” CF before making the answer. In
fact, we can say more about the fπ

Q-query fπ
Q(x). The answer to this query was

simply the value y which CF returned to Cπ on input x. Moreover, because of
the rules introduced in game G4, Cπ immediately marked the entry (Q||x,R||y)
which it added to Tπ, and completely ignored this entry when answering the
future backward queries to π−1 (until a query π(Q||x) to π was made).

Thus, we will make the following change in the new game G6. When D asks
a new query fπ

Q(x), the value x no longer goes to Cπ (which would then attempt
to define π(Q||x) by consulting CF). Instead, this query goes directly to CF ,
and D is given the answer y. In particular, Cπ will no longer need to mark any
of the entries in Tπ, since all the fπ

Q queries are now handled directly by CF .
More precisely, Cπ will only “directly” define the forward queries π(X) and the
backward queries π−1(Y) (in the same way it did in Game G5), but no longer
define π(Q||x) as a result of D’s call to fπ

Q(x).
We claim that game G6 is, once again, only a syntactic rewriting of game

G5. Indeed, the only change between the two games is that, in game G5, Tπ

will contain some marked entries (Q||x,R||y), which will be ignored anyway in
answering all the inverse queries, while in Game G6 such entries will be simply
absent. There is only one very minor subtlety. In Game G5, if D first asks fπ

Q(x),
and later asks π(Q||x), the latter answer R||y will already be stored in Tπ at the
time of the first question fπ

Q(x). However, it will be marked and ignored until
the second question π(Q||x) is made. In contrast, in Game G6 this answer will
only be stored in Tπ after the second question. However, since in both cases Cπ

would answer by choosing a random R and concatenating it with CF ’s answer y
to x, this minor difference results in the same view for D. To sum up, p6 = p5.

Game G7. This is our “ideal” game where D interacts with S/S−1 and a
true random oracle F . We claim this interaction is identical to the one in Game
G6. Indeed, CF is simply a “lazy” evaluation of the random oracle F . Also,
after all our changes, the controller Cπ in Game G6 is precisely equivalent to our
simulators S and S−1. Thus, p7 = p6.

Collecting all the pieces together, we get that the advantage of D in distin-
guishing Game G0 and Game G7 is at most the claimed value

ǫ ≤ (qS + qF)2

2nw
+

qS

2qw
+

qSqF

2(n−c)w

⊓⊔
(In practice, there are other inputs to consider, such as the key input K, the

unique ID U , and the control word V . The above proof applies as given, assuming
that these inputs are available for the distinguisher to control. This is the correct
assumption to make from the viewpoint of the MD6 mode of operation or other
applications using the MD6 compression function.)

Remark 1. We remark that our indifferentiability proof for the function fπ
Q(x) =

χcw(π(Q||x)) trivially generalizes to any compression function fπ(x) of the form
fπ(x) = hcw(π(gqw(x))), where:

– hcw : Wn → Wc is any regular2 function. For the case of MD6, we use the
“chop function” hcw = χcw.

– gqw : Wn−q → Wn is any injective function which is (a) efficiently invertible
and (b) efficiently verifiable (i.e., one can determine whether or not a point
y ∈ Wn belongs to the range of gqw). For the case of MD6, we use the
“prepend function” gqw(x) = (Q||x), for some constant Q ∈ Wq.

4 Indifferentiability of Tree-Based Modes of Operation

In this section, we prove that any tree-based mode of operation, with certain
properties (defined below), is indifferentiable from a random oracle when the
compression function is a random oracle. (In fact, our result applies to modes
of operation that can be described as straight-line programs, which are more
general than trees.) We then derive the indifferentiability of the MD6 mode of
operation as a consequence of this result.

Consider a compression function φ : Wη → Wc. Let µφ : {0, 1}∗ → {0, 1}d

denote the mode of operation µ applied to φ. We will prove that, if φ is a random
oracle and µ satisfies the required properties, then µφ is indifferentiable from a
random oracle.

4.1 Required Properties of Mode of Operation

To prove indifferentiability of a mode of operation µ, we will require µ to have
the following properties. These are properties of the mode µ itself, independent
of the particular compression function φ.

Unique Parsing. Every compression function input x ∈ Wη that occurs in the
computation of µφ(M) for some M ∈ {0, 1}∗ must be efficiently and uniquely
parsable into a sequence of blocks (not necessarily of the same size), each of
which is a compression function output, raw message bits (from the message
being hashed), or metadata. Note that there may be parsable inputs that do
not actually occur in the computation of µφ(M) for any M .

Parent Predicate. Given the unique parsing property, we define a predicate
parent(x, y, i) which, given oracle access to a compression function φ, takes
two inputs x, y ∈ Wη, and an index i. It outputs true iff φ(y) is equal to
the ith compression function output in the parsing of x. We say that x is a
parent of y, or equivalently, y is a child of x if parent(x, y, i) is true for some
i. We also say that y is the ith child of x if parent(x, y, i) is true. Note that
actual parent-child pairs occurring during the execution of µ may satisfy
additional conditions: for example, x and y may contain consecutive level
numbers. Our definition of parent does not verify these conditions, and thus
may create a parent relationship where none should exist. These conditions
(among others) will be verified by a function ρ defined below.

2 A function is regular if every value in the range has an equal number of preimages
in the domain.

Leaf Predicate. Given the unique parsing property, we also define a predicate
leaf(x) on compression function inputs x which returns true iff the parsing
of x contains only message bits and metadata but no compression function
outputs. We say that x is a leaf if leaf(x) is true.

Root Predicate. There must be a well-defined, efficiently testable predicate
root(x) such that: for any M ∈ {0, 1}∗, for every non-final compression func-
tion call x in the computation of µφ(M), root(x) is false, and for the final
compression function call y, root(y) is true. For strings x that are neither
non-final nor final compression function calls in the computation of µφ(M)
for any M , root(x) can be either true or false.

Note that this condition implies that the set of strings x ∈ Wη that are the
final compression call for some M must be disjoint from the set of strings
y ∈ Wη that are a non-final compression call for some M .

Straight-Line Program Structure. The mode of operation µ must be a
straight-line program in the following sense. It carries out a sequence of calls
to the compression function, where input to call number i in the sequence
is computed from the message itself, metadata, and outputs of some j calls
numbered i1, i2, . . . , ij < i. This sequence (that is, the exact dependence of
ith call on the previous calls and the message) must be deterministically
computable from M alone, regardless of φ. For every call in the sequence
except the last one, its output value must be used to compute some other
input value. Moreover, for any φ, the output values of calls i1, i2, . . . , ij must
occur in the parsing of the input to the ith call. The last call x in that
sequence must have root(x) = true; for all the others, the root predicate
must be false. Denote by Σ(M) the set of all calls to φ (input and output
pairs) during the computation of µφ(M).

Final Output Processing. It must be the case that µφ(M) = ζ(φ(x)) where
x is the final compression input, where ζ : Wc → {0, 1}d is an efficiently
computable, regular function. The set of all preimages ζ−1(h) of a value h
must be efficiently sampleable given h.

Message Reconstruction. There must be an efficiently computable function
ρ that takes a set Π of compression function calls and returns a message M
if Π = Σ(M), and ⊥ otherwise. Because µ is deterministic, it follows that if
ρ(Π1) = M1 and ρ(Π2) = M2 and Π1 6= Π2, then M1 6= M2.

We let κ(ℓ) denote an upper bound on the running time of ρ on an input
set Π containing at most ℓ compression function calls. We assume that the
other efficiently computable operations defined above (compression function in-
put parsing, computing ζ(C), sampling from ζ−1(h), and evaluating root(x)) run
in constant time.

4.2 The Simulator

For the proof of indifferentiability of µ, we will define a polynomial-time simu-
lator S0 for the compression function φ. S0 works as follows.

S0 maintains a set T , initially empty, of pairs (x,C) ∈ Wη × Wc such that
it has responded with C to a query x.

Upon receiving a compression function query x∗, S0 searches its set T for a
pair (x∗, C∗). If it finds such a pair, S0 returns C∗.

Otherwise, S0 evaluates root(x∗). If false, S0 chooses a fresh random string
C∗ ∈ Wc, inserts (x∗, C∗) into T , and returns C∗.

If true, S0 executes the following “reconstruction procedure” to determine
whether x∗ is the final compression function call in a computation of µφ(M),
all of whose non-final compression function calls have already been seen by S0.
In the reconstruction procedure, S0 will build a set Π, initially empty, of pairs
(x,C) of compression function inputs and outputs.

1. Parse x∗ into an ordered sequence of message bits, metadata, and compres-
sion function outputs. Let j be the number of compression function outputs.

2. For i = 1, . . . , j:
For each pair (x,C) in T , evaluate parent(x∗, x, i). If no pair (x,C) satisfies
parent(x∗, x, i), or if multiple pairs (x,C) satisfy parent(x∗, x, i), quit the
reconstruction procedure; choose a fresh random string C∗ ∈ Wc, insert
(x∗, C∗) into T , and return C∗. If a unique child pair (x,C) is found, add
(x,C) to Π. If leaf(x) is false, execute steps 1 and 2 for x.

If S0 completes the reconstruction procedure (without returning a fresh ran-
dom string), S0 now calls ρ(Π). If ρ returns ⊥, S0 chooses a fresh random string
C∗ ∈ Wc, inserts (x∗, C∗) into T , and returns C∗. If ρ returns a message M∗,
S0 calls F on M∗ and samples a string C∗ ∈ Wc randomly from ζ−1(F (M∗)).
S0 inserts (x∗, C∗) into T and returns C∗.

Running Time. Let qt be the total number of compression function queries to the
simulator. To answer each compression function query, the S0 takes O(q2

t +κ(qt))
time. Therefore, the total running time of the simulator is O(q3

t + qt · κ(qt)).

Correctness. In our proof, we will use the following correctness properties of the
simulator.

Property 1: Suppose that there are no collisions on the output of S0 (equiv-
alently, there are no Type 1 events, which we define later). If all of the non-final
compression calls in the computation of µφ(M∗) have been made to S0, then
on the final compression call x∗, S0 will reconstruct M∗ and consult F on M∗.
This property can be easily proven by induction, starting at the final query
and working backward; the straight-line program property ensures that all the
compression function calls in Σ(M∗) will be found, and the assumption of no
collisions ensures that no extra calls will be found.

Property 2: Suppose S0 reconstructs M in response to a query at time τ . Then
all of the compression calls in the computation of the µφ(M) have been made
to S0 by time τ (indeed, otherwise ρ(Π) would not return M , by definition).

4.3 Games

To prove the indifferentiability of the mode of operation µ, we consider a distin-
guisher D making compression function queries and mode of operation queries.
We define a sequence of games, G0 through G4. Game G0 is the “ideal” game,
where D has oracle access to the random oracle F and the simulator S0. Game
G4 is the “real” game, where D has oracle access to µφ and the random oracle
φ.

For each game Gi, let pi denote the probability that D outputs 1 in game Gi.
We will argue that the view of the distinguisher cannot differ between consecutive
games with more than negligible probability.

The games are defined as follows.

Game G0. In Game G0, the distinguisher D interacts with the random oracle
F and the polynomial-time simulator S0 defined above.

Game G1. In Game G1, we modify the simulator. At the start of the game,
the new simulator S1 uses its random coins to specify a random oracle OS :
Wη → Wc. The subsequent behavior of S1 is identical to that of S0 except,
whereas S0 generates its random bits in a lazy manner, S1 gets its random bits
from OS . Specifically, wherever S0 answers a query x∗ with a fresh random string
C∗ ∈ Wc, S1 answers with OS(x∗). Similarly, wherever S0 answers a query x∗ by
sampling randomly from ζ−1(F (M∗)), S1 samples randomly from ζ−1(F (M∗))
using OS(x∗) as its source of random bits.

The view of the distinguisher is the same in Game G1 and Game G0, so we
have p1 = p0.

Game G2. In Game G2, we introduce a relay algorithm R0 between D and
F . The relay algorithm R0 has oracle access to F and simply relays D’s mode
of operation queries to F and relays F ’s responses back to D.

The view of the distinguisher is the same in Game G2 and Game G1, so we
have p2 = p1.

Game G3. In Game G3, we modify the relay algorithm. Instead of querying
F , the new relay algorithm R1 computes the mode of operation on its input,
querying S1 on each compression function call.

Game G4. This is the final game. In Game G4, we modify the simulator
so that it no longer consults F . The new simulator S2 always responds to a
new query x∗ with OS(x∗). Thus, in this game D interacts with the mode of
operation µOS and the random oracle OS .

Bad Events. In order to argue that the view of D cannot differ between Game
G2 and Game G3 with more than negligible probability, we first define three
types of “bad events” that can occur in Game G2 or Game G3.

– Type 1: S1 inserts a pair (x2, C) into T when there is already a pair (x1, C)
such that x1 6= x2.

– Type 2: S1 inserts a pair (x2, C2) into T when there is already a pair (x1, C1)
in T such that x1 is a parent of x2.

– Type 3: D makes a query x2 to S1 such that x2 is a parent of an x1 which
was previously queried by R but never directly by D.

We now prove that if none of these bad events occur in Game G3, then the
view of D is identical in G2 and G3.

Lemma 1. For fixed coins of F , S1, and D, if no bad events occur in Game
G3, then the view of D is identical in Game G2 and Game G3.

Proof. We fix the random coins of F , S1, and D and assume no bad events
occur. We show by induction that D’s observable values (the responses of the
relay algorithm and the simulator) are identical in Games G2 and G3.

Suppose that the observable values have been identical in Games G2 and
G3 so far. Consider D’s next query. It is either a mode of operation query or a
compression function query.

Mode of Operation Query. Consider a query M∗ to µφ. In Game G2, R0 always
returns F (M∗). In Game G3, R1 will return F (M∗) if the response of S1 on the
final compression call x∗ is sampled from ζ−1(F (M∗)). There are two cases two
consider.

1. x∗ is a new query to S1. Since R1 has made all of the non-final calls for M∗

before x∗, assuming there are no Type 1 events, by Correctness Property 1
of the simulator, S1 will reconstruct M∗ and return a string sampled from
ζ−1(F (M∗)).

2. x∗ has already been queried to S1 before. Suppose it was first queried at
time τ . Consider x∗’s children in the current computation µφ(x). All of these
children must have also been seen before time τ . Otherwise, a Type 2 event
occurred in Game G3 during one of the calls by R1 after time τ . By induction,
all of R1’s calls in the computation of µφ(x) must have been seen before time
τ . Therefore, assuming there are no Type 1 events, by Correctness Property
1 of the simulator, S1 reconstructed M∗ and returned a string sampled from
ζ−1(F (M)) at time τ .

Therefore, given that the observables have been the same so far, if the next
query is a mode of operation query, the next observable will be the same in
games G2 and G3.

Compression Function Query. Consider a query x∗ to φ.
We first make the following observation. Let T2 be the set of queries S1 has

seen so far in Game G2. Let T3 be the set of queries S1 has seen so far in Game
G3. Assuming the observables in the two games have been identical so far, T2

must be a subset of T3. This is because T2 contains only the compression function
queries made by D and T3 contains these queries along with the queries made
by R1 in computing responses to D’s mode of operation queries.

Now, suppose that x∗ has already previously been queried to S1 in Game
G2. Then S1’s response will be the same in both games, since by assumption it
was the same in both games the first time x∗ was queried.

So suppose that x∗ is a new query in Game G2. If in Game G2, S1 reconstructs
an M∗ and returns an element of ζ−1(F (M∗)) sampled using OS(x∗) for its
random bits, then by Correctness Property 2 of the simulator, all of M∗’s queries
are in T2, and therefore all of M∗’s queries are in T3. Therefore, assuming no
Type 1 events, by Correctness Property 1, S1 must also reconstruct M∗ in Game
G3 and return an element of ζ−1(F (M∗)) sampled using OS(x∗) for its random
bits.

If in Game G2, S1 instead returns OS(x∗), then S1’s answer in Game G3

is the same unless in Game G3 S1 reconstructs an M∗. If S1 reconstructs an
M∗ in Game G3 but not in Game G2, then at least one of the queries used in
the reconstruction must have come from R1. But D made a query for the final
compression function input x∗. Consider all of x∗’s children in G3. All of these
queries must have been asked by D at some time. Otherwise, a Type 3 event
occurred in game G3. By induction, all of the queries for M∗ must have been
asked by D before x∗, but then (assuming no Type 1 events) S1 would have
reconstructed M∗ in Game G2, contradicting the assumption that S1 returns
OS(x∗) in Game G2.

Therefore, given that the observables have been the same so far, if the next
query is a mode of operation query, the next observable will be the same in
games G2 and G3.

Therefore, conditioned on there being no occurrences of bad events in G3,
the view of D is identical in games G2 and G3.

We now bound the probability of bad events in Game G3.

Lemma 2. Suppose D makes qS compression function queries and generates qt

compression function calls from its mode of operation queries and its compression
function queries. Let Pr[Bad] denote the probability that a bad event occurs in
Game G3. Pr[Bad] ≤ (2η/c + 1)q2

t /2cw.

Proof. We first make the observation that on a new query x, S1 always responds
with a fresh random string in Wc. This is because S1 responds with either (a)
OS(x) ∈ Wc or (b) a random sample from ζ−1(F (M)) using OS(x) as its source
of randomness. In case (a), S1’s response is a fresh random string in Wc. In case
(b), S1’s is a fresh random string in Wc as long as S1 has not queried F on M
before. Since a message M has a unique final compression call and x is a new
query, S1 cannot have queried F on M before.

We now consider the three types of bad events.
Type 1 event: A Type 1 event corresponds to a collision between two ran-

dom c-word strings among at most qt compression function queries. We can
bound the probability using the birthday bound over qt random c-word strings:
Pr[Type 1] ≤ q2

t /2cw+1.
Type 2 event: A Type 2 event occurs when S1’s random c-word response C2

to a query x2 equals one of the compression function outputs in the parsing of a
previous query x1. There at most η/c compression function outputs in the parsing
of any query. So, there are at most qt · η/c compression function outputs for S1

to “guess” and S1 has at most qt guesses. Therefore, Pr[Type 2] ≤ (η/c ·q2
t)/2cw.

Type 3 event: A Type 3 event occurs when D makes a query which is a
parent of a query that R made but D did not. The only output that D sees
from R’s queries is ζ(f(x)) for the final compression call x, but it is not possible
to make a query which is a parent of a final compression call. The probability
of D “guessing” a non-final compression function output that it has not seen is
1/2cw. There are at most (qt − qS) outputs to guess and D has at most qS · η/c
guesses. Therefore, Pr[Type 3] ≤ (η/c · qS(qt − qS))/2cw.

Summing together, we get Pr[Bad] ≤ q2
t /2cw+1+(η/c ·q2

t)/2cw +(η/c ·qS(qt−
qS))/2cw ≤ (2η/c + 1)q2

t /2cw.

4.4 Indifferentiability Theorem

We now state our theorem of indifferentiability of µ.

Theorem 2. If φ : Wη → Wc is a random oracle, then µφ is (t, qF , qS , ǫ)-
indifferentiable from a random oracle F : {0, 1}∗ → {0, 1}d, with ǫ = (2η/c +
1)q2

t /2cw and t = O(q3
t + qt · κ(qt)), for any qF and qS such that the total

number of compression function calls from the mode of operation queries and
the compression function queries of the distinguisher is at most qt.

Proof. Consider a distinguisher D that makes qS compression function queries
and generates qt compression function calls from its mode of operation queries
and its compression function queries.

It can easily be seen that the view of D is the same in Games G0, G1, and
G2, so p2 = p1 = p0.

Combining Lemma 1 and Lemma 2, we have that |p3 − p2| ≤ (2η/c+1)q2
t /2cw.

It is straightforward to see that p4 = p3. To see this, consider a query x∗

(from either D or R1) to S2. If S2 has seen the query x∗ before, S2 repeats the
answer it gave the first time it was queried on x∗. If x∗ is a new query, then
in G4, S2 responds with the fresh random string OS(x∗). As argued previously
in the proof of Lemma 2, S1 always responds to a new query x∗ with a fresh
random string in Wc. Thus, the view of D is unchanged from G3 to G4, and
p4 = p3.

Summing over all the games, the total advantage of D in distinguishing
between G0 and G4 is at most the claimed (2η/c + 1)q2

t /2cw.
This completes the proof of the theorem.

It follows from our indifferentiability theorem that the MD6 mode of opera-
tion MfQ (specified in [16]) is indifferentiable from a random oracle when fQ is
a random oracle. This result is stated below.

Corollary 1. If fQ : Wn−q → Wc is a random oracle, the MD6 mode of op-
eration MfQ is (t, qF , qS , ǫ)-indifferentiable from a random oracle F : {0, 1}∗ →
{0, 1}d, with ǫ = 9q2

t /2cw and t = O(q3
t), for any qF and qS such that the total

number of compression function calls from the mode of operation queries and the
compression function queries of the distinguisher is at most qt.

Proof. It can easily be seen that the MD6 mode of operation M satisfies the
required properties. In particular, for MD6 ζ is the function χd which returns the
last d bits of its input. The root(x) predicate corresponds to testing whether the
z bit of x is 1. It is straightforward to define a message reconstruction algorithm
ρ for MD6 that runs in time κ(qt) = O(qt).

Remark 2. The distinguishing probability ǫ and simulator running time t stated
above follow directly from Theorem 2.

However, for MD6 specifically, we can easily get a tighter bound on ǫ because
each compression function input has a unique node identifier, consisting of a tree
level and index. Therefore, for a given compression function input y, in any other
compression function input x, there is at most one (not η/c = 4) compression
function output that could cause y to be a child of x. Thus, in bounding the
probability of bad events for MD6, we can replace all instances of η/c with 1
and get ǫ = Pr[Bad] ≤ 2q2

t /2cw.
Similarly, the presence of unique node identifiers in MD6 gives us a tighter

bound on the running time t of the simulator. By maintaining its previously seen
queries in sorted order (sorted by node identifier), the simulator can run in time
O(q2

t) instead of O(q3
t).

5 Conclusion

We have shown that the (reduced) compression function χcw(π(Q‖x)) of MD6
is indifferentiable from a fixed-input-length random oracle when π is a random
permutation. We have also shown that any tree-based mode of operation with
certain properties is indifferentiable from a variable-input-length random oracle
when applied to a compression function that is a fixed-input-length random ora-
cle. As a consequence of this result, the MD6 mode of operation is indifferentiable
from a random oracle. Combined, these results imply that the design of MD6
has no stuctural weaknesses, such as “extension attacks”, and that MD6 can
be plugged into any application proven secure assuming a variable-input-length
random oracle to obtain a scheme secure in a (fixed-length) random permutation
model.

References

1. J.-P. Aumasson and W. Meier. Nonrandomness observed on a reduced version of
the compression function with 18 rounds in about 217 operations.

2. M. Bellare and T. Ristenpart. Multi-property-preserving hash domain extension
and the EMD transform. In X. Lai and K. Chen, editors, Advances in Cryptology

– ASIACRYPT ’06, number 4284 in LNCS, pages 299–314. Springer, 2006.
3. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for de-

signing efficient protocols. In ACM Conference on Computer and Communications

Security, pages 62–73, 1993.
4. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge functions,

May 2007. http://www.csrc.nist.gov/pki/HashWorkshop/Public Comments/2007
May.html.

5. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. On the indifferentiability
of the sponge construction. In Proc. Eurocrypt 2008, volume 4965 of LNCS, pages
181–197. Springer, 2008.

6. F. Chabaud and A. Joux. Differential collisions of SHA-0 . In Advances in

Cryptology – CRYPTO ’98, number 1462 in LNCS, pages 56–71. Springer, 1998.
7. D. Chang, S. Lee, M. Nandi, and M. Yung. Indifferentiable security analysis of

popular hash functions with prefix-free padding. In ASIACRYPT, pages 283–298,
2006.

8. J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard revisited:
How to construct a hash function. In Advances in Cryptology – CRYPTO ’05,
number 3621 in LNCS, pages 430–448. Springer, 2005.

9. C. Y. Crutchfield. Security proofs for the MD6 hash function
mode of operation. Master’s thesis, MIT EECS Department, 2008.
http://groups.csail.mit.edu/cis/theses/crutchfield-masters-thesis.pdf.

10. I. Dinur and A. Shamir. Cube attack on a reduced version of the compression
function with 15 rounds.

11. Y. Dodis, K. Pietrzak, and P. Puniya. A new mode of operation for block ciphers
and length-preserving MACs. In N. P. Smart, editor, EUROCRYPT, volume 4965
of Lecture Notes in Computer Science, pages 198–219. Springer, 2008.

12. U. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In Proc. TCC

’04, volume 2951 of LNCS, pages 21–39. Springer, Feb. 2004.
13. N. I. of Standards and Technology. Announcing request for candi-

date algorithm nominations for a new cryptographic hash algorithm (sha-
3) family. Federal Register Notices, 72(212):62212–62220, Nov. 2 2007.
http://csrc.nist.gov/groups/ST/hash/documents/FR Notice Nov07.pdf.

14. N. I. of Standards and Technology. Announcing the development of new hash
algorithm(s) for the revision of federal information processing standard (fips) 1802,
secure hash standard. Federal Register Notices, 72(14):2861–2863, Jan. 23 2007.
http://csrc.nist.gov/groups/ST/hash/documents/FR Notice Jan07.pdf.

15. R. L. Rivest. Slides from invited talk at Crypto ’08, 2008.
16. R. L. Rivest, B. Agre, D. V. Bailey, C. Crutchfield, Y. Dodis, K. E. Fleming,

A. Khan, J. Krishnamurthy, Y. Lin, L. Reyzin, E. Shen, J. Sukha, D. Sutherland,
E. Tromer, and Y. L. Yin. The MD6 hash function: A proposal to NIST for SHA-3,
2008.

17. X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the hash functions
MD4 and RIPEMD. In Proc. Eurocrypt 2005, number 3494 in LNCS, pages 1– 18.
Springer, 2005.

18. X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full SHA-1. In Proc.

CRYPTO 2005, number 3621 in LNCS, pages 17–36. Springer, 2005.
19. X. Wang and H. Yu. How to break MD5 and other hash functions. In Proc.

EUROCRYPT 2005, number 3494 in LNCS, pages 19–35. Springer, 2005.
20. X. Wang, H. Yu, and Y. L. Yin. Efficient collision search attacks on SHA-0. In

Proc. CRYPTO 2005, number 3621 in LNCS, pages 1–16. Springer, 2005.
21. H. Yu and X. Wang. Multicollision attack on the compression functions of MD4

and 3-pass HAVAL. IACR eprint, 2007. http://eprint.iacr.org/2007/085/.

