
Message Authentication, Revisited

Yevgeniy Dodis∗ Eike Kiltz† Krzysztof Pietrzak‡ Daniel Wichs§

July 11, 2012

Abstract

Traditionally, symmetric-key message authentication codes (MACs) are easily built from pseu-
dorandom functions (PRFs). In this work we propose a wide variety of other approaches to
building efficient MACs, without going through a PRF first. In particular, unlike deterministic
PRF-based MACs, where each message has a unique valid tag, we give a number of probabilistic
MAC constructions from various other primitives/assumptions. Our main results are summarized
as follows:

• We show several new probabilistic MAC constructions from a variety of general assumptions,
including CCA-secure encryption, Hash Proof Systems and key-homomorphic weak PRFs.
By instantiating these frameworks under concrete number theoretic assumptions, we get
several schemes which are more efficient than just using a state-of-the-art PRF instantiation
under the corresponding assumption. For example, we obtain elegant DDH-based MACs
with much shorter keys than the quadratic-sized key of the Naor-Reingold PRF. We also
show that several natural (probabilistic) digital signature schemes, such as those by Boneh-
Boyen and Waters, can be significantly optimized when “downgraded” into a MAC, both in
terms of their efficiency (e.g., no bilinear pairings) and security assumptions (e.g., standard
CDH instead of bilinear CDH).

• For probabilistic MACs, unlike deterministic ones, unforgeability against a chosen message
attack (uf-cma) alone does not imply security if the adversary can additionally make ver-
ification queries (uf-cmva). In fact, a number of elegant constructions, such as recently
constructed MACs based on Learning Parity with Noise (LPN) and some of the new MACs
constructed in this work, are uf-cma but not not uf-cmva secure by themselves. We give an
efficient generic transformation from any uf-cma secure MAC which is “message-hiding” into
a uf-cmva secure MAC. Applied to LPN-based MACs, this resolves the main open problem
of Kiltz et al. from Eurocrypt’11.

• While all our new MAC constructions immediately give efficient actively secure, two-round
symmetric-key identification schemes, we also show a very simple, three-round actively se-
cure identification protocol from any weak PRF. In particular, the resulting protocol is much
more efficient than the trivial approach of building a regular PRF from a weak PRF.

∗New York University. Partially supported by NSF Grants CNS-1065134, CNS-1065288, CNS-1017471, CNS-
0831299 and Google Faculty Award. E-mail: dodis@cs.nyu.edu

†Faculty of Mathematics, Horst Görtz Institute for IT Security, Ruhr-Universität Bochum. Supported by Sofja
Kovalevskaja Award of the Alexander von Humboldt Foundation, funded by the German Federal Ministry for Education
and Research. E-mail: eike.kiltz@ruhr-uni-bochum.de

‡IST Austria. E-mail: pietrzak@ist.ac.at Supported by the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) / ERC Starting Grant (259668-PSPC)

§IBM T. J. Watson Research Center. E-mail: wichs@cs.nyu.edu

1

1 Introduction

Message Authentication Codes (MACs) are one of the most fundamental primitives in cryptography.
Historically, a vast majority of MAC constructions are based on pseudorandom functions (PRFs).1

In particular, since a PRF with large output domain is also a MAC, most research on symmetric-
key authentication concentrated on designing and improving various PRF constructions. This is
done either using very fast heuristic constructions, such as block-cipher based PRFs (e.g., CBC-
MAC [5, 8] or HMAC [4, 3]), or using elegant, but slower number-theoretic constructions, such as
the Naor-Reingold (NR) PRF [38]. The former have the speed advantage, but cannot be reduced to
simple number-theoretic hardness assumptions (such as the DDH assumption for NR-PRF), and are
not friendly to efficient zero-knowledge proofs about authenticated messages and/or their tags, which
are needed in some important applications, such as compact e-cash [12]. On the other hand, the
latter are comparably inefficient, due to their reliance on number theory. Somewhat surprisingly, the
inefficiency of existing number-theoretic PRFs goes beyond what one would expect by the mere fact
that “symmetric-key” operations are replaced by the more expensive “public-key” operations. For
example, when building a PRF based on discrete-log-type of assumptions, such as DDH, one would
naturally expect that the secret key would contain a constant number of group elements/exponents,
and the PRF evaluation should cost at most a constant number of exponentiations. In contrast, state-
of-the art discrete-log-type PRFs either require a key of quadratic size in the security parameter (e.g.
the NR PRF [38]), or a number of exponentiations linear in the security parameter (e.g., tree-type
PRFs based on the GGM transform [23] applied to some discrete-log-type pseudorandom generator),
or are based on exotic and relatively untested assumptions (e.g., Dodis-Yampolskiy PRF [20] based
on the so called “q-DDHI” assumption). In particular, to the best of our knowledge, prior to this work
it was unknown how to build a MAC (let alone a PRF) based on the classical DDH assumption,
where the secret key consists of a constant number of group elements / exponents and the MAC
evaluation only require a constant number of exponentiations.

Of course, one way to improve such deficiencies of existing “algebraic MACs” would be to improve
the corresponding “algebraic PRF” constructions. However, as the starting point of our work, we
observe that there might exist alternative approaches to building efficient MACs, without going
through a PRF first. For example, MACs only need to be unpredictable, so we might be able to build
efficient MACs from computational assumptions (e.g., CDH rather than DDH), without expensive
transformations from unpredictability-to-pseudorandomness [39]. Alternatively, even when relying
on decisional assumptions (e.g. DDH), MAC constructions are allowed to be probabilistic.2 In
contrast, building a PRF (and, more generally, deterministic MACs) effectively forces one to design
a MAC where there is only one valid tag for each message, which turns out to be a serious limitation
for algebraic constructions.3 For example, it is instructive to look at the corresponding “public-key
domain” of digital signatures, where forcing the scheme to have a unique valid signature appears to be
very hard [37, 36, 11] and, yet, not necessary for most applications of digital signatures. In particular,
prominent digital signature schemes in the standard model4 [17, 11, 44] are all probabilistic. In fact,
such signature schemes trivially give MACs. Of course, such MACs are not necessarily as efficient

1Or block ciphers, which, for the purposes of analysis, are anyway treated as length-preserving PRFs.
2Of course, probabilistic MACs can always be converted to deterministic one using a PRF by replacing the random

coins with the output of the PRF (where the key for the PRF is part of the MAC key, and the input to the PRF is
the message to be authenticated), but recall that we are trying to design MACs while avoiding PRFs!

3The observation that probabilistic MAC might have advantages over the folklore “PRF-is-a-MAC” paradigm is not
new, and goes back to at least Wegman and Carter [45], and several other follow-up works (e.g., [34, 28, 19]). However,
most prior probabilistic MACs were still explicitly based on a PRF or a block cipher.

4In fact, even in the random oracle model there are noticeable advantages. E.g., full domain hash (FDH) signa-
tures [9, 14] have worse exact security than probabilistic FDH signatures [15], while Fiat-Shamir signatures [21] are
inherently probabilistic.

2

as they could be, since they “unnecessarily” support public verification.5 However, the point is that
such trivial signature-based constructions already give a way to build relatively efficient “algebraic
MACs” without building an “algebraic PRF” first.

Yet another motivation to building probabilistic MAC comes from the desire of building efficient
MACs (and, more generally, symmetric-key authentication protocols) from the Learning Parity with
Noise [27, 29, 31, 32] (LPN) assumption. This very simple assumption states that one cannot
recover a random vector x from any polynomial number of noisy parities (a, 〈a, x〉 + e), where a
is a random vector and e is small random noise, and typically leads to very simple and efficient
schemes [22, 1, 43, 27, 29, 31, 32]. However, the critical dependence on random errors makes it very
hard to design deterministic primitives, such as PRFs, from the LPN assumption. Interestingly, this
ambitious challenge was very recently overcome for a more complicated Learning With Errors (LWE)
assumption by [2], who build a PRF based on a new (but natural) variant of the LWE assumption.
However, the resulting PRF has the same deficiencies (e.g., large secret key) as the NR-PRF, and
is much less efficient than the direct probabilistic MAC constructions from LPN/LWE assumptions
recently obtained by [32].

1.1 Our Results

Motivated by the above considerations, in this work we initiate a systematic study of different
methods for building efficient probabilistic MACs from a variety assumptions, both general and
specific, without going through the PRF route. Our results can be summarized as follows:

Dealing with Verification Queries and Other Transformations. The desired notion of secu-
rity for probabilistic MACs is called “unforgeability against chosen message and verification attack”
uf-cmva, where an attacker can arbitrarily interleave tagging queries (also called signing queries) and
verification queries. For deterministic MACs, where every message corresponds to exactly one pos-
sible tag, this notion is equivalent to just considering a weaker notion called uf-cma (unforgeability
under chosen message attack) where the attacker can only make tagging queries but no verification
queries. This is because, in the deterministic case, the answers to verification queries are completely
predictable to an attacker: for any message for which a tagging query was already made the attacker
knows the unique tag on which the verification oracle will answer affirmatively, and for any new
message finding such a tag would be equivalent to breaking security without the help of the verifi-
cation oracle. Unfortunately, as discussed by [6], the situation is more complicated for the case of
probabilistic MACs where the attacker might potentially get additional information by modifying a
valid tag of some message and seeing if this modified tag is still valid for the same message. In fact,
some important MAC constructions, such as the already mentioned “basic” LPN-based construction
of [32], suffer from such attacks and are only uf-cma, but not uf-cmva secure.

In Section 3 we give several general transformations for probabilistic MACs. The most important
one, illustrated in Figure 1, efficiently turns a uf-cma secure (i.e. unforgeable without verification
queries) MAC which is “message hiding” (a property we call ind-cma) into a uf-cmva secure (i.e.
unforgeable with verification queries) MAC. This transformation is very efficient, requiring just a
small amount of extra randomness and one invocation of a pairwise independent hash function with
fairly short output.

This transformation solves the main open problem left in Kiltz et al. [32], who construct uf-cmva

MACs from the learning parity with noise (LPN) problem. We remark that [32] already implicitly give
an uf-cma to uf-cmva transformation, but it is quite inefficient, requiring the evaluation of a pairwise-
independent permutation over the entire tag of a uf-cma secure MAC. We list the two constructions

5Indeed, one of our results, described shortly, will be about “optimizing” such signature-based constructions.

3

of uf-cma and suf-cma LPN based MACs from [32] in Section 4.5. Using our transformations, we get
uf-cmva secure MACs with basically the same efficiency as these constructions.

Our second transformation extends the domain of an ind-cma secure MAC. A well known tech-
nique to extend the domain of PRFs is the “hash then encrypt” approach where one applies an
almost universal hash function to the (long) input before applying the PRF. This approach fails for
MACs, but we show that it works if the MAC is ind-cma secure. A similar observation has been
already made by Bellare [3] for “privacy preserving” MACs.

The last transformation, which actually does nothing except possibly restricting the message
domain, states that a MAC which is only selectively secure is also fully secure, albeit with quite a
large loss in security. Such a transformation was already proposed in the context of identity based
encryption [10], and used implicitly in the construction of LPN based MACs in [32].

New Constructions of Probabilistic MACs. In Section 4, we present a wide variety of new
MAC constructions.

First, we show how to build an efficient MAC from any chosen ciphertext attack (CCA) secure
(symmetric- or public-key) encryption. At first glance, using CCA-secure encryption seems like a
complete “overkill” for building MACs. In fact, in the symmetric-key setting most CCA-secure
encryption schemes are actually built from MACs; e.g., via the encrypt-then-MAC paradigm [7].
However, if we are interested in obtaining number-theoretic/algebraic MACs using this approach, we
would start with public-key CCA-secure encryption, such as Cramer-Shoup encryption [18] or many
of the subsequent schemes (e.g. [35, 25, 26, 42, 24]). Quite remarkably, CCA-secure encryption has
received so much attention lately, and the state-of-the-art constructions are so optimized by now, that
the MACs resulting from our simple transformation appear to be better, at least in certain criteria,
than the existing PRF constructions from the same assumptions. For example, by using any state-of-
the-art DDH-based scheme, such as those by [18, 35, 25], we immediately obtain a probabilistic DDH-
based MAC where both the secret key and the tag are of constant size, and the tagging/verification
each take a constant number of exponentiations. As we mentioned, no such DDH-based MAC was
known prior to our work. In fact, several recent constructions built efficient CCA-secure encryption
schemes from computational assumptions, such as CDH and factoring [13, 26, 24]. Although those
schemes are less efficient than the corresponding schemes based on decisional assumptions, they
appear to be more efficient than (or at least comparable with) the best known PRF constructions
from the same assumption. For example, the best factoring-based PRF of [40] has a quadratic-size
secret key, while our construction based on the Hofheinz-Kiltz [26] CCA-encryption from factoring
would have a linear-size (constant number of group elements) secret key.

Second, we give an efficient MAC construction from any Hash Proof Systems (HPS) [18]. Hash
Proof Systems were originally defined [18] for the purpose of building CCA-secure public-key en-
cryption schemes, but have found many other applications since. Here we continue this trend and
give a direct MAC construction from HPS, which is more optimized than building a CCA-secure
encryption from HPS, and then applying our prior transformation above.

Third, we give a simple construction of probabilistic MACs from any key-homomorphic weak PRF
(hwPRF). Recall, a weak PRF [38] is a weakening of a regular PRF, where the attacker can only see
the PRF value at random points. This weakening might result in much more efficient instantiations
for a variety of number-theoretic assumptions. For example, under the DDH assumption, the basic
modulo exponentiation fk(m) = mk is already a weak PRF, while the regular NR-PRF from DDH
is much less efficient. We say that such a weak PRF fk(m) is key homomorphic (over appropriate
algebraic domain and range) if fak1+bk2(m) = a · fk1(m) + b · fk2(m). (For example, the DDH-based
weak PRF above clearly has this property.) We actually give two probabilistic MACs from any
hwPRF. Our basic MAC is very simple and efficient, but only achieves so called selective security,

4

meaning that the attacker has to commit to the message to be forged before the start of the attack. It
is somewhat reminiscent (in terms of its design and proof technique, but not in any formal way) to the
Boneh-Boyen selectively-secure signature scheme [11]. In contrast, our second construction borrows
the ideas from (fully secure) Waters signature scheme [44], and builds a less efficient standard MAC
from any hwPRF. Interestingly, both constructions are only uf-cma secure, but do not appear to be
uf-cmva-secure. Luckily, our MACs are easily seen to be “message-hiding” (i.e., ind-cma-secure), so
we can apply our efficient generic transformation to argue full uf-cmva security for both resulting
constructions.

Our final MAC constructions are from signature schemes. Recall, any signature scheme trivially
gives a MAC which “unnecessarily” supports public verification. This suggests that such construc-
tions might be subject to significant optimizations when “downgraded” into a MAC, both in terms
of efficiency and the underlying security assumption. Indeed, we show that this is true for the
(selectively-secure) Boneh-Boyen [11] signature scheme, and the (fully-secure) Waters [44] signature
schemes. For example, as signatures, both schemes require a bilinear group with a pairing, and are
based on the CDH assumption in such a group. We make a simple observation that when public
verification is no longer required, no pairing computations are needed, and standard (non-bilinear)
groups can be used. However, in doing so we can only prove (selective or full) security under the
gap-Diffie-Hellman assumption, which states that CDH is still hard even given the DDH oracle.
Luckily, we show how to apply the “twinning” technique of Cash et al. [13] to get efficient MAC
variants of both schemes which can be proven secure under the standard CDH assumption.

Symmetric-Key Authentication Protocols. While all our new MAC constructions immedi-
ately give efficient actively secure, two-round symmetric-key identification schemes, in Section 5.2
we also show a very simple, three-round actively secure identification protocol from any weak PRF
(wPRF). In particular, the resulting protocol is much more efficient than the trivial approach of
building a regular PRF from a weak PRF [38], and then doing the standard PRF-based authenti-
cation. Given that all our prior MAC constructions required some algebraic structure (which was
indeed one of our motivations), we find a general (and very efficient) construction of actively secure
authentication protocols from any wPRF to be very interesting.

Our protocol could be viewed as an abstraction of the LPN-based actively secure authentication
protocol of Katz and Shin [30], which in turn consists of a parallel repetition of the HB+ protocol of
Juels and Weiss [29]. Although the LPN based setting introduces some complications due to handling
of the errors, the high level of our protocol and the security proof abstracts away the corresponding
proofs from [30, 29]. In fact, we could relax the notion of wPRF slightly to allow for probabilistic
computation with approximate correctness, so that the protocol of [30] will become a special case of
our wPRF-based protocol.

2 Definitions

2.1 Notation

We denote the set of integers modulo an integer q ≥ 1 by Zq. For a positive integer k, [k] denotes
the set {1, . . . , k}; [0] is the empty set. For a set X , x←R X denotes sampling x from X according
to the uniform distribution.

2.2 Message Authentication Codes

A message authentication code MAC = {KG,TAG,VRFY} is a triple of algorithms with associated
key space K, message spaceM, and tag space T .

5

• Key Generation. The probabilistic key-generation algorithm k ← KG(1λ) takes as input a secu-
rity parameter λ ∈ N (in unary) and outputs a secret key k ∈ K.

• Tagging. The probabilistic authentication algorithm σ ← TAGk(m) takes as input a secret key
k ∈ K and a message m ∈M and outputs an authentication tag σ ∈ T .

• Verification. The deterministic verification algorithm VRFYk(m,σ) takes as input a secret key
k ∈ K, a message m ∈ M and a tag σ ∈ T and outputs a decision: {accept, reject}.

If the TAG algorithm is deterministic one does not have to explicitly define VRFY, since it is already
defined by the TAG algorithm as VRFYk(m,σ) = accept iff TAGk(m) = σ. We say that MAC has
completeness error α if for all m ∈ M and λ ∈ N,

Pr[VRFYk(m,σ) = reject ; k ← KG(1λ) , σ ← TAGk(m)] ≤ α.

Security. The standard security notion for a randomized MAC is unforgeability under chosen
message and chosen verification queries attack (uf-cmva). We denote by Advuf-cmva

MAC (A, λ,QT , QV),
the advantage of the adversary A in forging a message for a random key k ← KG(1λ), where A can
make QT queries to TAGk(·) and QV queries to VRFYk(·, ·). Formally this is the probability that the
following experiment outputs 1.

Experiment Expuf-cmva
MAC

(A, λ,QT , QV)
k ← KG(1λ)

Invoke ATAGk(·),VRFYk(·,·) who can make up to QT queries to TAGk(·) and QV queries to VRFYk(·, ·).
Output 1 if A made a query (m∗, σ∗) to VRFYk(·, ·) where

1. VRFYk(m
∗, σ) = accept

2. A did not already make the query m∗ to TAGk(·)
Output 0 otherwise.

We also define a weaker notion of selective security, captured by the experiment Expsuf-cmva
MAC

, which
is defined in the same way as above with the only difference that A has to specify to the target
message m∗ (that causes the experiment to output 1) ahead of time, before making any queries to
its oracles.

Definition 2.1 ((Selective) unforgeability under chosen message (& verification) attack.)
A MAC is (t,QT , QV , ε)-uf-cmva secure if for any A running in time t we have Pr[Expuf-cmva

MAC (A, λ,QT , QV) =
1] ≤ ε. It is (t,QT , ε)-uf-cma secure if it is (t,QT , 1, ε)-uf-cmva-secure. That is, uf-cma security does
not allow the adversary to make any verification queries except for the one forgery attempt. We also
define the selective security notions suf-cma and suf-cmva security analogously by considering the
experiment Expsuf-cmva(MAC).

In the next section we show a simple generic transformation which turns any uf-cma-secure
MAC into a uf-cmva-secure MAC. For this transformation to work, we need one extra non-standard
property for MAC to hold, namely that tags computationally “hide” the message. A similar notion
called “privacy preserving MACs” was considered by Bellare [3]. His notion is for deterministic
MACs, whereas our notion can only be achieved for probabilistic MACs.

Definition 2.2 (ind-cma: indistinguishability under chosen message attack) A MAC is (t,QT , ε)-
ind-cma secure if no adversary A running in time t can distinguish tags for chosen messages from
tags for a fixed message, say 0, i.e.

∣

∣

∣

∣

Pr
k←KG(1λ)

[ATAGk(·)(1λ) = 1]− Pr
k←KG(1λ)

[ATAGk(0)(1λ) = 1]

∣

∣

∣

∣

≤ ε .

6

Here TAGk(0) is an oracle which ignores its input, and outputs a tag for some fixed message 0 using
key K. Note that a MAC that is secure against ind-cma adversaries must be probabilistic, otherwise
A can trivially distinguish by queries on two different messages m 6= m′, and checking if the tags she
receives are identical, which will be the case iff the oracle implements TAGk(0).

2.3 Diffie-Hellman Assumptions

We now recall a number of standard Diffie-Hellman assumptions. Let (Fλ)λ∈N be a family of groups,
where each λ ∈ N describes a group G of prime-order p and a generator g of G. We say that the
Computational Diffie-Diffie Hellman (CDH) problem is (ǫ, t)-hard if for all adversaries A that run in
time t,

Pr
x,y←RZp

[A(1λ, gx, gy) = gxy] ≤ ε.

We say that the Gap Computational Diffie-Diffie Hellman (Gap-CDH) problem is (ǫ,Q, t)-hard if for
all adversaries A that run in time t, and make at most Q queries to their oracle, we have

Pr
x,y←RZp

[AOx(·,·)(1λ, gx, gy) = gxy] ≤ ε,

where Ox(·, ·) is a DDH oracle with fixed basis gx, i.e., Ox(Y,Z) = 1 iff Y x = Z. We say Gap-CDH
is just (ǫ, t)-hard if it is (ǫ,Q = t, t)-hard. We say that the Decisonal Diffie-Diffie Hellman (DDH)
problem is (ǫ, t)-hard if for all adversaries A that run in time t,

∣

∣

∣

∣

Pr
x,y←RZp

[A(1λ, gx, gy , gxy) = 1]− Pr
x,y,z←RZp

[A(1λ, gx, gy, gz) = 1]

∣

∣

∣

∣

≤ ε.

3 Transformations for MACs

In this section we give some general transformations for MACs as discussed in the introduction. We
start with a few definitions.

Definition 3.1 (almost universal and pairwise independent hash function) A keyed func-
tion h : {0, 1}ℓ × {0, 1}m → {0, 1}n is δ-almost universal if any two distinct inputs collide with
probability at most δ over the choice of the random key, i.e., for all x 6= x′ ∈ {0, 1}m

Pr
k←R{0,1}ℓ

[hk(x) = hk(x
′)] ≤ δ.

Moreover, h as above is pairwise independent if it behaves like a uniformly random function on any
two inputs, i.e., for all x 6= x′ ∈ {0, 1}m and y, y′ ∈ {0, 1}n

Pr
k←R{0,1}ℓ

[hk(x) = y ∧ hk(x
′) = y′] = 2−2n.

A pairwise independent h as above is 2−n-universal. The reason to consider the weak universality
notion is that it’s already sufficient for the domain extension shown in Section 3.2, while requiring
much shorter keys, especially when the input domain is very large (the key for h is linear in the
output, not the input, see the Proposition below.) For our transformation in Section 3.1 we need
pairwise independence, but there the domain is quite small (namely the tag length of the underlying
MAC.)

Proposition 3.2 There exists a 2−n+1-universal hash function as above with key length ℓ = 4(n +
logm). Furthermore, there exits a pairwise independent hash function with key length ℓ = 2max{m,n}.

7

We next state a simple lemma which we’ll use in the proof of Theorem 3.4 below. For some
µ,Q ∈ N, consider the following game. We first pick a pairwise independent hash function h : T →
{0, 1}µ. Now an adversary A can adaptively choose values z1, . . . , zQ ∈ T . After choosing zi we pick
a uniformly random bi ∈ {0, 1}µ and give her xi := bi ⊕ h(zi). Finally, the adversary outputs a pair
(z, x) which must be different from all (zi, xi). She wins if b = bi for some i where b := x⊕ h(z).

Lemma 3.3 The advantage of any (even computationally unbounded) adversary in winning the
above game is ≤ Q/2µ.

Proof. For the proof it is convenient to think of a different sampling procedure (but which gives the
same distribution) for the xi, zi where h is chosen at the very end. When we get zi, we answer with a
uniformly random xi. At the end we get (z, x) from the adversary, and only know we sample h which
defines the bi’s as bi = h(zi)⊕xi. From the adversaries perspective, this is exactly the same game as
before, in both cases the xi are uniformly random and independent of the zi and h. The adversary
wins if for any i, bi⊕h(zi) = b⊕h(z). As h is pairwise independent and independent of the zi’s (the h is
sampled uniformly, and the zi’s are fixed before h is sampled), we have Pr[bi⊕h(zi) = b⊕h(z)] = 2−µ

for any i, taking the union bound over all i = 1, . . . , Q we get an upper bound of Q/2µ as stated in
the Lemma.

3.1 From One to Multiple Verification Queries: uf-cma + ind-cma ⇒ uf-cmva

m ‖ TAG(K, .) z

h

$ b ⊕ h(z) ⊕ b

h m

⊕ ‖ VRFY(K, .) accept, reject

Figure 1: TAG and VRFY with key (k, h), message m and randomness b.

Let µ = µ(λ) denote a statistical security parameter and letH be a family of pairwise independent
hash functions h : T → {0, 1}µ. From MAC = {KG,TAG,VRFY} with key space K, message space
M×{0, 1}µ, and tag space T we construct MAC = {KG,TAG,VRFY} with key space K×H, message
spaceM, and tag space T × {0, 1}µ as follows.
• Key Generation. Algorithm KG(1λ) runs k ← KG(1λ) and samples a pairwise independent hash

function h←H with h : T → {0, 1}µ. It outputs (k, h) as the secret key.
• Tagging. The tagging algorithm TAG(k,h)(m) samples b←R {0, 1}µ and runs z ← TAGk(m‖b).

It returns (z, h(z) ⊕ b) as the tag.
• Verification. The verification algorithm VRFY(k,h)(m, (z, y)) computes b = y⊕h(z) and outputs

VRFYk(m‖b, z).

Theorem 3.4 (uf-cma + ind-cma ⇒ uf-cmva) For any t,QT , QV ∈ N, ε > 0, if MAC is
• (t,QT , ε)-uf-cma secure (unforgeable with no verification queries)
• (t,QT , ε)-ind-cma secure (indistinguishable)

then MAC is (t′, QT , QV , ε
′)-uf-cmva secure (unforgeable with verification queries) where

t′ ≈ t ε′ = 2QV ε+ 2QV QT /2
µ.

Proof. Let A be a (t,QT , QV) adversary who breaks the uf-cmva security of MAC with advantage
δ. From this adversary we will construct an adversary A who either
(*) breaks the (t′, QT , δ/2 − 2QTQV /2

µ)-ind-cma security of MAC, or

8

(**) breaks the (t′, QT , δ/2QV)-uf-cma security of MAC.
This implies the Theorem as follows: assume that δ > ε′ = 2QV ε + 2QV QT /2

µ. If (**) holds, then
A breaks the uf-cma security of MAC with advantage δ/2QV > ǫ. If (*) holds, A breaks the ind-cma

security with advantage δ/2−QTQV /2
µ > 2QV ε+2QV QT /2µ

2 −QTQV /2
µ = QV ε ≥ ε.

Consider the experiment Exp0 = Expuf-cmva

MAC
(A, λ,QT , QV). Below we define two events αC , αFF

for Exp0 (α = 1 denotes that the event occurred). With δC = PrExp0
[αC = 1] and δFF =

PrExp0
[αFF = 1] we denote the probability of the respective events. Let Q = QT + QV be the

total number of queries, and let b1, . . . , bQ be the randomness associated with this queries (for a
TAG(m) query, b is the randomness sampled for this query. For a VRFY((z, y),m) query, we have
b = h(z) ⊕ y.) The events are defined as

αC : The event αC (C for Collision) occurs if A finds a forgery (m, (z, y)), and this forgery uses
randomness b that has already been used. (I.e., if the tth query is the first accepting VRFY

query, then bt = bj for some j < t.)

αFF : The event αFF (FF for Fresh Forgery) occurs if A finds a forgery (m, (z, y)), and this forgery
is “fresh” in the sense that the b contained in this forgery is different from the b’s in all the
queries so far.

As the forgery must occur either before or after a collision

δC + δFF = δ (1)

thus either δC ≥ δ/2 or δFF ≥ δ/2, by the two claims below, the first case implies (*) and the second
implies (**).

Claim 3.5 MAC is not (t,QT , δC −QTQV /2
µ)-ind-cma secure.

Proof. We define an adversary A (who will use A as a black-box) and consider an ind-cma attack
on MAC, i.e., AO has access to an oracle O and must tell if it implements TAGk(·) or TAGk(0) (cf.
Definition 2.2).

AO first samples h and then invokes A. AO answers tag queries m by A with (z, h(z) ⊕ b) where
b is random and z = O(m‖b). It answers all verification queries with reject. Finally AO outputs 1 if
any of the Q b’s in the experiment collide, and 0 otherwise.

If the oracle implements O(·) = TAGk(·), then AO simulated the Expuf-cmva

MAC
(A, λ,QT , QV) experi-

ment, except that all verification queries were rejected. This difference does not affect the probability
of the event αC , as at the point where an adversary gets accept as response to a verification query,
the outcome of the event αC is determined. Moreover, if αC = 1, then AO outputs 1, so

Pr[AO → 1 ; O(·) = TAGk(·)] ≥ δC . (2)

On the other hand, if O(·) = TAGk(0) then

Pr[AO → 1 ; O(·) = TAGk(0)] ≤ QTQV /2
µ. (3)

To see this, first note that the values that A gets as answer to a tag query m is (z, h(z) ⊕ b) where
z = TAGk(0). In particular, z is independent of b (as the TAGk(0) oracle ignores its input m‖b.)

Assume that A′ makes only one forgery attempt, i.e., QV = 1. Then the above attack is a special
case of the game considered in Lemma 3.3 above, and AO outputs 1 iff it wins the game, which by
Lemma 3.3 happens with probability QT /2

µ. For the case QV > 1 get an upper bound QV QT /2
µ by

a simple reduction which uses the fact that AO answers all verification queries with reject: assume

9

AO outputs 1 when interacting with A′ with probability > QV QT /2
µ. Let A′′ be like A′, but where

A′′ suppresses all but a randomly chosen one of the QV verification queries (think of A′′ as running A′

but only forwarding one of the verification queries, answering the other with reject.) If AO interacts
with A′′, it will output 1 with at least 1/QV the probability as when interacting with A′, that is,
> QT /2

µ, which again contradicts Lemma 3.3.
Summing up, by eq.(2) and (3) AO has advantage δC −QTQV /2

µ in the ind-cma experiment.

Claim 3.6 MAC is not (t,QT , δFF /QV)-uf-cma secure.

Proof. We construct an adversary A who breaks the uf-cma security ofMAC with advantage δFF /QV

as follows. AO samples a random hash function h and a random index j ∈ {1, . . . , QV }. It then
invokes A, answering all verification queries with reject, and tag queries m with (z, h(z)⊕ b) where b
is random and z = O(m‖b). When A makes the jth verification query (m, (z, y)) and b := y⊕h(z) if
fresh, AO outputs (m‖b, z) as its forgery attempt. If in this uf-cmva attack the event αFF holds, and
the first accepting verification query is the jth one, then this is a valid and fresh forgery for MAC

with key k. This event has probability at δFF/QV .

3.2 Domain Extension for ind-cma MACs

A simple way to extend the domain of a pseudorandom function from n to m > n bits is the “hash
then encrypt” paradigm, where one first hashes the m bit input down to n bits using an ǫ-universal
function, before applying the PRF. Unfortunately this simple trick does not work for (deterministic
or probabilistic) MACs. Informally, the reason is that the output of a MAC does not “hide” its
input, and thus an adversary can potentially learn the key of the hash function used (once she knows
the key, she can find collisions for g which allows to break the MAC.) Below we show that, not
surprisingly, for MACs where we explicitly require that they hide their input, as captured by the
ind-cma notion, extending the domain using a universal hash function is safe.

Proposition 3.7 (Domain Extension for ind-cma Secure MACs) Consider MAC = {KG,TAG,
VRFY} with (small) message space M = {0, 1}n, and let MAC′ = {KG′,TAG′,VRFY′} for large mes-
sage space {0, 1}m be derived from MAC by first hashing the message using an β-universal hash
function g : {0, 1}ℓ × {0, 1}m → {0, 1}n. (By Proposition 3.2 we can set β = 2−n+1 using only a
short key ℓ = 4(n+ logm).) If MAC is

(t,Q, ε) − uf-cma secure and (t,Q, ε) − ind-cma secure

then, for any Q′ ≤ Q, MAC′ is

(1) (t′, Q′, 2ε+Q′β)− uf-cma secure and (2) (t′, Q′, 2ε) − ind-cma secure

where t′ ≈ t can be derived from the proof.

Proof. We begin with point (2), proving (t′, Q, 2ε)-ind-cma security of MAC′. Let A′ be a (t′, Q′)
adversary against the ind-cma security of MAC′. Firstly, by ind-cma security of MAC, the attacker A′

has advantage at most ε in distinguishing oracle access to TAG′(k,g)(·) = TAGk(g(·)) from oracle access

to TAGk(0). Secondly, by another application of the ind-cma security of MAC, the attacker A′ has
advantage at most ε in distinguishing oracle access to TAGk(0) from TAG′k,g(0) = TAGk(g(0)) (which
returns random tags of the message g(0)). Therefore the overall advantage of A′ in distinguishing
TAG′(k,g)(·) and TAG′(k,g)(0) is at most 2ε as we wanted to show.

We will now prove point (1). Consider a (t′, Q) uf-cma adversary A′ against MAC′. In an uf-cma

attack the adversary A
′TAG′

(k,g)(·) makes Q queries m1, . . . ,mQ and one forgery attempt (m,σ) (wlog.

10

we assume m is different from all mi.) Let δC be the probability that the hash of the forgery message
m collides with the hash of some mi, i.e., δC = Pr[∃mi : g(mi) = g(m)], we claim that

Claim 3.8 δC −Qβ ≤ ε.

Proof. [of Claim] To prove the claim, we show that every uf-cma adversary A′ as above who after
Q queries to TAG′(k,g)(·) = TAGk(g(·)) outputs a colliding forgery attempt with probability δC (note
that we don’t care here if this attempt is actually successful or not) can be used to break the ind-cma

security of MAC with probability δC −Qβ, by assumption this probability must be ≤ ε.

Now, assume for contradiction A′ breaks the uf-cma security of MAC′ with advantage β > 2ε+Qβ.
By the above Claim at least β − δC > ε of the successful forgeries (m,σ) of A′ are “fresh”, i.e.,
g(m) 6= g(mi) for all Q tag-queries mi made so far. Thus we also get a forgery (g(m), σ) for the
underlying MAC MAC with advantage > ε, contradicting its (t,Q, ε) ind-cma security.

3.3 From Selective to Full Security: suf-cma ⇒ uf-cmva

In this section we make the simple observation, that every selectively chosen-message secure MAC
is also a chosen-message secure MAC, as we can simply guess the forgery. This guessing will loose a
factor 2µ in security if the domain is {0, 1}µ.

Proposition 3.9 (From selective to full security) Consider a MAC MAC = {KG,TAG,VRFY}
with domain {0, 1}µ. If MAC is (t,Q, ε)− suf-cma secure, then it is (t,Q, ε2µ)− uf-cma secure.

Proof. Assume for contradiction that there exists an adversary A′ who breaks the uf-cma security
of MAC with advantage δ > ε2µ. From this adversary we get an adversary A of basically the same
size, who breaks the suf-cma security of MAC with advantage > ε (contradicting the assumed suf-cma

security) as follows. ATAGK(·) in the suf-cma experiment first samples a random m ← {0, 1}µ, then
ATAGK(·) invokes A′, forwarding its queries to the oracle TAGK(·). Finally, A′ outputs a forgery
attempt (m′, σ′), if m = m′, ATAGK(·) outputs this as its forgery (otherwise A gives up.) A will
output a valid forgery if A′ does (which happens with probability δ), and moreover the initial guess
m on m′ was correct (which happens with probability 2−µ). So A has advantage δ/2µ > ε.

Remark 3.10 (Security Loss and Domain Extension) The security loss from the above trans-
formation is 2µ for MACs with message space {0, 1}µ. In order to keep the security loss small, we
are better off if we start with a MAC that has a small domain, or if we artificailly restrict its domain
to the first µ bits. Once we get a fully secure MAC on a small domain, we can always apply the
domain-extension trick from Section 3.2 (using β = 2−µ+1) to expand this domain back up. Using
both transformations together, we can turn any MAC that is (t,Q, ε)-suf-cma and ind-cma secure
into a (t′, Q′, ε′)-uf-cma and (t′, Q′, ε)-ind-cma secure MAC with the same-size (or arbitrarily larger)
domain and where t′ ≈ t, and ε′ depends on our arbitrary choice of µ as ε′ = ε2µ+1 + Q′/2µ−1.
In particular, if for some super-polynomial t,Q we assume a known corresponding negligible value ε
such that the original MAC is (t,Q, ε)-suf-cma we can set µ = log(1/ε)/2 and the resulting MAC
will be secure in the standard asymptotic sense - i.e., (t′, Q′, ǫ′)-uf-cma for all polynomial t′, Q′, 1/ǫ′.

4 Constructions of MACs

In this section we provide a number of MACs from a variety of underlying primitives such as CCA-
secure encryption, hash proof systems [18], homomorphic weak PRFs, and digital signatures. For
concreteness, the constructions obtained from Diffie-Hellman type assumptions are summarized in

11

MAC construction Secret Key k Tag σ on m Security Assumption

MACCS (§4.1) (ω, x, x′, y, k2) ∈ Z
4
p × {0, 1}λ (U,Uω, UxH(U,V1,m)+x′

, Uz · k2) ∈ G
4

uf-cmva DDH

MACHPS (§4.2) (ω, x, x′) ∈ Z
3
p (U,Uω, UxH(U,V1,m)+x′

) ∈ G
3

uf-cmva DDH

MAChwPRF (§4.3) (x, x′) ∈ Z
2
p (U,Uxm+x′

) ∈ G
2

suf-cma DDH

MACWhwPRF (§4.3) (x, x′
0, . . . , x

′
λ) ∈ Z

λ+2
p (U,Ux+

∑
x′

i
mi) ∈ G

2
uf-cma DDH

MACBB (§4.4) (x, x′, y) ∈ Z
3
p (U, gxy · Uxm+x′

) ∈ G
2

suf-cmva gap-CDH

MACTBB (§4.4) (x1, x2, x
′
1, x

′
2, y) ∈ Z

5
p (U, gx1yUx1m+x′

1 , gx2yUx2m+x′

2) ∈ G
3

suf-cmva CDH

MACWaters (§4.4) (x, y, x′
1, . . . , x

′
λ) ∈ Z

λ+2
p (U, gxy · Ux+

∑
x′

i
mi) ∈ G

2
uf-cmva gap-CDH

Table 1: Overview of MAC constructions over prime-order groups. In all protocols, TAGk(m) first
generates U ←R G and derives the rest of σ deterministically from U and k.

MAC construction Key size Tag size Security Assumption

MACLPN (§4.5) Z
2ℓ
2 Z

(ℓ+1)×n
2 suf-cma & ind-cma LPN

MACBilinLPN (§4.5) Z
ℓ×λ
2 Z

(ℓ+1)×n
2 uf-cma & ind-cma LPN

Table 2: Overview of MAC constructions from the LPN problem from [32].

Table 1; the constructions we obtain from the LPN assumption are summarized in Table 2. The
constructions which are only uf-cma or suf-cma secure can be boosted to full cmva-security using the
transformations from Section 3.

4.1 Constructions from CCA-secure Encryption

Definition. A symmetric-key labeled encryption scheme E = (KG,ENC,DEC) is a triple of algo-
rithms:

• k ← KG(λ): generates a key k.

• c← ENCk(m,L): generates an encryption under key k and label L of the message m.

• m = DECk(c, L): decrypts the ciphertext c under key k and label L.

The chosen-ciphertext attack (CCA) security of the scheme E is defined via the following experi-
ment:

Experiment Expcca
E (A, λ,QE , QD, b)

Sample k ← KG(1λ).

Learning Stage 1: Run (L,m0,m1, aux)← AENCk(·,·),DECk(·,·)(1λ).
Challenge: Sample c← ENCk(mb, L).

Learning Stage 2: Run b̃← AENCk(·,·),DECk(·,·)(1λ, c, aux).
Output: If A queries DECk(c, L) in Stage 2, or makes more than QE and QD queries in total to

ENC and DEC respectively, output ⊥. Else output b̃.

Definition 4.1 A symmetric-key labeled encryption scheme E is (t,QE , QD, ε)-CCA secure if for
all A running in time t = t(λ) we have

|Pr[Expcca
E (A, λ,QE , QD, 1) = 1]− Pr[Expcca

E (A, λ,QE , QD, 0) = 1]| ≤ ε(λ).

12

Our Construction. Let E = (KGE,ENC,DEC) be a (t,QE , QD, ε)-CCA secure labeled encryption
scheme Define MAC = (KGMAC,TAG,VRFY) as follows.
• Key Generation. k = (k1, k2)← KGMAC(1

λ) samples k1 ← KGE(1
λ) and k2 ←R {0, 1}λ.

• Tagging. TAG(k1,k2)(m) samples σ ← ENCk1(k2,m), i.e., it encrypts the plaintext k2 using m
as a label.

• Verification. VRFY(k1,k2)(m,σ) output accept iff DECk1(c,m)
?
= k2.

Theorem 4.2 Assume that E is a (t,QE , QD, ε)-CCA secure labeled encryption scheme. Then the
construction MAC above is (t′, QT , QV , ε

′)-uf-cmva secure with t′ ≈ t, QT = QE, QV = QD and
ε′ = QT · ε+ 2−λ.

Proof. Assume there is some A running in time t′ and making QT , QV queries to TAG,VRFY such
that Pr[Expuf-cmva

MAC (A, λ,QT , QV) = 1] ≥ ε′.
Let us define the experiments Expi similarly to Expuf-cmva

MAC with the modification that:

1. The first i queries to TAG(k1,k2)(m) are answered by sampling c ← ENCk1(0,m) with the
plaintext 0 instead of k2. The rest of the queries are answered as before.

2. All queries to VRFY(k1,k2)(m,σ) where σ = c was the output of a previous TAG query with
input m are answered as accept.

Note that Exp0 is equivalent to Expuf-cmva
MAC

by the correctness of the encryption scheme E, which
ensures that modification (2) above does not change any outputs.

We now claim that for all i ∈ [QT], we have

|Pr[Expi−1(A, λ,QT , QV) = 1]− Pr[Expi(A, λ,QT , QV) = 1]| ≤ ε. (4)

Otherwise, we can construct an attacker BENCk1
(·,·),DECk1

(·,·) with running time t ≈ t′, and making
QE = QT , QD = QV encryption/decryption queries and advantage > ε in the CCA game. The
attacker B runs A. It selects k2 ← {0, 1}λ on its own at random, and answers queries for A as
follows:

TAG queries: For the first i− 1 queries with message m, call the encryption oracle with (0,m) and
output the resulting ciphertext. For the ith query with message m, give the values (m0 =
0,m1 = k2, L = m) to the challenger and get back the challenge ciphertext c∗ which is given as
the reply to the query. For the remaining queries with messages m, call the encryption oracle
with (k2,m) and output the resulting ciphertext.

VRFY queries: On any query (m,σ) if m was previously queried to TAG and the output was σ then
output accept. Else use the decryption oracle with (c = σ,L = m) and output accept iff the
reply is k2.

If A ever makes a verification query with a fresh m that was never queries to TAG and the reply is
accept then output 1, else output 0. It’s easy to see that

Pr[Expi−1(A, λ,QT , QV) = 1] = Pr[Expcca
E (B, λ,QT , QV , 0) = 1],

Pr[Expi(A, λ,QT , QV) = 1] = Pr[Expcca
E (B, λ,QT , QV , 1) = 1].

which proves equation 4 must hold.
By the hybrid argument, we therefore have |Pr[Exp0(A, λ,QT , QV) = 1]−Pr[ExpQT

(A, λ,QT , QV) =
1]| ≤ QT · ε. Moreover, in ExpQT

the attacked does not get any information about k2 but only wins

13

if it produces an encryption of k2. Therefore Pr[ExpQT
(A, λ,QT , QV) = 1] ≤ 2−λ. Putting this all

together, we obtain

ε′ ≤ Pr[Expuf-cmva
MAC (A, λ,QT , QV) = 1] ≤ Pr[ExpQT

(A, λ,QT , QV) = 1] +QT · ε ≤ QT · ε+ 2−λ.

This concludes the proof.

Examples. There exists CCA-secure (public-key) encryption schemes from a variety of assump-
tions such as DDH [16, 35, 25], Paillier [18], lattices [42], and factoring [26]. In Table 1 we describe
MACCS, which is MACENC instantiated with Cramer-Shoup encryption [16].

4.2 Constructions from Hash Proof Systems

We now give a more direct construction of a MAC from any hash proof system. We recall the notion
of (labeled) hash proof systems as introduced by Cramer and Shoup [18]. Let C,K be sets and V ⊂ C
a language. In the context of public-key encryption (and viewing a hash proof system as a labeled
key encapsulation mechanism (KEM) with “special algebraic properties”) one may think of C as the
set of all ciphertexts, V ⊂ C as the set of all valid (consistent) ciphertexts, and K as the set of all
symmetric keys. Let Λℓ

k
: C×L → K be a labeled hash function indexed with k ∈ SK and label ℓ ∈ L,

where SK and L are sets. A hash function Λk is projective if there exists a projection µ : SK → PK
such that µ(k) ∈ PK defines the action of Λℓ

k
over the subset V. That is, for every C ∈ V, the value

K = Λℓ
k
(C) is uniquely determined by µ(k), C . In contrast, nothing is guaranteed for C ∈ C \V, and

it may not be possible to compute Λk (C) from µ(k) and C . A projective hash function is universal2
if for all C ,C ∗ ∈ C \ V, ℓ, ℓ∗ ∈ L with ℓ 6= ℓ∗,

(pk ,Λℓ∗

k (C ∗),Λℓ
k (C)) = (pk ,K,Λℓ

k (C)) (5)

(as joint distributions) where in the above pk = µ(k) for k ←R SK and K ←R K.
It is extracting if for all C ∈ C (including valid ones) and ℓ ∈ L,

Λℓ
k
(C) = K (6)

where in the above k ←R SK and K ←R K.
A labeled hash proof system HPS = (Param,Pub,Priv) consists of three algorithms. The ran-

domized algorithm Param(1k) generates parametrized instances of params = (group,K, C,V,PK,
SK,Λ(·) : C → K, µ : SK → PK), where group may contain some additional structural parameters.
The deterministic public evaluation algorithm Pub inputs the projection key pk = µ(k), C ∈ V, a
witness r of the fact that C ∈ V, and a label ℓ ∈ L, and returns K = Λℓ

k
(C). The deterministic

private evaluation algorithm Priv inputs k ∈ SK and returns Λℓ
k
(C), without knowing a witness.

We further assume that µ is efficiently computable and that there are efficient algorithms given for
sampling k ∈ SK, sampling C ∈ V uniformly (or negligibly close to) together with a witness r,
sampling C ∈ C uniformly, and for checking membership in C.

As computational problem we require that the subset membership problem is (ǫ, t)-hard in HPS

which means that for all adversaries B that run in time ≤ t,

∣

∣Pr[B(C,V,C1) = 1]− Pr[B(C,V,C0) = 1]
∣

∣ ≤ ǫ

where C is taken from the output of Param(1k), C1 ←R C and C0 ←R C \ V.

14

Construction. We define a message authentication code MACHPS = {KG,TAG,VRFY} with asso-
ciated key space K = SK, message spaceM = L, and tag space T = C × K as follows.
• Key Generation. The key-generation algorithm KG samples k ←R SK and outputs k.
• Tagging. The probabilistic authentication algorithm TAGk(m) picks C ←R V. It computes

K = Λm
k
(C) ∈ K and outputs σ = (C ,K).

• Verification. The verification algorithm VRFYk(m,σ) parses σ = (C ,K) and outputs accept iff
K = Λm

k
(C).

Note that the construction does not use the public evaluation algorithm Pub of HPS. Both tagging
and verification only use the private evaluation algorithm Priv.

Theorem 4.3 Let HPS be universal2 and extracting. If the subset membership problem is (t, ε)-hard,
then MACHPS is (t′, ε′, QT , QV)-uf-cmva secure with ε′ = QT ε+O(QTQV)/|K| and t′ ≈ t.

Proof. Assume there is some A running in time t′ and making QT , QV queries to TAG,VRFY such
that Pr[Expuf-cmva

MAC
(A, λ,QT , QV) = 1] ≥ ǫ′.

We now define a number of experiments where we change the distribution of the TAG and VRFY

oracles. We remark that whenever we change the TAG oracle we also implicitly adapt the VRFY

oracle such this is outputs accept on m,σ, whenever σ was the output of a previous TAG query with
input m.

Let us define the experiments Expi,j similarly to Expuf-cmva
MAC

with the modification that the first
i− 1 queries to the TAGk(m) oracle are answered with random σ ←R C ×K and all queries from the
i + 1th query on are answered real (i.e., C ←R V,K = Λm

k
(C)), as in Exp. The ith query to the

TAGk(m
∗) oracle and the queries to the VRFYk(m,σ) oracles are defined as follows.

ith TAGk(m
∗) VRFYk(m,σ = (C,K))

Expi,0 real real

Expi,1 C ∗ ←R C,K∗ = Λm∗

k
(C ∗) real

Expi,2 C ∗ ←R C,K∗ = Λm∗

k
(C ∗) reject if C ∈ C \ V

Expi,3 (C ∗,K∗)←R C × K reject if C ∈ C \ V
Expi,4 (C ∗,K∗)←R C × K real

Note that Exp = Exp1,0 and Expi,4 = Expi+1,0.
We claim that for all i ∈ [QT], we have

|Pr[Expi,0(A, λ,QT , QV) = 1]− Pr[Expi,1(A, λ,QT , QV) = 1]| ≤ ǫ. (7)

Otherwise, we can construct an attacker B with running time t ≈ t′ and advantage > ǫ in the subset
memebership experiment. Note that B can simulate the whole experiment by generating k itself.

We claim that for all i ∈ [QT], we have

|Pr[Expi,1(A, λ,QT , QV) = 1]− Pr[Expi,2(A, λ,QT , QV) = 1]| ≤ QV /|K|. (8)

|Pr[Expi,3(A, λ,QT , QV) = 1]− Pr[Expi,4(A, λ,QT , QV) = 1]| ≤ QV /|K|. (9)

To prove (8), we consider the information A learns about k ∈ SK. From all consistent tags σ =
(C,K), A can at most learn the projected key pk = µ(k). This follows by the existance of the
publication evaluation algorithm Pub of HPS. Furthermore, A learns one single inconsistent tag
σ∗ = (C∗,K∗) from the ith query to TAGk(m

∗) where C∗ ←R C \ V and K∗ = Λm∗

k (C∗). Now
consider an inconsistent VRFYk(m,σ = (C,K)) query with (C∗,K∗,m∗) 6= (C,K,m). By the
universal2 property, given the view of A, the probability that A hits the right K that would make

15

VRFY accept in Expi,2 is bounded by 1/|K|, since K is uniform in K). Now (8) follows by a hybrid
argument. The proof of (9) is analogous.

Using the same argument we can duduce from the universal2 property (5) that for all i ∈ [QT],
we have

|Pr[Expi,2(A, λ,QT , QV) = 1]− Pr[Expi,3(A, λ,QT , QV) = 1]| ≤ 1/|K|. (10)

We define Exp∗ as ExpQT+1,0, with the difference that all VRFY queries are answered with reject.
We now claim that

|Pr[ExpQT+1,0(A, λ,QT , QV) = 1]− Pr[Exp∗(A, λ,QT , QV) = 1]| ≤ QV /|K|. (11)

Until A makes the first VRFY query, no information about k is leaked through to the adversary.
Hence, by definition of completeness (6), the probability that a VRFY query accepts the first VRFY
query bounded by 1/|K|. The claim follows by a hybrid argument over QV .

Example. We recall a universal2 HPS by Cramer and Shoup [18], whose hard subset membership
problem is based on the DDH assumption. Let G be a group of prime-order p and let g1, g2 be two
independent generators of G. Define L = Zp, C = G

2 and V = {(gr1, gr2) ⊂ G
2 : r ∈ Zp}. The value

r ∈ Zp is a witness of C ∈ V. Let SK = Z
4
p, PK = G

2, and K = G. For k = (x1, x2, y1, y2) ∈ Z
4
p,

define µ(k) = (gx1
1 gx2

2 , gy11 gy22). This defines the output of Param(1k). For C = (c1, c2) ∈ C and ℓ ∈ L,
define

Λℓ
k (C) := cx1ℓ+y1

1 cx2ℓ+y2
2 . (12)

This defines Priv(k ,C). Given pk = µ(k) = (X1,X2), C ∈ V and a witness r ∈ Zp such that
C = (gr1, g

r
2) public evaluation Pub(pk ,C , r) computes K = Λk (C) as K = (Xℓ

1X2)
r. Correctness

follows by (12) and the definition of µ. This completes the description of HPS. Clearly, under the
DDH assumption, the subset membership problem is hard in HPS. Moreover, this HPS is known to
be universal2 [18] and can be verified to be extracting.

Applying our construction from Theorem 4.3 we get the following MAC which we give in its
equivalent (but more efficient) “explicit rejection” variant. Let G be a group of prime order p and g
be a random generator of G. Let H : G2 ×M → Zp be a (target) collision resistant hash function.
We define a message authentication code MACHPS = {KG,TAG,VRFY} with associated key space
K = Z

3
p, message spaceM, and tag space T = G

3 as follows.
• Key Generation. The key-generation algorithm KG outputs a secret key k = (ω, x, x′)←R Z

3
p.

• Tagging. The probabilistic authentication algorithm TAGk(m) samples U ←R G and outputs

an authentication tag σ = (U, V1, V2) = (U,Uω, Uxℓ+x′
) ∈ G

3, where ℓ = H(U, V1,m).
• Verification. The verification algorithm VRFYk(m,σ) parses σ = (U, V1, V2) ∈ G

3 and outputs
accept iff Aω = V1 and Uxℓ+x′

= V2, where ℓ = H(U, V1,m).

4.3 Construction from Key-Homomorphic Weak-PRFs

Definition 4.4 Let K = K(λ),X = X (λ),Y = Y(λ) and {fk : X 7→ Y}k∈K be a weak PRF. We
say that {fk} is key-homomorphic weak PRF if K,Y are groups with an efficient group operation
(written additively) of prime order q = q(λ) and if for any fixed x ∈ X the function fk(x) is
a group homomorphism of K 7→ Y. In particular, for any k1, k2 ∈ K and a, b ∈ Zq, we have
fa·k1+b·k2(x) = a · fk1(x) + b · fk2(x).

Construction. Let {fk : X 7→ Y}k∈K be a key-homomorphic weak PRF where K,Y are of prime
order q = q(λ). Define MAC = (KG,TAG,VRFY) with key-space K ×K and message-space Zq via:
• Key Generation. KG(1λ) chooses k1, k2 ←R K uniformly at random and outputs k = (k1, k2).

16

• Tagging. TAG(k1,k2)(m) chooses x← X uniformly at random and sets y = fm·k1+k2(x). Output
σ = (x, y).

• Verification. VRFY(k1,k2)(m,σ) parses σ = (x, y) and outputs accept iff fm·k1+k2(x)
?
= y.

Theorem 4.5 Assuming that {fk} is a (t,Q, ε)-weak PRF which is key-homomorphic over groups
K,Y of prime order q = q(λ). Then the above construction is a (t′, Q, ε′)-suf-cma-MAC (selective
unforgeability, no verification queries) with t′ ≈ t and ε′ = ε+ 1/q. It is also (t′, Q, ε)-ind-cma.

Proof. Assume that A runs in time t′ and breaks suf-cma security with probability ε′. First, let us
consider an experiment Exp0 which is defined the same way as the suf-cma experiment Expsuf-cma

MAC

experiment except that, after A specifies the message m∗ on which he will forge, all tagging queries
during the game with query message m are answered by computing x, y = f(m−m∗)k1+k2(x) instead
of computing y as specified. Also the final VRFY query on message m∗ and tag σ = (x, y) is verified

by checking y
?
= fk2(x) instead of as specified. It is easy to see tat Exp0 is actually equivalent to

Expsuf-cma
MAC

just by thinking of the latter game as using k′2 = (m−m∗)k1 + k2 in place of k2. Since
k′2 and k2 are both uniformly random and independent of k1 the experiments are equivalent.

Now, define Exp1 where the tagging queries for messages m 6= m∗ are just answered with values
(x, y) ← X × Y chosen uniformly at random. The final verification query on m∗ is still checked by

y
?
= fk2(x). We claim that |Pr[Exp1(A, λ,Q) = 1] − Pr[Exp0(A, λ,Q) = 1]| ≤ ε. To see this we

construct a reduction B which gets Q challenge values (x1, y1), . . . , (xQ, yQ). It then chooses k2 ← K
at random and runs A who initially specifies the forged message m∗. The reduction B answers tagging
queries using the challenge values (xi, yi) in a clever way: if the ith tagging query is mi, it answers
with (xi, y

′
i) where y′i = (mi −m∗) · yi + fk2(xi). Lastly, it outputs 1 iff A makes a verification query

m∗, (x∗, y∗) with fk2(x
∗) = y∗. Note that if the challenge values a pseudo-random with yi = fk1(xi),

then this perfectly simulates Exp0. Else, if xi, yi are truly random, this perfectly simulates Exp1.
This proves the claimed indistinguishability of Exp1 and Exp0.

Lastly, we claim that Pr[Exp1(A, λ,Q) = 1] ≤ 1/q. This follows since the attacker does not
know anything about k2 during the course of Exp1 and therefore the probability of outputting
any value (x, y) such that fk2(x) = y is at most 1/q. (Recall that for fixed x, the function fk2(x)
is a group homomorphism and so fk2(x) is uniformly random over the choice of k2.) Therefore
ε′ = Pr[Expsuf-cma

MAC
(A, λ,QT)] ≤ 1/q + ε as we wanted to show.

To show that ind-cma security follows from weak PRF security, we build a reduction that chooses
k1 ← K and gets Q tuples (x1, y1), . . . , (xQ, yQ). It then answers the ith tagging query mi with
mi · fk1(xi) + yi. If the tuples (xi, yi) are pseduorandom with yi = fk2(xi) then this corresponds to
the correct tagging procedure. Else, if the tuples are truly random, this corresponds to answering
tagging queries randomly. Therefore an attacker with advantage ε in the ind-cma game can be used
to win the weak PRF game with probability ε.

DDH example. To instantiate the above MAC, we can take some DDH group G of prime order
q. Let K = Zq, X = G, Y = G (which we now write multiplicatively) and define fk(x) = xk. This
is a weak PRF by the DDH assumption. Furthermore, it is key-homomorphic with fa·k1+b·k2(x) =
(fk1(x))

a(fk2(x))
b. Therefore, the above construction gives us the suf-cma MAC MAChwPRF for

messages m ∈ Zq, defined by TAGk1,k2(m) := (g, h) with g ← G and h := gk1·m+k2 . See Table 1.

Full security. As an alternative to the transformation from Section 3.3, we now sketch how to
use Waters’ argument [44] to obtain a (full) uf-cma-secure MAC from any homomorphic weak PRF.
Let {fk : X 7→ Y}k∈K be a key-homomorphic weak PRF where K,Y are of prime order q = q(λ).
Define MACWhwPRF = (KG,TAG,VRFY) with key-space Kλ+1 and message-space {0, 1}λ via:

17

• KG(1λ): Choose k0, . . . , kλ ←R K uniformly at random, output k = (k0, . . . , kλ).
• TAGk(m): Choose x←R X uniformly at random and set y = fk0+

∑
kimi

(x). Output σ = (x, y).

• VRFYk(m,σ): Parse σ = (x, y) and outpt accept iff fk0+
∑

kimi
(x)

?
= y.

The resulting MACWhwPRF can be proved to be uf-cma and ind-cma-secure. A DDH-based example
instantiation is contained in Table 1.

Verification Queries. Since our suf-cma/uf-cma-secure MACs are also ind-cma-secure, we can
apply the transformation on Theorem 3.4 to make them suf-cmva/uf-cmva-secure at a very small
extra cost.

4.4 Constructions from Signatures

Clearly, an uf-cma-secure digital signature scheme direcly implies an uf-cmva-secure MAC. In certain
cases we can obtain improved efficeincy, as we demonstrate with a MAC derived from Boneh-Boyen
signatures [11]. Concretely, we can instantiate the MAC in any prime-order group, no bilinear maps
are needed. We define a message authentication code MACBB = {KG,TAG,VRFY} with associated
key space K = G× Z

2
p, message spaceM = Zp, and tag space T = G

2 as follows.
• Key Generation. The key-generation algorithm KG outputs a secret key k = (x, x′, y)←R Z

3
p.

• Tagging. The probabilistic authentication algorithm TAGk(m) samples U ←R G and outputs

an authentication tag σ = (U, gxy · Uxm+x′
) ∈ G

2.
• Verification. The verification algorithm VRFYk(m,σ) parses σ = (U, V) ∈ G

2 and outputs
accept iff gxy · Uxm+x′

= V .

Theorem 4.6 If the gap-CDH assumption is (t,QT + QV , ε)-hard, then MACBB is (t′, ε′, QT , QV)
suf-cmva secure with ε′ = ε and t′ ≈ t.

Proof. Assume there exists an adversary A that (t′, ε′, QT , QV)-breaks the suf-cmva security of
MACBB. We build an adverssary B that (t,QT +QV , ε)-breakes the gap-CDH assumption. Given an
instance of the gap-CDH problem gx, gy, and the target message m∗ obtained by A in the suf-cmva

experiment, B picks a random a ∈ Zp and implicitly defines the secret key k = (x, x′, y), where

x′ = −m∗x+ a.

Note that with this definitions of the secret key k, a properly distributed MAC on message m is of
the form

σ = (U, V) = (gr, gxy+r(x(m−m∗)+a)), (13)

for r ←R Zp. Adversary A is executed and its TAGk(·) and VRFYk(·) queries are answered by B as
follows.

• TAGk(m) for m 6= m∗. B picks random r′ ∈ Zp and implicitly defines r = −y/(m − m∗) +
r′ mod p. A MAC tag is computed as σ = ((gy)1/(m−m

∗)gr
′
, (gx)r

′(m−m∗)gr
′
), which has the

same distribution as (13).

• VRFYk(m,σ) for m 6= m∗. Assume σ = (U, V) is of the form (U, V) = (gr, gxy+r(x(m−m∗)+a)+z)
which we rewrite as (gr

′+y/(m−m∗), g−ya/(m−m
∗)+xr′(m−m∗)+ar′+z) by substituting r = −y/(m−

m∗)+ r′. B has to verify if z = 0. From σ = (U, V), B can compute (using the given values gx,
gy, gr, a)

(U ′, V ′) = (gr
′

, gxr
′+z),

so z = 0 iff (g, gx, gr
′
, gxr

′+z) is a DDH tuple which can be checked with the DDH oracle Ox(·, ·).

18

• VRFYk(m
∗, σ). A valid tag for message m∗ is of the form σ = (U, V) = (gr, gxy+a)) from which

the wanted Diffie-Hellman key gxy can be computed by B.

This gives a perfect simulation of the suf-cmva experiment and the bounds on ε and t follow.

The above construction is only secure under the gap-CDH assumption. We now sketch how to
apply the twinning technique [13] to obtain a MAC secure under the standard CDH assumption.
We define a message authentication code MACTBB = {KG,TAG,VRFY} with associated key space
K = Z

5
p, message spaceM = Zp, and tag space T = G

3 as follows.
• Key Generation. The key-generation algorithm KG outputs a secret key k = (x1, x

′
1, x2, x

′
2, y)←R

Z
5
p.

• Tagging. The probabilistic authentication algorithm TAGk(m) picks U ←R G and outputs an

authentication tag σ = (U, V1 = gx1yUx1m+x′
1 , V2 = gx2yUx2m+x′

2) ∈ G
3.

• Verification. The verification algorithm VRFYk(m,σ) parses σ = (U, V1, V2) and outputs accept
iff gx1yUx1m+x′

1 = V1 and gx2yUx2m+x′
2 = V2.

Theorem 4.7 If the CDH problem is (t, ε)-hard, then MAC is (t′, ε′, QT , QV) suf-cmva secure with
ε′ = ε+O((QT +QV)/p) and t′ ≈ t.

Proof. (Sketch) We only give a brief idea of the proof, as it is quite similar to the proof of Theorem
4.6. We say that the Gap Twin-CDH problem is (ε, t,QG)-hard if for all adversaries A that run in
time t,

Pr
x1,x2,y←RZp

[AOx1,x2 (·,·)(1λ, gx1 , gx2 , gy) = gx1y] ≤ ε,

where A makes maximal QG queries to the Twin DDH oracle O with fixed basis gx1 , gx2 , i.e.,
Ox1,x2(R,Z1, Z2) = 1 iff Rx1 = Z1 and Rx2 = Z2. If the CDH assumption is (t, ε)-hard, then the
Twin Gap CDH problem is (t, ε+O(QG)/p,QG)-hard [13].

Now the proof of suf-cmva security of MACTBB under the Twin Gap CDH assumption is the same
as the proof of Theorem 4.6.

We remark that MACBB and MACTBB are only selectively secure (suf-cmva) MACs. Even though
this is sufficient for obtaining man-in-the-middle secure authentication protocols, to obtain a fully
secure MAC MACWaters, one can update the constructions using Waters’ hash function [44]. The
drawback is that the secret key then contains λ many elements in Zp and that the security reduction
is not tight anymore. We remark that it is also possible to build slightly more efficient suf-cmva-secure
MACs from the (Gap) q-Diffie-Hellman inversion problems.

4.5 Constructions from the LPN assumption

In this section we review the suf-cma and uf-cma-secure MACs constructions implicitly given in [32,
Section 4]. To both constructions can apply the transformations from Secton 3 to obtain efficient
uf-cmva-secure MACs.

The LPNℓ,τ assumption in dimension ℓ ∈ N and Bernoulli paramater 0 < τ ≤ 1/2 holds, if for
fixed x←R Z

ℓ
2,

(rTi , r
T
i · x+ ei) ≈c (r

T
i ,ui),

where for 1 ≤ i ≤ poly(ℓ), ri ←R Z
ℓ
2 and ei ∈ Z2 is sampled according to the Bernoulli distribution

with parameter τ .

First construction (suf-cma). Let n denote the number of repetitions, τ the parameter of the
Bernoulli distribution, and τ ′ := 1/4 + τ/2 controls the correctness error.

19

We define a message authentication code MACLPN = {KG,TAG,VRFY} with associated key space

K = Z
2ℓ
2 , and tag space T = Z

(ℓ+1)n
2 . The message space is defined asM = {m ∈ Z

2ℓ
2 : hw(m) = ℓ},

where hw(·) denotes the hamming weight. In other words, the messages must have hamming-weight
ℓ.
• Key Generation. The key-generation algorithm KG outputs a secret key a vector x←R Z

2ℓ
2 .

• Tagging. The probabilistic authentication algorithm TAGx(m) samplesR←R Z
ℓ×n
2 and outputs

an authentication tag σ = (R,RT · x↓m + e), where e ∈ Z
n
2 is sampled according the Bernoulli

distribution with parameter τ and x↓m ∈ Z
ℓ
2 is the vector obtained from x by deleting all

entries where mi = 0.
• Verification. The verification algorithm VRFYx(m, σ) parses σ = (R, z) ∈ Z

ℓ×n
2 ×Zn

2 and outputs
accept iff |RT · x↓m − z| ≤ τ ′n.

Concretly, [32, Th. 4] shows (implicitly)6 that MACLPN has 2−O(n) completeness error and is suf-cma

and ind-cma-secure under the LPNℓ,τ assumption in dimension ≈ ℓ and Bernoulli paramter τ .

Second construction (uf-cma). We define a message authentication code MACBilinLPN = {KG,
TAG,VRFY} with associated key space K = Z

ℓ×λ
2 , message spaceM = Z

λ
2 , and tag space T = Z

(ℓ+1)n
2

as follows.
• Key Generation. The key-generation algorithm KG chooses a secret key a matrix X ←R Z

ℓ×λ
2

and x0 ←R Z
ℓ
2 and outputs (X,x0).

• Tagging. The probabilistic authentication algorithm TAGX(m) samples R ←R Z
ℓ×n
2 and out-

puts an authentication tag σ = (R,RT · (X ·m+ x0) + e), where e ∈ Z
n
2 is sampled according

the Bernoulli distribution with parameter τ .
• Verification. The verification algorithm VRFYX(m, σ) parses σ = (R, z) ∈ Z

ℓ×n
2 × Z

n
2 and

outputs accept iff |RT · (X ·m+ x0)− z| ≤ τ ′n.
[32, Th. 5] shows that MACBilinLPN is uf-cma and ind-cma-secure under the LPNℓ,τ assumption. We
remark that MACBilinLPN can also be viewed as an instantiation of MACWhwPRF of Section 4.3 when
generalizing the construction to randomized weak PRFs and using fx(R) = RTx + e which is a
randomized weak PRF under LPN.

5 Symmetric Authentication Protocols

In this section we show how to directly build symmetric-key authentication protocols from any
weak PRF, without relying on an intermediate MAC or PRF. But first we recall the definitions of
authentication protocols, and make some definitions supporting our construction.

5.1 Definitions of Authentication Protocols

An authentication protocol Π is an interactive protocol executed between a Tag T and a reader
R, both PPT algorithms. Both hold a secret K (generated using a key-generation algorithm KG

executed on the security parameter λ in unary) that has been shared in an initial phase. After the
execution of the authentication protocol, R outputs either accept or reject. We say that the protocol
has completeness error α if for all λ ∈ N, all secret keys K generated by KG(1λ), the honestly
executed protocol returns reject with probability at most α. We now define different security notions
of an authentication protocol.

6[32] give a direct construction of a MAC that is suf-cmva secure. MACLPN is the underlying MAC that can be
proved only suf-cma secure.

20

MAC 2-round Symmetric authentication

uuf-cma (⇐ suf-cma⇐ uf-cma) security against active attacks
uuf-cmva (⇐ suf-cmva⇐ uf-cmva) security against man-in-the-middle attacks

Figure 2: Security relations between MACs and resulting 2-round authentication protocols.

Passive attacks. An authentication protocol is secure against passive attacks, if there exists no
PPT adversary A that can make the reader R return accept with non-negligible probability after
(passively) observing any number of interactions between reader and tag.

Active attacks. A stronger notion for authentication protocols is security against active attacks.
Here the adversary A runs in two stages. First, she can interact with the honest tag a polynomial
number of times (with concurrent executions allowed). In the second phase A interacts with the
reader only, and wins if the reader returns accept. Here we only give the adversary one shot to
convince the verifier.7 An authentication protocol is (t, q, ε)-secure against active adversaries if
every PPT A, running in time at most t and making q queries to the honest reader, has probability
at most ε to win the above game.

Man-in-the-middle attacks. The strongest standard security notion for authentication protocols
is security against man-in-the-middle (MIM) attacks. Here the adversary can initially interact (con-
currently) with any number of tags and – unlike in an active attacks – also readers. The adversary
gets to learn the reader’s accept/reject decisions.

From MAC to symmetric authentication. It is well known that a MAC immediately implies
a two-round (challenge-and-response) authentication protocol Π as follows. The reader R first sends
a random challenge c ←R M to the tag T . Next, the tag answers with σ = TAGk(c), which can be
verified by R running VRFYk(c, σ).

Formally, in order to achieve security against active attacks, the MAC only needs to be universally
unforgeable against chosen message (and no verification) attacks, denoted uuf-cma. This means that
after the end of the chosen message attacks (with no verification queries), it should be hard to produce
a valid tag for a random message c ∈ M. Clearly, selective security suf-cma implies uuf-cma security,
whenever the message space is exponentially large. Thus, all our MAC constructions (even those
which are selectively secure) are enough to yield two-round actively secure authentication protocols.

Moreover, if the MAC is also uuf-cmva secure against verification queries, the resulting authen-
tication protocol is easily seen secure against MIM attacks. Once again, uuf-cmva security is clearly
implied by suf-cmva security. Thus, since all our MACs are either directly secure against verification
queries, or can be made such via our generic transformation in Theorem 3.4 (by virtue of being
ind-cma secure), all our MAC constructions imply two-round MIM secure symmetric authentication
protocols.

Table 2 shows the security relations between MACs and the resulting 2-round authentication
protocols.

5.2 Three-Round Authentication from Any Weak PRF

In this section we show an elegant construction of actively secure authentication protocols based on
any weak pseudorandom function (wPRF). Notice, wPRFs are much weaker primitives than regular

7By using a hybrid argument one can show that this implies security even if the adversary can interact in k ≥ 1
independent instances concurrently (and wins if the verifier accepts in at least one instance). The use of the hybrid
argument looses a factor of k in the security reduction.

21

PRFs. In particular, unlike regular PRFs, it is not known how to efficiently build a MAC using a
weak PRFs, without using some inefficient tree-based construction [23], or relying on some additional
properties, such as our MAC construction from key-homomorphic weak PRFs in Section 4.3.

Our authentication protocol will use any wPRF family F and any weak Almost XOR-Universal
(wAXU) family H (whose definition is given below). As we will see shortly, we could set either
H = F , or build H unconditionally.

Let K = K(λ),X = X (λ),Y = Y(λ) be some spaces. Without loss of generality, we assume
that the “range” Y forms an additive group (e.g., if Y = {0, 1}v, we can use the XOR operation,
explaining the name).

Definition 5.1 (wAXU Hash Functions) A family H of keyed hash functions {fk : X 7→ Y}k∈K
is called (t, ρ)-wAXU hash family, if for any attacker B(x1, x2) running in time at most t and
outputting some value ∆ ∈ Y, we have Prk←K,x1,x2←X [h(x1)− h(x2) = B(x1, x2)] ≤ ρ. When t =∞,
we simply say that H is ρ-wAXU.

If, instead, we have that for any x1 6= x2 ∈ X and any ∆ ∈ Y, we have Prk←K[h(x1)− h(x2) =
∆] ≤ ρ, then H is called ρ-AXU. When ρ = 1/|Y|, we say that H is (perfectly) AXU.

We notice that ρ-AXU family is also (ρ + 2−u)-wAXU family, since the AXU definition allows
the (non-uniform) attacker to select x1 6= x2 and then hardwire ∆, instead of getting random x1, x2
(equal with probability 2−u) and then producing ∆ in some bounded time t. However, in contrast
to regular AXU property, we can see that any (t, q, ε)-wPRF family is also (t′ ≈ t, ρ)-wAXU where
ρ = 1/|X | + 1/|Y| + ε, since no B can win the wAXU game against a truly random function with
probability above (1/|X |+1/|Y|). In particular, having some attacker B contradicting the (t′ ≈ t, ρ)-
wAXU of our wPRF family, will immediately imply a distinguisher telling apart evaluations of hk on
two random points x1, x2 from evaluations of a random function on these two points, by subtracting
the two outputs and testing if the difference is equal to B(x1, x2).

In fact, wAXU (and regular AXU) hash functions can be easily constructed unconditionally. For
example, when X = {0, 1}u and Y = {0, 1}v, where u ≥ v, the function hk(x) = [x ·k]v is (2−u+2−v)-
wAXU, where x and k are interpreted as elements of finite field GF [2u], x · y is field multiplication,
and [b]v denotes the v least significant bits of b. Indeed, as long as x1 6= x2 (which happens with
probability 2−u), the value [(x1 − x2)k]v is uniform in {0, 1}v. While the above family has large key
length |k| = u, using standard polynomial hash [33], one can also get a (2−u + (1 + ε)2−v)-wAXU
family with key length O(log(1/ε) + v).

Our Protocol. We now state our authentication protocol Π using any wPRF family F = {fk1 : X1 7→
Y}k1∈K1 and any weak Almost XOR-Universal (wAXU) family H = {hk2 : X2 7→ Y}k2∈K2 . (Recall,
as explained above, we could set either H = F , or build H unconditionally.)

The key generation algorithm KG(1λ) selects random k1 ← K1, k2 ← K2 and outputs k = (k1, k2).
Following this, the three round protocol between a Tag T (k) and a reader R(k) is defined below:
• T → R: choose random r ∈ X1 and send r to R.
• R → T : choose random x ∈ X2 and send x to T .
• T → R: compute z = fk1(r) + hk2(x) and send z to R.
• R: accept if and only if z

?
= fk1(r) + hk2(x).

Theorem 5.2 Assuming that F = {fk1} is a (t,Q, ε)-wPRF and H = {hk2} is (t, ρ)-wAXU. Then
the above authentication protocol is (t′, Q, ε′)-secure against active adversaries, with t′ = t/2 and
ε′ =

√
ε+ ρ.

In particular, setting F = H and X1 = X2 = X , we get ε′ =
√

2ε+ 1
|X | +

1
|Y| .

22

Proof. Assume that A runs in time t′ and breaks the active security of Π with probability ε′. Let
Exp0 be the original active security experiment, and p0 = ε′ be A’s success probability in Exp0.

We define Exp1 to be the following experiment. We complete the run of A as in Exp0. In
particular, in the second impersonation stage A sends some message r∗ to R, gets random challenge
x1, responds with z∗1 , and wins if z∗1

?
= fk1(r

∗) + hk2(x1). Namely,

p0
def
= Pr[z∗1 = fk1(r

∗) + hk2(x1)]

We now rewind A to the point right after it sent r∗, and then send a fresh random challenge x2
to A. A then responds with z∗2 , and we say that A won if and only if A succeeded in both runs:
z∗1 = fk1(r

∗) + hk2(x1) and z∗2 = fk1(r
∗) + hk2(x2). Let

p1
def
= Pr[z∗1 = fk1(r

∗) + hk2(x1) and z∗2 = fk1(r
∗) + hk2(x2)]

be the probability that A won in the new experiment Exp1. We claim that p1 ≥ p20 > (ε′)2. Indeed,
for a given set of coins of A and T during the first stage, which we denote by α, let p0(α) be the
probability that A wins in Exp0, taken only over the choice of random challenge x1. Then p0 is the
expectation of p0(α) over α. Similarly, let p1(α) be the probability that A wins in Exp1, taken only
over the choice of random challenges x1, x2. Clearly, p1 is the expectation of p1(α) over α, but also
for any fixed α, we have p1(α) = p0(α)

2. Hence, p1 = Eα[p1(α)] = Eα[p0(α)
2] ≥ (Eα[p0(α)])

2 = p20.

We now define Exp2 to be the same experiment as Exp1, except we no longer test that z∗1
?
=

fk1(r
∗)+hk2(x1) and z∗2

?
= fk1(r

∗)+hk2(x2), but only test that the difference between these equations

holds: hk2(x1)− hk2(x2)
?
= z∗1 − z∗2 . Let p2 be the probability that A wins in Exp2:

p2
def
= Pr[hk2(x1)− hk2(x2)

?
= z∗1 − z∗2]

Clearly, p2 ≥ p1, since we test an equality implied by the previous two equalities.
Next, we define the experiment Exp3 to be the same as Exp2 except A no longer needs to send

the value r∗ in the first round, since this value is never used by the challenger anymore. Moreover,

instead of sending two responses z∗1 and z∗2 , we let A send the value ∆
def
= z∗1 − z∗2 . In particular,

the new impersonation stage simply corresponds to the challenger sending two random challenges x1
and x2, and A responding with the value ∆ (derived by running the original A twice to respond to
challenges x1 and x2 on the same r∗, and subtracting those responses from each other). Let p3 be
the probability that A wins in Exp3:

p3
def
= Pr[hk2(x1)− hk2(x2) = ∆]

Clearly, p3 = p2, since we simply changed the names of some variables.
Next, we define the experiment Exp4 to be the same as Exp3 except in the first “learning”

stage the honest tag T does not use the true value fk1(ri) when preparing the i-th response zi =
fk1(ri) + hk2(x

∗
i). Instead, T uses a completely random string yi ← Y by setting zi = yi + hk2(x

∗
i).

Let p4 be the probability that A wins in Exp3. We claim that p4 ≥ p3 − ε, by the wPRF security of
F . Indeed, all we did was replacing the value of fk1 on random points ri with a random string yi.

And since the winning condition check hk2(x1)−hk2(x2)
?
= ∆ no longer involves fk1 , we can test it in

the wPRF reduction by having the distinguisher pick its own k2 and check if A won the experiment.
Finally, we notice that A is not getting any useful information from T in Exp4, since the values

zi = yi + hk2(x
∗
i) are completely random and independent of k2. So A can simply simulate the first

stage by itself. Hence, we can define the final experiment Exp5 where there is only the second stage,
where A gets random challenges x1, x2 and has to produce a value ∆. As before, A wins this game if

23

hk2(x1) − hk2(x2) = ∆. Clearly, p5 = p4. However, the experiment Exp5 is precisely the execution
of the wAXU experiment with the following attacker B running in time at most 2t′ = t. B simulates
the first stage of A by simply returning random values to A, and then runs A twice on the same r∗

and two fresh challenges x1, x2, and then outputs ∆ = z∗1 − z∗2 . By the wAXU security of H, we get
that p5 ≤ ρ, which means that

ρ ≥ p5 = p4 ≥ p3 − ε = p2 − ε ≥ p1 − ε ≥ p20 − ε = (ε′)2 − ε

completing the proof that ε′ ≤ √ρ+ ε.

Example. To instantiate the above authentication protocol, we can take some DDH group G of
prime order q. Let K = K1 = K2 = Zq, X = X1 = X2 = G, Y = G (which we now write
multiplicatively). For notational convenience, let us denore k1 = a, k2 = b, r = g, and define
fa(g) := ga, hb(x) := xb so that F is a wPRF by DDH, and H = F is wAXU by DDH as well. We
get the following very simple DDH-based protocol with secret key k = (a, b).
• T → R: choose random g ∈ G and send g to R.
• R → T : choose random x ∈ G and send x to T .
• T → R: compute z = gaxb ∈ G and send z to R.
• R: accept if and only if z

?
= gaxb.

It is interesting to compare the above actively secure authentication protocol with Okamoto’s
public-key authentication protocol based on the discrete log assumption [41]. On the one hand,
Okamoto’s scheme is based on a weaker assumption and works in the public-key setting. On the other
hand, our DDH-based protocol is more efficient. Our verifier only has to perform two exponentiations,
while Okamoto’s verifier needs to do three exponentiations. Also, our last flow z contains one group
element, while Okamoto’s protocol contains two exponents, which is likely going to be longer.

Acknowledgements

We thank Elette Boyle for valuable comments on an earlier draft, and Abhishek Banerjee, Chris
Peikert, and Alon Rosen for finding a mistake in an earlier version of the paper.

References

[1] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In Shai Halevi, editor, Advances
in Cryptology – CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages 595–
618. Springer, August 2009. 3

[2] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In
EUROCRYPT, pages 228–245, 2012. 3

[3] Mihir Bellare. New proofs for NMAC and HMAC: Security without collision-resistance. In
Cynthia Dwork, editor, Advances in Cryptology – CRYPTO 2006, volume 4117 of Lecture Notes
in Computer Science, pages 602–619. Springer, August 2006. 2, 4, 6

[4] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message authenti-
cation. In Neal Koblitz, editor, Advances in Cryptology – CRYPTO’96, volume 1109 of Lecture
Notes in Computer Science, pages 1–15. Springer, August 1996. 2

24

[5] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom functions revisited: The
cascade construction and its concrete security. In 37th Annual Symposium on Foundations of
Computer Science, pages 514–523. IEEE Computer Society Press, October 1996. 2

[6] Mihir Bellare, Oded Goldreich, and Anton Mityagin. The power of verification queries in message
authentication and authenticated encryption. Cryptology ePrint Archive, Report 2004/309,
2004. http://eprint.iacr.org/. 3

[7] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In Tatsuaki Okamoto, editor, Advances in
Cryptology – ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages
531–545. Springer, December 2000. 4

[8] Mihir Bellare, Krzysztof Pietrzak, and Phillip Rogaway. Improved security analyses for CBC
MACs. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of
Lecture Notes in Computer Science, pages 527–545. Springer, August 2005. 2

[9] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures: How to sign with
RSA and Rabin. In Ueli M. Maurer, editor, Advances in Cryptology – EUROCRYPT’96, volume
1070 of Lecture Notes in Computer Science, pages 399–416. Springer, May 1996. 2

[10] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption without
random oracles. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology
– EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 223–238.
Springer, May 2004. 4

[11] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin
and Jan Camenisch, editors, Advances in Cryptology – EUROCRYPT 2004, volume 3027 of
Lecture Notes in Computer Science, pages 56–73. Springer, May 2004. 2, 5, 18

[12] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash. In Ronald
Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes
in Computer Science, pages 302–321. Springer, May 2005. 2

[13] David Cash, Eike Kiltz, and Victor Shoup. The twin Diffie-Hellman problem and applications.
In Nigel P. Smart, editor, Advances in Cryptology – EUROCRYPT 2008, volume 4965 of Lecture
Notes in Computer Science, pages 127–145. Springer, April 2008. 4, 5, 19

[14] Jean-Sébastien Coron. On the exact security of full domain hash. In Mihir Bellare, editor,
Advances in Cryptology – CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science,
pages 229–235. Springer, August 2000. 2

[15] Jean-Sébastien Coron. Security proof for partial-domain hash signature schemes. In Moti Yung,
editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in Computer
Science, pages 613–626. Springer, August 2002. 2

[16] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, Advances in Cryptology –
CRYPTO’98, volume 1462 of Lecture Notes in Computer Science, pages 13–25. Springer, August
1998. 14

25

http://eprint.iacr.org/

[17] Ronald Cramer and Victor Shoup. Signature schemes based on the strong RSA assumption. In
ACM CCS 99: 6th Conference on Computer and Communications Security, pages 46–51. ACM
Press, November 1999. 2

[18] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In Lars R. Knudsen, editor, Advances in Cryptology –
EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 45–64. Springer,
April / May 2002. 4, 11, 14, 16

[19] Yevgeniy Dodis and Krzysztof Pietrzak. Improving the security of MACs via randomized mes-
sage preprocessing. In Alex Biryukov, editor, Fast Software Encryption – FSE 2007, volume
4593 of Lecture Notes in Computer Science, pages 414–433. Springer, March 2007. 2

[20] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs
and keys. In Serge Vaudenay, editor, PKC 2005: 8th International Workshop on Theory and
Practice in Public Key Cryptography, volume 3386 of Lecture Notes in Computer Science, pages
416–431. Springer, January 2005. 2

[21] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology – CRYPTO’86,
volume 263 of Lecture Notes in Computer Science, pages 186–194. Springer, August 1987. 2

[22] Henri Gilbert, Matthew J. B. Robshaw, and Yannick Seurin. How to encrypt with the LPN
problem. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna
Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008: 35th International Colloquium on
Automata, Languages and Programming, Part II, volume 5126 of Lecture Notes in Computer
Science, pages 679–690. Springer, July 2008. 3

[23] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J.
ACM, 33(4):792–807, 1986. 2, 22

[24] Kristiyan Haralambiev, Tibor Jager, Eike Kiltz, and Victor Shoup. Simple and efficient public-
key encryption from computational Diffie-Hellman in the standard model. In Phong Q. Nguyen
and David Pointcheval, editors, PKC 2010: 13th International Conference on Theory and Prac-
tice of Public Key Cryptography, volume 6056 of Lecture Notes in Computer Science, pages 1–18.
Springer, May 2010. 4

[25] Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened key encapsulation.
In Alfred Menezes, editor, Advances in Cryptology – CRYPTO 2007, volume 4622 of Lecture
Notes in Computer Science, pages 553–571. Springer, August 2007. 4, 14

[26] Dennis Hofheinz and Eike Kiltz. Practical chosen ciphertext secure encryption from factoring.
In Antoine Joux, editor, Advances in Cryptology – EUROCRYPT 2009, volume 5479 of Lecture
Notes in Computer Science, pages 313–332. Springer, April 2009. 4, 14

[27] Nicholas J. Hopper and Manuel Blum. Secure human identification protocols. In Colin Boyd,
editor, Advances in Cryptology – ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer
Science, pages 52–66. Springer, December 2001. 3

[28] Éliane Jaulmes, Antoine Joux, and Frédéric Valette. On the security of randomized CBC-MAC
beyond the birthday paradox limit: A new construction. In Joan Daemen and Vincent Rijmen,
editors, Fast Software Encryption – FSE 2002, volume 2365 of Lecture Notes in Computer
Science, pages 237–251. Springer, February 2002. 2

26

[29] Ari Juels and Stephen A. Weis. Authenticating pervasive devices with human protocols. In
Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes
in Computer Science, pages 293–308. Springer, August 2005. 3, 5

[30] Jonathan Katz and Ji Sun Shin. Parallel and concurrent security of the HB and HB+ protocols.
In Serge Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture
Notes in Computer Science, pages 73–87. Springer, May / June 2006. 5

[31] Jonathan Katz, Ji Sun Shin, and Adam Smith. Parallel and concurrent security of the HB and
HB+ protocols. Journal of Cryptology, 23(3):402–421, July 2010. 3

[32] Eike Kiltz, Krzysztof Pietrzak, David Cash, Abhishek Jain, and Daniele Venturi. Efficient
authentication from hard learning problems. In Kenneth G. Paterson, editor, Advances in
Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science, pages
7–26. Springer, May 2011. 3, 4, 12, 19, 20

[33] Hugo Krawczyk. LFSR-based hashing and authentication. In Yvo Desmedt, editor, Advances in
Cryptology – CRYPTO’94, volume 839 of Lecture Notes in Computer Science, pages 129–139.
Springer, August 1994. 22

[34] Hugo Krawczyk. New hash functions for message authentication. In Louis C. Guillou and Jean-
Jacques Quisquater, editors, Advances in Cryptology – EUROCRYPT’95, volume 921 of Lecture
Notes in Computer Science, pages 301–310. Springer, May 1995. 2

[35] Kaoru Kurosawa and Yvo Desmedt. A new paradigm of hybrid encryption scheme. In Matthew
Franklin, editor, Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in
Computer Science, pages 426–442. Springer, August 2004. 4, 14

[36] Anna Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH sepa-
ration. In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture
Notes in Computer Science, pages 597–612. Springer, August 2002. 2

[37] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In 40th An-
nual Symposium on Foundations of Computer Science, pages 120–130. IEEE Computer Society
Press, October 1999. 2

[38] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random
functions. In 38th Annual Symposium on Foundations of Computer Science, pages 458–467.
IEEE Computer Society Press, October 1997. 2, 4, 5

[39] Moni Naor and Omer Reingold. From unpredictability to indistinguishability: A simple con-
struction of pseudo-random functions from MACs (extended abstract). In Hugo Krawczyk,
editor, Advances in Cryptology – CRYPTO’98, volume 1462 of Lecture Notes in Computer Sci-
ence, pages 267–282. Springer, August 1998. 2

[40] Moni Naor, Omer Reingold, and Alon Rosen. Pseudo-random functions and factoring (extended
abstract). In 32nd Annual ACM Symposium on Theory of Computing, pages 11–20. ACM Press,
May 2000. 4

[41] Tatsuaki Okamoto. Provably secure and practical identification schemes and corresponding
signature schemes. In Ernest F. Brickell, editor, Advances in Cryptology – CRYPTO’92, volume
740 of Lecture Notes in Computer Science, pages 31–53. Springer, August 1993. 24

27

[42] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended
abstract. In Michael Mitzenmacher, editor, 41st Annual ACM Symposium on Theory of Com-
puting, pages 333–342. ACM Press, May / June 2009. 4, 14

[43] Jacques Stern. A new identification scheme based on syndrome decoding. In Douglas R. Stin-
son, editor, Advances in Cryptology – CRYPTO’93, volume 773 of Lecture Notes in Computer
Science, pages 13–21. Springer, August 1994. 3

[44] Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer,
editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer
Science, pages 114–127. Springer, May 2005. 2, 5, 17, 19

[45] Mark N. Wegman and Larry Carter. New hash functions and their use in authentication and
set equality. Journal of Computer and System Sciences, 22:265–279, 1981. 2

28

	Introduction
	Our Results

	Definitions
	Notation
	Message Authentication Codes
	Diffie-Hellman Assumptions

	Transformations for MACs
	From One to Multiple Verification Queries: uf-cma + ind-cma uf-cmva
	Domain Extension for ind-cma MACs
	From Selective to Full Security: suf-cma uf-cmva

	Constructions of MACs
	Constructions from CCA-secure Encryption
	Constructions from Hash Proof Systems
	Construction from Key-Homomorphic Weak-PRFs
	Constructions from Signatures
	Constructions from the LPN assumption

	Symmetric Authentication Protocols
	Definitions of Authentication Protocols
	Three-Round Authentication from Any Weak PRF

	References

