
Intrusion-Resilient Key Exchange in the

Bounded Retrieval Model

David Cash1, Yan Zong Ding1, Yevgeniy Dodis2, Wenke Lee1, Richard
Lipton1, and Shabsi Walfish2

1 College of Computing, Georgia Institute of Technology
{cdc,ding,wenke,rjl}@cc.gatech.edu

2 Department of Computer Science, New York University
{dodis,walfish}@cs.nyu.edu

Abstract. We construct an intrusion-resilient symmetric-key authenti-
cated key exchange (AKE) protocol in the bounded retrieval model. The
model employs a long shared private key to cope with an active adver-
sary who can repeatedly compromise the user’s machine and perform any
efficient computation on the entire shared key. However, we assume that
the attacker is communication bounded and unable to retrieve too much
information during each successive break-in. In contrast, the users read
only a small portion of the shared key, making the model quite realistic
in situations where storage is much cheaper than bandwidth.

The problem was first studied by Dziembowski [Dzi06a], who con-
structed a secure AKE protocol using random oracles. We present a gen-
eral paradigm for constructing intrusion-resilient AKE protocols in this
model, and show how to instantiate it without random oracles. The main
ingredients of our construction are UC-secure password authenticated
key exchange and tools from the bounded storage model.

1 Introduction

Robust systems for network security must guarantee resilience to compromises
and intrusions. Company laptops, for example, often fall prey to Trojan horse
viruses that users inadvertently “install” when they travel (without the protec-
tion of their company’s firewalls). These viruses can persist until a sysadmin
removes them, and then all credentials stored on the laptop must be replaced. A
malicious virus could even steal a user’s credentials with a key logger and erase
itself, compromising all future use of the credentials until they are replaced.

A natural technique to overcome this problem is to use fresh session keys (or
other credentials) dynamically generated using some secure key exchange pro-
tocol (e.g., Diffie-Hellman) between the parties involved. However, the problem
with this latter approach is that such keys are not authenticated. So it seems
like one must either sacrifice authentication, or lose one’s resilience to com-
promises. The bounded retrieval model, introduced in various related contexts
by [DLL05,CLW06,Dzi06a,Dzi06b],3 provides an elegant and often very realistic

3 These works used slightly different terminology and formalizations. Here we use the
model of [Dzi06a], but borrow the nomenclature of [CLW06], since we feel that it
reflects the general model most accurately.

2

way to resolve the above conflicting requirements. It assumes that storage is
cheap and thus users can afford to store large quantities of data; in our con-
text, this means that users can share very long symmetric keys (which can then
be used to provide authentication). On the other hand, the bandwidth and re-
trieval capacities of both the users and the attacker are limited. For the users,
this means that they only need to access very small portions of their long-term
keys for authentication (and key exchange). On the other hand, we will be more
generous to the attacker. We allow it to repeatedly compromise the user’s ma-
chine for limited periods of time, and, during each such break-in, to perform
any efficient computation on the entire shared key. However, we assume that the
attacker’s bandwidth capacity from the user’s machine is bounded, so that the
attacker is unable to retrieve too much information about the long symmetric
key. Thus, in this model it might be possible to construct intrusion-resilient and,
yet, authenticated key exchange protocols.

Indeed, this was recently done by Dziembowski [Dzi06a] who constructed
such a protocol in the random oracle model. However, it is well known by now
that a protocol proven secure in the random oracle model might not be secure
when the random oracle is replaced by any secure cryptographic hash function
[CGH04]. Therefore, an efficient construction without a random oracle is desired.

Our Main Result. We resolve the above open problem and construct an
efficient intrusion-resilient authenticated key exchange (AKE) protocol in the
bounded retrieval model. In fact, our contribution consists of two parts. First,
we present a general paradigm for constructing such intrusion-resilient proto-
cols, and, second, we then show how to instantiate our paradigm without ran-
dom oracles. At a high level, our general paradigm first performs what we call a
Weak Key Exchange (WKE), which only guarantees that the session keys output
by the participants Alice and Bob are individually unpredictable (and equal in
case the attacker is passive). After this stage, Alice and Bob use their “weak”
keys as passwords for a Password Authenticated Key Exchange (PAK) proto-
col [BM93,BPR00,BMP00,GL01]. Such protocols are typically used in settings
where the shared secrets are not uniformly distributed and have low entropy,
and the goal is to construct AKE protocols resistant to offline dictionary attacks.
Interestingly, in our setting the secrets will actually have high-entropy, and, with
little effort, can even be made individually random. However, the utility of PAK

protocols for our purposes comes from their implicit authentication guarantee:
a party A with a password pw will only arrive at a shared session key only when
interacting with a party B holding the same password pw. Thus, in our setting
PAK is used to guarantee that Alice and Bob will agree on a session key after
the WKE phase only if their individually unpredictable weak keys match.

Somewhat surprisingly, the security of our construction does not seem to fol-
low from PAK protocols secure under most previously used definitions of PAK

(e.g., [BPR00,GL01,BDK+05]). Instead, we need to employ Universally Compos-
able (UC) PAK, as defined in [CHK+05]. This is a very strong definition which
guarantees the security of PAK even when used in arbitrary “environments” (see
Section 2). Very informally (see the discussion at the end of Section 4 for more

3

details), the strong guarantees of a UC PAK are required because of the extreme
weakness of the security provided by the WKE definition described above. WKE

may allow the adversary to adaptively correlate the session keys of Alice and Bob
in an arbitrary manner, provided that they remain individually unpredictable.
Indeed, the adversary is even provided with some a priori partial information
about the secret keys of Alice and Bob, obtained via a previous intrusion. To fur-
ther complicate matters, we require that the security of all future AKE sessions is
preserved even after multiple intrusions, yet WKE provides no forward security
guarantee at all. It is this latter complication which prevents most simulation
based definitions of PAK from sufficing for our purposes. Namely, it is difficult
to simulate the PAK protocol in a manner consistent with both past and future
information obtained by the adversary about the secret key X. On the other
hand, UC secure PAK protocols already support such simulation, since the envi-
ronment in the UC experiment can also provide such partial information about
party’s secrets (which are, indeed, generated by the UC environment) directly to
the adversary.

We can instantiate the above “WKE+PAK” paradigm in several ways to get
concrete intrusion-resilient AKE protocols in our model. First, we observe that
the original protocol of Dziembowski [Dzi06a] could be viewed as a special case
our our method. Specifically, the 2-round WKE implicit in [Dzi06a] is built using
purely information-theoretic tools used in the bounded storage model [Mau92]
(most crucially, averaging samplers [BR94,Vad04]). In our construction, we will
use a similar (and slightly simpler) WKE. As for the (high-entropy) PAK pro-
tocol, the protocol implicit in [Dzi06a] first applied the random oracle to the
password, which simultaneously solved two main difficulties of the PAK setting:
non-uniform passwords became uniform, and correlated passwords became inde-
pendent (unless equal to begin with). Not surprisingly, after this application of
the random oracle, a standard symmetric-key AKE protocol (more or less from
[BR93]) was sufficient for the implicit PAK protocol of [Dzi06a]. In contrast,
PAK protocols are much more complicated in the standard model, especially in
the UC-model. Luckily, Canetti et al. [CHK+05] built such an efficient UC PAK

protocol in the common reference string (CRS) model. Since a CRS is trivially
implementable in our model, — the parties can generate and store it as part of
their long shared secret, — we immediately get the first intrusion-resilient AKE

protocol without random oracles.

To summarize, we get our main result by first properly abstracting and
modularizing the construction of [Dzi06a] (as consisting of “hidden” WKE and
UC PAK), and then proving a general composition theorem allowing us to build
intrusion-resilient AKE protocols (by composing WKE and UC PAK).

Proactive Security. One obvious issue in the bounded retrieval model is that
even a long key will become useless after too many break-ins, as the adversary
will eventually steal too much of the key. Of course, to solve this problem we can
let Alice and Bob occasionally refresh their long keys as follows. They first run
the AKE protocol to obtain a fresh key short key r, then expand r into a long key
R using a pseudorandom generator (this operation will take some time, but is

4

feasible overall), then XOR this long R to their currently shared long key (once
again, this will take some time), and, finally, erase the short r. Needless to say,
the parties should perform these last few steps “offline” and only when being
absolutely sure that the AKE phase succeeded. Also, since most pseudorandom
generators operate in the stream cipher mode, these periodic updates can be
done “in place”. Additionally, the final long key will be secure as long as either
a large enough portion of the original key is not yet leaked, or if the AKE phase
was not compromised.

Correcting Errors. We can also extend our model to allow the adversary to
adaptively cause errors in some fraction of the symmetric keys. This extension
allows us to tolerate either accidental hard-drive failures of some small part of the
secret storage, or even malicious attacks when a virus might be able to rewrite
or damage a small portion of the disk. In fact, our extension for this case is only
nominally less efficient than our main construction. As our main tool, we employ
secure sketches [DORS06] in this construction. The only caveat here is that we
need to assume that the attacker cannot inject errors into the CRS. Thus, the
CRS must be stored in a protected read-only area or made public in some other
way. Details appear in Appendix A.

1.1 Related Works

The Bounded Storage Model (BSM) [Mau92] is closely related to the bounded
retrieval model. In the BSM, a large random string (analogous to our long secret
key) is broadcast publicly at a rate that overwhelms the adversary’s ability to
compress and store it. This is similar to the bounded retrieval restriction in our
model. However, in the BSM the parties are assumed to share a short additional
key which can only be compromised after the attacker lost access to a long string.
In contrast, in our model the only secret is the long string, and the attacker can
adaptively break-in and learn large parts of this long string. This makes the
bounded retrieval model considerably more complicated than the BSM. Indeed,
it is easy to see that, unlike the BSM model, it is impossible to have information-
theoretically secure AKE protocols in our model. However, the techniques from
the BSM model are useful in our model as well: indeed, the WKE protocol we
use crucially utilizes tools from the BSM (such as averaging samplers).

The utilization of PAK protocols in our solution was influenced by the study
AKE protocols using biometric data [BDK+05]. In particular, this work also
introduced the idea of using low entropy intermediate keys as inputs to a PAK

protocol, which is fundamental to our construction. The usual PAK model was
insufficient in that application as well, and was augmented to allow the adversary
to specify some correlation between parties’ (unequal) passwords. However, this
extension was much weaker and much simpler than the one required in our
setting. In particular, UC PAK protocols were not needed for that application.

Another related line of work is that of privacy amplification and authenticated
key agreement using a shared weak secret key [MW03,Wol98,RW03,DKRS06].
As in our model, the secret key is only guaranteed to have some entropy. How-

5

ever, all these information-theoretic protocols require accessing and performing
computation on the entire key. In contrast, a key feature of our model is that the
keys are huge, and participants can only access a tiny portion of the key (we call
this property locality). Thus, the above methods are inapplicable to our setting.
In fact, we already mentioned that information-theoretic solutions (such as the
above) are impossible in our setting.

Another related problem is protection against partial key exposure (so-called
exposure-resilient cryptography; see [CDH+00]), where an adversary can directly
access most of the original bits of the secret key without effecting the security
of the system. However, the solutions in this model are again non-local, and the
adversary is not allowed to compute arbitrary functions of the key, like in our
model.

A different direction for dealing with key exposure is the study of key-evolving
schemes. Such schemes allow the attacker to obtain the entire (short) key, but
assume the existence of global time, and update their secret key at each time
period (thus, unlike our schemes, these schemes are stateful). In forward secure
schemes [And97,BM99,CHK03,BY03], an adversary is allowed to compromise
the system at some point, but is still unable to break the system for previous
time periods all of which have not been compromised. Unfortunately, all “future”
security is necessarily gone in this model.

The model of key-insulated cryptography [DKXY02,DKXY03] fixed this prob-
lem, where all past and future periods remain secure after a fixed number of
compromises. However, this is achieved by introducing non-corruptible server
which holds a master key and helps the user update its secret key from period
to period. So called intrusion-resilient cryptosystems [IR02,DFK+03] extend the
above modeling and allow the attacker to corrupt both the user and the server,
but not in the same time period. From our perspective, such schemes can be
viewed as partitioning a key into two parts, allowing the attacker to obtain
either part at each period, and updating both parts in between the periods.

Finally, we already mentioned several recent works that introduced the bounded
retrieval model in various contexts. Dagon et al.[DLL05] used it for database
protection, Di Crescenzo et al. [CLW06] — for password authentication resist-
ing offline dictionary attacks,4 and Dziembowski — for public-key encryption
[Dzi06b] and intrusion-resilient AKE [Dzi06a] (the latter being the subject of
this paper).

1.2 Structure of the Paper

In Section 2 we present some technical lemmas and tools. In Section 3 we formally
define the model and security for intrusion resilient AKE. In Section 4 we present
a secure construction of intrusion resilient AKE and discuss the use of Universally
Composable PAK. Finally we discuss extending the model to allow for errors in
Appendix A.

4 Here the model is similar to ours, except the adversary may only steal original bits
of the large key and not any function like in our model.

6

2 Preliminaries

In this section we briefly review some of the facts and tools used in this paper.
Throughout, Un denotes the uniform distribution on bit strings of length n,
and ‖ denotes string concatenation. We assume that the definitions of negligible

function (negl(k)) and computational indistinguishability (X
c
≡ Y) are familiar.

Definitions and Facts from Probability. The statistical distance between
two random variables taking values in S is defined to be

∆(X,Y) = max
T⊂S
|Pr[X ∈ T]− Pr[Y ∈ T]|.

The min-entropy H∞(X) of a discrete random variable X is defined as

H∞(X) = min
x∈supp(X)

{− log Pr[X = x]} ,

where supp(X) is the support of X. Let X be a random variable taking values
in {0, 1}

n
, and let k ≤ n. We say that X is a k-source if H∞(X) ≥ k, that is,

for every x ∈ supp(X), Pr[X = x] ≤ 2−k. Therefore, informally speaking, that
X has high min-entropy means that the value X takes on is hard to guess (for
an unbounded adversary). For a random variable X taking values in {0, 1}

n
and

α ∈ [0, 1], we say that X has entropy rate α if X is an αn-source.
The following well known lemma quantifies the intuition that short compres-

sions of long entropy-rich strings must leave out a lot of information. This allows
us to tell how random our long secret keys look after some partial compromises.

Lemma 1 (c.f. [NZ96]). Let X and Y be any two (correlated) random vari-
ables. Suppose that X is an n-source, and Y takes values in {0, 1}r. Then for ev-
ery ε > 0, with probability at least 1−ε over y ← Y , X|Y =y is a (n−r−log (1/ε))-
source.

Averaging Samplers. We also make use of a combinatorial tool called an Av-
eraging Sampler. Averaging samplers, first introduced by [BR94], are procedures
that approximate the mean of any function from bit strings to [0, 1] by taking a
limited number of random samples in the domain of the function. We stress that
an averaging sampler must work without any information about the function it
is trying to approximate.

Definition 1 (Averaging Sampler). A function Samp : {0, 1}d → [N]m is
a (µ, θ, γ) averaging sampler if for every function f : [N] → [0, 1] with average
value 1

N

∑
i f(i) ≥ µ, it holds that

Pr
{i1,...,im}←Samp(Ud)

 1

m

m∑

j=1

f(ij) < µ− θ

 ≤ γ

7

UC PAK. Our construction makes use of a Universally Composable Password
Authenticated Key exchange (UC PAK) protocol, as defined in [CHK+05]. Infor-
mally, the UC security notion of [Can01] requires that a protocol implementing
an “ideal functionality” cannot be distinguished from the ideal functionality 5

it implements, even by an “environment” that chooses inputs to (and observes
outputs from) the parties running the protocol while it is under attack by the
adversary. One result of this very strong notion of security is that protocol de-
signers may use an ideal functionality as a subroutine, yet rest assured that later
replacing that ideal functionality with a UC secure protocol will not harm the
security analysis of the newly designed protocol.

In this spirit, we will be making use of the UC PAK ideal functionality (Fig-
ure 2) as a subroutine in our protocol.

The UC PAK functionality captures the following intuitive guarantees: (1) If
the parties are both honest and the adversary does not attempt to “compromise”
their session, then they both receive an identical uniformly distributed random
key, (2) if the adversary makes a failed attempt to compromise their session, hon-
est parties each receive independently generated uniformly distributed random
keys, and (3) the adversary is only able to successfully compromise a session by
either correctly guessing the password of one of the parties (in a single attempt),
or by corrupting one of the parties – in either case the adversary is allowed to
choose the key(s) received by the honest parties. Unless the adversary success-
fully compromises a session, the only information provided by the functionality
to the adversary is a notification when parties initiate the PAK protocol. (Of
course, the adversary is also notified of the success or failure of an attempt to
compromise a session.) Note the functionality does not guarantee that honest
parties receive a shared key, even if the session was not compromised; they are
merely assured that they each either have a good shared key, or a completely
random one.

Unfortunately, like most non-trivial two-party UC functionalities, UC PAK

protocols cannot be implemented in the plain model. Therefore, we rely on the
construction of [CHK+05], which assumes that a short Common Reference String
(CRS) is publicly available. Since the parties in our AKE protocol already share
large secrets, it is a simple matter for them to share a short (public) CRS value
as well (alternatively, a small portion of the shared secret can be “sacrificed”
to generate the CRS). Thus, the introduction of a CRS does not require any
significant alterations to our model. Note that, in the special case where our
security model is augmented with adversarial errors, the adversary should not
be allowed to introduce errors into the CRS itself. Since a CRS is usually very
short, protecting it within (public) “read-only memory” should not be costly.

5 Technically, the behavior of the protocol under any given attack cannot be distin-
guished from the behavior of some “simulated” attack on the ideal functionality.

8

When interacting with an adversary S and a set of parties, with security parameter
k, the functionality FpwKE responds to the following queries:

– NewSession(sid, PA, PB , pw, role): Upon receiving a query of this form from party
PA, the message (NewSession, sid, PA, PB , role) is sent to the adversary S. If this
is the first NewSession query, or if this is the second NewSession query and there
is a record (PB , PA, pw′), then record (PA, PB , pw) and mark this record fresh.

– TestPwd(sid, PA, pw′): Upon receiving this query from the adversary S, if there
is a record of the form (PA, PB , pw) which is fresh, then: If pw = pw′, mark the
record compromised and notify S of a “correct guess”. If pw 6= pw′, mark the
record as interrupted and notify S of an “incorrect guess”.

– NewKey(sid, PA, sk): Upon receiving this query from the adversary S (where
|sk| = k), if there exists a record of the form (PA, PB , pw) and this is the first
NewKey query for PA, then one of the following actions occurs, after which the
record (PA, PB , pw) is marked completed:
• If this record is compromised, or either PA or PB is a corrupt party, then

output (sid, sk) to PA.
• If this record is fresh, and there is a record (PB , PA, pw′) with pw′ = pw, and

a key sk′ was sent to PB, and the record (PB , PA, pw) was marked fresh at
the time, then output (sid, sk′) to PA.

• In any other case, pick a new random key sk′ of length k and send (sid, sk′)
to PA.

Fig. 1. Ideal Functionality FpwKE , from [CHK+05]

3 The Model and Definitions of Security

In this section we describe symmetric-key AKE protocols and their security in
the BSM. Throughout this section, k is a security parameter. The length of
the large symmetric-key is denoted by N , where N = N(k) is a fixed sufficiently

large polynomial. During a setup phase, a symmetric-key X ∈R {0, 1}
N

is chosen
uniformly and shared between two parties Alice and Bob.

An authenticated key exchange protocol Π is a pair of algorithms (A,B)
describing the honest behavior of two parties. As described in the introduction,
the adversary’s limited access to X is vital to the security of our schemes, and
we assume that the honest parties are similarly restricted (in fact, the honest
parties will use a relatively small amount of their keys compared to the captured
portion). We say that Π is m-local if A and B each access at most m = m(k)
bits in any execution of Π.

Adversaries will be able to steal a total of βN bits over the course of several
executions, where 0 ≤ β < 1. We call β the retrieval rate of the adversary.
Note that the adversary can adaptively decide on the size of the data to capture
during a particular session, as long as it does not violate the total accumulated
retrieval bound.

For the moment, we assume that a key X will be used for at most T sessions,
where T (k) is a polynomial determined by the retrieval rate of the adversary

9

and the size of X. The assumption of an upper bound on the number of uses of
X will be relaxed; below we show that security for a fixed T (k) implies security
for an arbitrary polynomial number of sessions under the assumption that the
parties get some predetermined uncompromised sessions.

As with other models for authenticated key exchange, adversaries in our
model (denoted C) completely control the channel between A and B. In partic-
ular, C can inject, drop, modify and delay messages. We also give C the power
to temporarily intrude into the machines of A and B and retrieve some infor-
mation about their internal state, including X. In this paper, our protocols are
only proven secure for sequential executions of sessions. We comment on this
limitation later.

At the beginning of each session, the adversary decides whether or not to
intrude. From now on, we call a session during which the adversary intrudes
a compromised session. After declaring a session (say session i) compromised,
the adversary C outputs a circuit V (a virus) that will get to see the private
information of A and B. This includes rA and rB , the private coins of A and
B to be used in this session, and the secret key X. The virus V computes
Si = V (X, rA, rB),6 and sends Si to the the adversary C.

We stress that V can be any polynomial-size circuit adaptively computed
by C at the start of session i (so C may incorporate information gained from
previous intrusions into V). The only other restriction on V is that the its output

Si is bounded. In particular, we require that
∑T

i=1 |Si| < βN .

Clearly in a compromised session neither security nor correctness can be
achieved. The best we can hope for is to construct a protocol that guarantees
security and correctness for each uncompromised session. This is reflected in how
success is determined in our definition below.

Our definition follows the style of [BPR00] and [Dzi06a].

The Adversarial Model. The power of an active adversary C is modeled by giving
C oracle access to the protocol instances run by Alice and Bob. Denote by A and
B the prescribed programs of Alice and Bob respectively. Denote by ΠA

i (resp.
ΠB

i) the instance of protocol Π that Alice (resp. Bob) runs in the i-th session.
For each P ∈ {A,B}, the instances ΠP

i are executed sequentially, that is, for
each i, instance ΠP

i+1 starts after instance ΠP
i completes. At the end of the i-th

session, ΠA
i (resp. ΠB

i) outputs a bit accA
i (resp. accB

i) indicating whether A
(resp. B) accepts or aborts in Session i. As in previous work, we assume that this
bit is always known to the adversary C. Denote by skA

i (resp. skB
i) the session

key output by ΠA
i (resp. ΠB

i) in the i-th session. If accA
i = 0 (resp. accB

i = 0),
then skA

i =⊥ (resp. skB
i =⊥).

We define the following types of oracles that the adversary C is allowed to
invoke, all of which except for the Intrude oracle are as defined in [BPR00]. We

6 WLOG we assume that the adversary intrudes Alice and Bob simultaneously in a
compromised session.

10

note that the adversary’s retrieval bounded is expressed below in the definition
of the Intrude oracle.

– Execute(i): Upon this call, the complete execution between protocol instances
ΠA

i and ΠB
i takes place. The output of this call is the transcript, that is,

the sequence of all messages exchanged between ΠA
i and ΠB

i . This oracle
models passive eavesdropping in Session i.

– Send(P, i,M): This call sends the message M to the instance ΠP
i (where P ∈

{A,B}). The output of this call is the message the instance ΠP
i would send

after receiving the message M , given its current state. This oracle models
active man-in-the-middle attacks in Session i.

– Intrude(i, V): This oracle models intrusion into the machines of both A and
B. The second input V to this call is a circuit (the virus) constructed based
on the adversary C’s current state. Upon this call, the oracle computes and
outputs Si = V (X, rA

i , rB
i), where rA

i and rB
i are the private coins of A and

B in session i. We require that
∑T

j=1 |Sj | < βN .

– Test(P, i): The output of this call is either the session key skP
i output by ΠP

i ,
or an independently chosen random string, each case happening with proba-
bility 1/2. The adversary’s goal is to distinguish between the two cases. The
call Test(P, i) can be invoked any time after Party P concludes Session i.
The adversary may not invoke Test(P, i) when accP

i = 0 (i.e. when skP
i =⊥),

or if the adversary has previously invoked Intrude(i, V).

The adversary C’s advantage in Session i is defined as

Advi(C) = |2 · Pr[C Succeeds in Test(P, i)] − 1|.

Remark: The query Intrude(i, V) is allowed only before the start of Session i and
is not allowed during Session i.

Definition 2. A session key protocol Π is intrusion-resilient for T = T (k)
sessions if for every PPT C with retrieval rate β, the following conditions are
satisfied:

– (Correctness) With probability 1 − negl(k) the following holds: For each i ∈
[T], if session i is uncompromised and accA

i = accB
i = 1, then skA

i = skB
i .

– (Privacy) For each i ∈ [T] s.t. the Test oracle is invoked for session i,
Advi(C) = negl(n).

We now return to the issue of defining security for a fixed polynomial T (k)
number of sessions. We observe that an authenticated key exchange protocol Π
can be used to refresh its own long secret keys during uncompromised sessions.
The idea is that the parties can run Π to obtain a short key r, and then use that
key as the seed for a pseudorandom generator. The output of the generator is
then XORed with the previous long key, and the value r is erased. This ensures
that the final long key will be “as good as new” if the attacker did not break-in
right at the end of Π (i.e., r is uncompromised), and still “as good as before”

11

even if the attacker compromised the value of r. Thus, as long as at least one
uncompromised key update happened before the attacker obtained too much
information about the long key, the long key remains secure. We defer the details
to the full version on the paper.

We conclude this section by presenting a lemma that simplifies the analysis
of our constructions. We show below that it suffices to construct a protocol that
is intrusion-resilient for three sessions.

Lemma 2. Suppose that a session key protocol Π is intrusion-resilient for three
sessions against every PPT C that is β-retrieval bounded within the three sessions
and attacks Π as follows: The adversary compromises the first session as usual;
the second session is uncompromised; in the third session the adversary not only
compromises the session but also gets the entire key X of Alice and Bob. Then for
every polynomial T = T (k), the protocol Π is intrusion-resilient for T sessions.

The proof of Lemma 2 is a straightforward simulation of several sessions in
only 3 sessions. Again, the proof will appear in the full version of this paper.

4 Authenticated Key Exchange from Weak Key Exchange

In this section we describe an approach for constructing AKE protocols in our
model. We define the notion of Weak Key Exchange (WKE) and give an efficient
construction, and then we show how to compose any WKE protocol with any
UC PAK to realize a secure intrusion resilient AKE protocol.

4.1 Weak Key Exchange: Definition

Briefly, WKE provides only the guarantee that the output keys will have a high
min-entropy from the viewpoint of the adversary. In particular, the adversary
may possibly arrange for the keys to be unequal and correlated in an arbitrary
fashion. Of course, we still require that the keys match when the protocol runs
with no active interference from the adversary. WKE also provides no security
guarantees on past keys once a subsequent WKE session is initiated (i.e. there
is no forward security, and indeed, no long term security requirement at all).
Our definition for WKE is a modification of the definition for authenticated key
exchange, and thus we focus on the differences between the definition of WKE

and that of AKE (as described above).

We use the same adversarial model as in AKE, but with a few critical weak-
enings. In particular, we will only allow for 2 sessions (in a similar spirit to
Lemma 2), where the first session is compromised, and the second is not. Fur-
thermore, we modify the Test oracle, and the corresponding experiment defining
the adversarial advantage, replacing it with the following:

– Test(P, i, sk): The output of this call is 1 if i = 2 and sk = skP
i 6=⊥.

12

This oracle may only be called once by the adversary (for one party, using
Session 2), in addition to the previous restrictions.

The adversary’s advantage in the privacy requirement is redefined as

Adv2(C) = Pr[C causes Test(i, P, sk) = 1].

There is no forward security guarantee for weak key exchange, as the adver-
sary may not corrupt (or even invoke) any session that occurs after the second
session (wherein it must query the Test oracle, attempting to break privacy).
Furthermore, the adversary can only succeed by guessing the entire key skP

i

(which is more difficult than merely distinguishing it from random), and thus
the privacy guarantee is considerably weakened.

Definition 3 (Weak Key Exchange(WKE)). A protocol is a weak key ex-
change if for every PPT C with retrieval rate β, the following conditions are
satisfied:

– (Weak Correctness) With probability 1−negl(k) the following holds: for each
i ∈ {1, 2}, if Session i runs honestly, (i.e. the adversary does not tamper
with any protocol messages) then skA

i = skB
i .

– (Weak Privacy) The advantage of the adversary is negligible, i.e. Adv2(C) =
negl(n), where Adv2(C) is as defined above, and in particular depends on the
modified Test oracle.

We note that in the event that the adversary chooses to alter the content of
protocol flows, A and B may agree to accept a session where they receive differing
keys.7

Below we present and analyze a construction meeting this definition, with
information theoretic security.

4.2 Weak Key Exchange: Construction

Our protocol makes use of an averaging sampler, as described in [BR94], which
samples a small number of bits from a much larger source (in this case, the shared
secret X), while nearly preserving the min-entropy rate of the larger source. It
was shown in [Vad04] how to explicitly construct samplers 8 for a δN -source using
only d = log(N/m)+O(log(1/γ)) random bits and m = O(log(1/γ)) bit samples
from the input source to produce output that is γ-close to a (2δ/3)m-source
for any γ > exp(−N/2O(log∗ N)). Note that, given the practical importance of
efficiency, here we obey the requirement that the number of bits of X which are
read during the execution of a WKE is small. (This partly motivates the choice
of parameters for the averaging sampler, and in particular, m = O(log(1/γ)) is
essentially the best one can hope for in terms of efficiency.)

Making use of the existence of such samplers, our protocol proceeds as follows
(where we use XSamp(·) to denote the string formed by concatenating the bits of
X located at the indices selected by Samp):

7 Indeed, the adversary may attempt to guess either skA
2 or skB

2 in the attack scenario
for the privacy requirement, and they may not be equal.

8 See Lemma 8.4 and its usage in Theorem 8.5 in [Vad04] for details.

13

Setup:

– X ∈R {0, 1}N : A (large) secret key shared between Alice and Bob.
– Samp : {0, 1}d → {1, . . . , N}m : An averaging sampler [Vad04].

Protocol:

1. Alice and Bob choose random values rA and rB , respectively.
2. Alice sends rA to Bob. Bob receives a value r′A, and then computes KB =

XSamp(r′

A
) ‖ XSamp(rB). Bob outputs KB as his weak session key.

3. Bob sends rB to Alice. Alice receives a value r′B , and then computes KA =
XSamp(rA) ‖ XSamp(r′

B
). Alice outputs KA as her weak session key.

Fig. 2. A WKE Protocol

Lemma 3. The Weak Key Exchange protocol described in Figure 2 is secure for
appropriate choices of the sampler parameters.

Proof. The proof of security is direct, and the security guarantee is in fact in-
formation theoretic. The weak correctness property is obvious. The view of the
adversary at the start of the second session is the output of some circuit V (X),
obtained during the compromise of the first session. As we are considering only
β-retrieval bounded adversaries, the output of the circuit V must be no larger
than βN -bits, and thus the adversary knows at most βN -bits of information
about X. In particular, we observe that, from the adversary’s point of view, X
is nearly 9 a (1 − β)N -source (since X is uniformly random over N bits, but
the adversary’s view is conditioned over the βN -bit output of V (X) obtained
during the first session).

Thus, by Lemma 6.2 of [Vad04] (and using the same sampler parameters as
those of the explicit local extractor construction in Theorem 8.5 therein), the
pairs (rA,XSamp(rA)) and (rB ,XSamp(rB)) are (very nearly) individually γ-close

to the distribution (Ud,W), where for every r ∈ {0, 1}d, the distribution W |Ud=r

is at least a (2(1 − β)/3)m-source. Thus, KA = XSamp(rA) ‖ XSamp(r′

B
) ≈ W ‖

XSamp(r′

B
), where W has (nearly) min-entropy (2(1 − β)/3)m even conditioned

on rA. Therefore, even conditioned on the adversary’s view after the WKE pro-
tocol completes, KA has min-entropy nearly (2(1 − β)/3)m, irrespective of the
adversary’s choice of r′B . An analogous argument applies to KB , and thus, for
sufficiently large choices of m, the weak privacy security requirement follows. ⊓⊔

4.3 Intrusion-Resilient AKE from WKE and UC PAK

On a high level, the protocol uses a WKE to select “passwords” with a high
min-entropy for use by Alice and Bob in a standard PAK protocol. Since PAK

9 Technically, with probability (1 − 2−λ) taken over the distribution of S ← V (X),
the random variable X|V (x)=S (which is X conditioned on the adversary’s view) has
min-entropy (1− β)N − λ for any choice of λ. This follows directly from Lemma 1.

14

protocols securely realizing the ideal functionality FpwKE do not necessarily
verify the output keys (i.e. check that the key exchange was successful, satisfying
correctness), we use MACs to verify them, completing the protocol.

Setup:

– WKE: A Weak Key Exchange protocol between Alice and Bob.
– PAK: A Universally Composable Password Authenticated Key exchange protocol.
– (MAC,Verify): A MAC secure against chosen message attacks.

Protocol:

1. Alice and Bob run the WKE protocol, obtaining the weak keys KA and KB ,
respectively.

2. Alice and Bob exchange nonces, which are concatenated to form a session ID sid
3. Alice and Bob run the PAK protocol with session ID sid, using the passwords KA

and KB as their inputs, respectively. Alice and Bob obtain their outputs, secret
keys skA = sk1

A‖sk
2
A and skB = sk1

B‖sk
2
B , respectively.

4. Alice sends Bob tagA = MACsk1

A

(Bob), Bob sends Alice tagB = MACsk1

B

(Alice).

5. Alice receives tag′B and checks that Verifysk1

A

(Bob, tag′B) = 1. If not, Alice rejects

and aborts. Otherwise, Alice outputs sk2
A as her session key.

6. Bob receives tag′A and checks that Verifysk1

B

(Alice, tag′A) = 1. If not, Bob rejects

and aborts. Otherwise, Bob outputs sk2
B as his session key.

Fig. 3. An AKE protocol based on WKE and UC PAK

Remark: PAK can be implemented using the protocol of [CHK+05], which
is a 6-round protocol that is efficiently implementable under standard number
theoretic assumptions. Our WKE construction is a 2-round protocol, and we add
four extra rounds in the above construction (two to exchange nonces, and two
to verify the keys at the end), for a total of 12 rounds. However, in practice we
can move the exchange of nonces in parallel with the WKE messages, reducing
the number of rounds by 2, and we can move one of the verification messages
in parallel with the last flow of the PAK protocol to save an additional round,
bringing the total down to 9 rounds.

Theorem 1. The AKE protocol described in Figure 3 is intrusion-resilient for
three sessions defined in Lemma 2. Therefore, under the assumption that secure
update sessions can be periodically scheduled, there is an intrusion-resilient AKE

protocol for an unbounded number of sessions.

Proof sketch: Since we are using a universally composable PAK protocol, by the
UC Theorem of [Can01], we may substitute the execution of the PAK protocol
with calls to the ideal functionality FpwKE described above 10 (using KA and KB

10 The substitution is legitimate since it is possible for an environment Z to internally
simulate the rest of the protocol, including the setup phase with the shared secret

15

as the passwords for the calls by PA and PB, respectively). Clearly, the session
keys output by the ideal functionality are indistinguishable from random to the
adversary (by definition), unless the adversary makes a successful TestPwd query
(which must be issued prior to the completion of the PAK protocol), allowing him
to choose the output keys. However, as can be seen from the definition of the ideal
functionality, the adversary is allowed only a single query to TestPwd. Following
Definition 3, we observe that the adversary cannot guess the output from the
WKE with non-negligible probability (even when conditioned on the entire view
of the adversary up to and including the point at which the functionality FpwKE

is invoked, which is identical to the view when attacking just the WKE, plus the
addition of a random sid and some other innocuous messages that may be sent
from FpwKE to the adversary), the probability that the adversary succeeds in
a TestPwd query is at most negligible. Thus, we are guaranteed that skA and
skB are indistinguishable from random, and either equal (in the event that no
TestPwd query was issued) or independently generated (in the event that a failed
TestPwd query was issued). Furthermore, it is easy to show that the last two
flows of the protocol (Steps 4-6) ensure that correctness holds, provided that skA

and skB are either identical, or independently chosen random values. Finally, we
observe that the adversary can never distinguish skA or skB from random once
the session has completed, even after being given all 11 of X, since the keys are
chosen at random (independently of X) by the ideal functionality FpwKE and
are never revealed to the adversary. ⊓⊔

Remark: The UC PAK protocol of [CHK+05] is only secure against “static”
adversaries in the UC framework. At first glance, it might seem that we require
security against “adaptive” adversaries here, since the random coins used by
the parties are revealed during an intrusion. However, since we are only dealing
with sequential sessions, and since there is no security guarantee provided for
compromised sessions, we need not concern ourselves with the ability to simulate
attacks on the compromised sessions (which would have necessitated the use of
the adaptive security notion). The random coins used by uncompromised sessions
are indeed erased, and thus static adversary UC security is sufficient.

The Need for UC-Secure PAK. We begin by remarking that the use of com-
putationally secure tools is unavoidable in our setting (despite the information
theoretic security of our WKE). This is due to a combination of the forward se-
curity requirement and efficiency requirements for the scheme: if it is efficient to
compute a key-exchange, then the output must be information-theoretically de-
termined by a small number of bits, all of which can be obtained by the adversary
during a subsequent intrusion (without violating the retrieval bound).

X. Since UC security holds against any environment, in particular, this environment
should be unable to distinguish calls to the ideal functionality FpwKE from calls to
the realized protocol.

11 Indeed, if the adversary were given all of X prior to the completion of the WKE

phase, the security property on the WKE would be broken, allowing the adversary
to potentially issue a successful TestPwd query. Thus, it is in fact still critical that
the adversary be β-retrieval bounded.

16

Given that reliance on a computationally secure tool is unavoidable, if we are
going to use a WKE-based approach, one might initially suggest composing it
with a standard PAK protocol relying on a traditional “stand-alone” security def-
inition (particularly since we are restricting parties to sequential AKE sessions).
Unfortunately, there are serious obstacles to this seemingly natural approach.

First, we observe that the passwords (the weak keys) output by our WKE

phase may be correlated in an arbitrary manner. Many traditional definitions
of PAK (as well as various other cryptographic tools) do not provide security in
the scenario where the parties are using unequal but correlated passwords (or,
resp., keys). Indeed, the protocol of [Dzi06a] employs random oracles specifically
to transform the parties’ correlated random secrets into independently random
ones. Since we wish to avoid the use of random oracles, we are left to deal with
definitions of PAK that allow the adversary to correlate passwords. For instance,
the PAK definition of [BDK+05] allows the adversary to specify (a priori) the
joint distribution from which honest parties choose their passwords, so that they
can be forced to obey an arbitrary correlation function.

Surprisingly, it seems difficult (perhaps even impossible) to prove the security
of our construction even when composed with the (very strong) notion of PAK

from [BDK+05]. In particular, it is hard to construct a reduction from the AKE

protocol to the security of the PAK protocol. To see this, consider the issue of
simulating the large AKE secret X. If X is chosen directly by the reduction, then
either (1) the passwords used by the parties being attacked by the reduction are
not be properly derived from X, or (2) the reduction itself is also able to derive
the passwords from X. Of course, in case (2) the reduction is not able to break
the security of parties with unknown passwords, rendering it meaningless. On
the other hand, in case (1), the simulation performed by the reduction does not
faithfully reproduce the setting of the AKE adversary. In fact, it seems hopeless
to prove that such simulations go undetected by the adversary in our setting,
since the adversary can eventually obtain all the relevant portions of X (via
an intrusion subsequent to the completion of the PAK protocol), and check for
consistency. As an alternative approach, the reduction could specify a correla-
tion function for the PAK security game that chooses the value of X, and then
generates correlated passwords accordingly. Unfortunately, this too fails, since
the reduction itself will not learn the value of X, and thus will be unable to
properly simulate the input to the adversary during an intrusion.

Ultimately, we turn to UC PAK to overcome this difficulty. With a UC PAK,
the reduction plays the role of the environment in the UC security definition.
Here, the environment is allowed to choose the passwords used by the parties,
and thus the reduction may choose X and generate passwords accordingly, as in
case (1) above. This time, the reduction remains meaningful, since the adversary
will not be privy to the passwords used by honest parties (due to the separation
between the UC distinguishing environment, and the UC adversary). In fact, if
we make use of the UC composition theorem, the entire security proof seems to
follow the natural intuition for combining WKE and PAK.

17

To the best of the author’s knowledge, this setting represents the first instance
of protocol which, even when executed sequentially and in isolation, seems to
require the use of a UC secure tool. Our setting thus provides a powerful and
naturally occuring example of the benefits of UC security in modular proto-
col design. Here we are able to consider a protocol which, when designed in-
tuitively using standard tools, (seemingly) cannot be proven secure even in a
simple “stand-alone” protocol execution setting. Yet, when the same intuitive
design is implemented using a UC secure tool, a proof of security far more readily
presents itself.

References

[And97] Ross Anderson. Two remarks on public key cryptology. Invited Lecture. In
4th ACM Conference on Computer and Communications Security, 1997.

[BM99] Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme.
In CRYPTO, pages 431–448, 1999.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key
exchange secure against dictionary attacks. In EUROCRYPT, pages 139–
155, 2000.

[BR93] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribu-
tion. In CRYPTO, pages 232–249, 1993.

[BR94] Mihir Bellare and John Rompel. Randomness-efficient oblivious sampling.
In FOCS, pages 276–287, 1994.

[BY03] Mihir Bellare and Bennet S. Yee. Forward-security in private-key cryptog-
raphy. In CT-RSA, pages 1–18, 2003.

[BM93] Steven M. Bellovin and Michael Merritt. Augmented encrypted key ex-
change: A password-based protocol secure against dictionary attacks and
password file compromise. In ACM Conference on Computer and Commu-
nications Security, pages 244–250, 1993.

[BDK+05] Xavier Boyen, Yevgeniy Dodis, Jonathan Katz, Rafail Ostrovsky, and Adam
Smith. Secure remote authentication using biometric data. In EURO-
CRYPT, pages 147–163, 2005.

[BMP00] Victor Boyko, Philip D. MacKenzie, and Sarvar Patel. Provably secure
password-authenticated key exchange using diffie-hellman. In EURO-
CRYPT, pages 156–171, 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In FOCS, pages 136–145, 2001.

[CDH+00] Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushilevitz, and Amit
Sahai. Exposure-resilient functions and all-or-nothing transforms. In EU-
ROCRYPT, pages 453–469, 2000.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. On the random-oracle
methodology as applied to length-restricted signature schemes. In TCC,
pages 40–57, 2004.

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key
encryption scheme. In EUROCRYPT, pages 255–271, 2003.

[CHK+05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D.
MacKenzie. Universally composable password-based key exchange. In EU-
ROCRYPT, pages 404–421, 2005.

18

[CLW06] Giovanni Di Crescenzo, Richard J. Lipton, and Shabsi Walfish. Perfectly
secure password protocols in the bounded retrieval model. In TCC, pages
225–244, 2006.

[DLL05] David Dagon, Wenke Lee, and Richard J. Lipton. Protecting secret data
from insider attacks. In Financial Cryptography, pages 16–30, 2005.

[DFK+03] Yevgeniy Dodis, Matthew K. Franklin, Jonathan Katz, Atsuko Miyaji, and
Moti Yung. Intrusion-resilient public-key encryption. In CT-RSA, pages
19–32, 2003.

[DKRS06] Yevgeniy Dodis, Jonathan Katz, Leonid Reyzin, and Adam Smith. Robust
fuzzy extractors and authenticated key agreement from close secrets. In
CRYPTO, pages 232–250, 2006.

[DKXY02] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Key-
insulated public key cryptosystems. In EUROCRYPT, pages 65–82, 2002.

[DKXY03] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Strong key-
insulated signature schemes. In Public Key Cryptography, pages 130–144,
2003.

[DORS06] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith.
Fuzzy extractors: How to generate strong keys from biometrics and
other noisy data. Cryptology ePrint Archive, Report 2003/235, 2006.
http://eprint.iacr.org/.

[Dzi06a] Stefan Dziembowski. Intrusion-resilience via the bounded-storage model.
In TCC, pages 207–224, 2006.

[Dzi06b] Stefan Dziembowski. On forward-secure storage. In CRYPTO, pages 251–
270, 2006.

[GL01] Oded Goldreich and Yehuda Lindell. Session-key generation using human
passwords only. In CRYPTO, pages 408–432, 2001.

[IR02] Gene Itkis and Leonid Reyzin. Sibir: Signer-base intrusion-resilient signa-
tures. In Moti Yung, editor, CRYPTO, volume 2442 of Lecture Notes in
Computer Science, pages 499–514. Springer, 2002.

[Mau92] Ueli Maurer. Conditionally-perfect secrecy and a provably-secure random-
ized cipher. Journal of Cryptology, 5(1):53–66, 1992.

[MW03] Ueli Maurer and Stefan Wolf. Secret-key agreement over unauthenticated
public channels iii: Privacy amplification. IEEE Transactions on Informa-
tion Theory, 49(4):839–851, 2003.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal
of Computer and System Sciences, 52(1):43–52, 1996.

[RW03] Renato Renner and Stefan Wolf. Unconditional authenticity and privacy
from an arbitrarily weak secret. In CRYPTO, pages 78–95, 2003.

[Vad04] Salil P. Vadhan. Constructing locally computable extractors and cryptosys-
tems in the bounded storage model. Journal of Cryptology, 17(1):43–77,
2004.

[Wol98] Stefan Wolf. Strong security against active attacks in information-theoretic
secret-key agreement. In ASIACRYPT, pages 405–419, 1998.

A Augmenting the Model with Adversarial Errors

As mentioned earlier, we deal with the case where an adversary is allowed to
change the party’s keys adaptively so that they disagree at some limited number
of indices. We first give a formal definition of the model with errors, and then

19

we give the definition of secure sketches and show how they can be used to resist
errors.

Definition 4. Again we modify Definition 2. In this case, during a compromised
session, the virus V may have two outputs: the first is the information sent back
to the adversary, and second is the error vector which describes which bits of X
to flip. We say that an adversary is γ-error bounded if it flips at most a γN bits
of X between key updates.

Our construction meeting Definition 4 uses secure sketches. Intuitively, a
secure sketch is a primitive that lets us generate a sketch of a string w that
will help a user with a noisy version w′ of w correct errors, but will not help
an outside observer significantly. Originally, secure sketches were defined for a
general metric, but we only need the case for Hamming distance.

Definition 5 (Secure Sketch [DORS06]). An (k, k′, t)-secure sketch is a
pair of algorithms (SS,Rec) such that

1. (Security) If W is a k-source, then W can be guessed by an adversary who
sees SS(W) with probability at most 2k′

.12

2. (Correctness) If w and w′ differ at less than t indices, then Rec(w′,SS(w)) =
w.

We now show how to construct a WKE protocol that functions correctly in the
presence of errors. We use secure sketches to ensure that the strings XSamp(rA)

and XSamp(rB) are corrected in the passive case. The details of the updated
protocol appear below in Figure 4

We choose β1, β2, ε and γ in Figure 4 so that when we have a β1-retrieval
bounded adversary who can flip a total of γN bits during the interaction, the
adversary’s chance at guessing a password handed to the PAK is at most 2−β2N .

Lemma 4. For an appropriate setting of parameters, the protocol in Figure 4
satisfies the security definition of WKE in the augmented model where the adver-
sary can inject a γ fraction of errors, and transmit β1N bits during during the
first round. (Recall that we only need to prove security in the case of two rounds
for WKE).

Proof sketch: Correctness in the passive case is obvious from the definitions
of the primitives used. Privacy follows from the original analysis of our WKE

construction, together with the observation that after seeing sA (resp. sB), it
is still hard to guess XA

Samp(rA) (resp. XB
Samp(rB)). We defer a detailed analysis,

including parameter settings, to an expanded version of this work. ⊓⊔

12 We would like to briefly say that H∞(W |SS(W)) > k′, but what we actually

need is that the average min-entropy H̃∞(W |SS(W)) is greater than k′, where

H̃∞(A|B) = − log(Eb←B [maxa Pr [A = a|B = b]]), which corresponds to the prose
description given.

20

Setup:

– XA and XB where X ∈R {0, 1}N and the Hamming distance between XA and
X is at most γ/2N (similarly, XB and X are within γ/2N Hamming distance).

– Samp : {0, 1}d → {1, . . . , N}m : An averaging sampler
– (SS, Rec) : A (β1N − log(1/ε), β2N, γN)-secure sketch.

Protocol:

1. Alice and Bob choose random values rA and rB , respectively.
2. Alice and Bob each compute the sketches sA and sB of XA

Samp(rA) and XB
Samp(rB),

respectively.
3. Alice sends (rA, sA) to Bob, who receives (r′A, s′A), and first recovers XA′

Samp(r′

A
) =

Rec(XB
Samp(r′

A
), s
′

A), and outputs KB = XA′

Samp(r′

A
) ‖ XB

Samp(rB).

4. Bob sends (rB , sB) to Alice, who receives (r′B , s′B), and first recovers

XB ′

Samp(r′

B
) = Rec(XA

Samp(r′

B
), s
′

B), and outputs KA = XA
Samp(rA) ‖ XB ′

Samp(r′

B
).

Fig. 4. A WKE Protocol For Noisy Keys

Once we have an error-resistant WKE protocol, composing with a UC-secure
PAK protocol results in an error-resistant and intrusion resilient AKE protocol.
The reason this is true is because the PAK protocol does not access X on its
own, and once the WKE property for its input passwords is established, the UC
theorem allows us to replace the PAK protocol with an ideal functionality and
the original proof goes through unchanged. Again, we defer the full details of
the analysis.

