
Counterexamples to Hardness Amplification Beyond Negligible

Yevgeniy Dodis∗ Abhishek Jain† Tal Moran‡ Daniel Wichs§

January 31, 2012

Abstract

If we have a problem that is mildly hard, can we create a problem that is significantly
harder? A natural approach to hardness amplification is the “direct product”; instead
of asking an attacker to solve a single instance of a problem, we ask the attacker to
solve several independently generated ones. Interestingly, proving that the direct product
amplifies hardness is often highly non-trivial, and in some cases may be false. For example,
it is known that the direct product (i.e. “parallel repetition”) of general interactive
games may not amplify hardness at all. On the other hand, positive results show that
the direct product does amplify hardness for many basic primitives such as one-way
functions/relations, weakly-verifiable puzzles, and signatures.

Even when positive direct product theorems are shown to hold for some primitive, the
parameters are surprisingly weaker than what we may have expected. For example, if we
start with a weak one-way function that no poly-time attacker can break with probability
> 1

2
, then the direct product provably amplifies hardness to some negligible probability.

Naturally, we would expect that we can amplify hardness exponentially, all the way to
2−n probability, or at least to some fixed/known negligible such as n− log n in the security
parameter n, just by taking sufficiently many instances of the weak primitive. Although
it is known that such parameters cannot be proven via black-box reductions, they may
seem like reasonable conjectures, and, to the best of our knowledge, are widely believed
to hold. In fact, a conjecture along these lines was introduced in a survey of Goldreich,
Nisan and Wigderson (ECCC ’95). In this work, we show that such conjectures are false
by providing simple but surprising counterexamples. In particular, we construct weakly
secure signatures and one-way functions, for which standard hardness amplification re-
sults are known to hold, but for which hardness does not amplify beyond just negligible.
That is, for any negligible function ε(n), we instantiate these primitives so that the direct
product can always be broken with probability ε(n), no matter how many copies we take.

1 Introduction

Hardness amplification is a fundamental cryptographic problem: given a “weakly secure”
construction of some cryptographic primitive, can we use it to build a “strongly secure”
construction? The first result in this domain is a classical conversion from weak one-way
functions to strong one-way function by Yao [34] (see also [13]). This result starts with a
function f which is assumed to be weakly one-way, meaning that it can be inverted on at
most (say) a half of its inputs. It shows that the direct-product function F (x1, . . . , xk) =

∗NYU. E-mail: dodis@cs.nyu.edu
†UCLA. E-mail: abhishek@cs.ucla.edu. Research partially conducted while at IBM Research.
‡IDC Herzliya. E-mail: talm@seas.harvard.edu
§IBM Research T. J. Watson. E-mail: wichs@cs.nyu.edu

1

(f(x1), . . . , f(xk)), for an appropriately chosen polynomial k, is one-way in the standard
sense, meaning that it can be inverted on only a negligible fraction of its inputs. The above
result is an example of what is called the direct product theorem, which, when true, roughly
asserts that simultaneously solving many independent repetitions of a mildly hard task yields
a much harder “combined task”.1 Since the result of Yao, such direct product theorems have
been successfully used to argue security amplification of many other important cryptographic
primitives, such as collision-resistant hash functions [8], encryption schemes [12], weakly
verifiable puzzles [7, 22, 24], signatures schemes/MACs [11], commitment schemes [20, 9],
pseudorandom functions/generators [11, 28], block ciphers [26, 29, 27, 32], and various classes
of interactive protocols [5, 30, 21, 19].

Direct product theorems are surprisingly non-trivial to prove. In fact, in some settings,
such as general interactive protocols [5, 31], they are simply false and hardness does not
amplify at all, irrespective of the number of repetitions. Even for primitives such as one-way
functions, for which we do have “direct product theorems”, the parameters of these results
are surprisingly weaker than what we may have expected. Let us say that a cryptographic
construction is weakly secure if no poly-time attacker can break it with probability greater
than 1

2 . Known theorems tell us that the direct product of k = Θ(n) independent instances of
a weakly secure construction will become secure in the standard sense, meaning that no poly-
time attacker can succeed in breaking security with better than some negligible probability in
the security parameter n. However, we could naturally expect the direct product of k instances
will amplify hardness exponentially, ensuring that no poly-time attacker can break security
with more than 2−k probability. Or, we would at least expect that a sufficiently large number
of k = poly(n) repetitions can amplify hardness to some fixed/known negligible probability

such as ε(n) = 2−nδ
for some constant δ > 0, or even less ambitiously, ε(n) = n− log n. We

call such expected behavior amplification beyond negligible.

Limitation of Existing Proofs. One intuitive reason that the positive results are weaker
than what we expect is the limitation of our reduction-based proof techniques. In particular,
assume we wanted to show that the k-wise direct product amplifies hardness down to some
very small probability ε. Then we would need an efficient reduction that uses an adversary
A breaking the security of the k-wise direct product with probability ε, to break the security
of a single instance with a much larger probability, say one half. Unfortunately, the reduction
cannot get “anything useful” from the attacker A until it succeeds at least once. And since A
only succeeds with small probability ε, the reduction is forced to run A at least (and usually
much more than) 1/ε times, since otherwise A might never succeed. In other words, the
reduction is only efficient as long as ε is an inverse polynomial. This may already be enough
to show that the direct product amplifies hardness to some negligible probability, since the
success probability of A must be smaller than every inverse polynomial ε. But it also tells
us that black-box reductions cannot prove any stronger bounds beyond negligible, since the
reduction would necessarily become inefficient.2 For example, we cannot even prove that the
k-wise direct product of a weak one-way function will amplify hardness to n− log n security
(where n is the security parameter), no matter how many repetitions k we take.

Our Question. The main goal of this work is to examine whether the limitations of current

1A related approach to amplifying the hardness of decisional problems is the “XOR Lemma” which roughly
asserts the hardness of predicting an XOR of the challenge bits of many independent instances of a decisional
problem will amplify. In this work, we will focus of “search” problems such as one-way functions and signatures
and therefore only consider amplification via direct product.

2This “folklore” observation has been attributed to Steven Rudich in [15].

2

hardness amplification results are just an artifact our proof technique, or whether they reflect
reality. Indeed, we may be tempted to ignore the lack of formal proofs and nevertheless make
the following, seemingly believable conjecture that hardness does amplify beyond negligible:

Conjecture (Informal): For all primitives for which standard direct product theorems hold
(e.g., one-way functions, signatures etc.), the k-wise direct product of any weakly secure
instantiation will amplify hardness all the way down to some fixed negligible bound ε(n), such
as ε(n) = 2−Ω(n), or, less ambitiously, ε(n) = n− log n, when k = poly(n) is sufficiently large.

To the best of our knowledge, such a conjecture is widely believed to hold. The survey of
Goldreich et al. [15] explicitly introduced a variant of the above conjecture in the (slightly dif-
ferent) context of the XOR Lemma and termed it a “dream version” of hardness amplification
which, although seemingly highly reasonable, happens to elude a formal proof.

Our Results. In this work, we show that, surprisingly, the above conjecture does not hold,
and give strong counterexamples to the conjectured hardness amplification beyond negligible.
We do so in the case of signature schemes and one-way functions for which we have standard
direct-product theorems showing that hardness amplifies to negligible [34, 11]. Our result
for the signature case, explained in Section 3, relies on techniques from the area of stateless
(resettably-secure) multiparty computation [6, 3, 10, 18, 17]. On a high level, we manage
to embed an execution of a stateless mutliparty protocol Π into the design of our signature
scheme, where Π generates a random instance of a hard relation R, and the signer will output
its secret key if the message contains a witness for R. The execution of Π can be driven via
carefully designed signing queries. Since Π is secure and R is hard, the resulting signature
scheme is still secure by itself. However, our embedding is done in a way so as to allow
us to attack the direct product of many independent schemes by forcing them to execute a
single correlated execution of Π resulting in a common instance of the hard relation R. This
allows us to break all of the schemes simultaneously by breaking a single instance of R, and
thus with some negligible probability ε(n), which is independent of the number of copies k.
Indeed, we can make ε(n) an arbitrarily large negligible quantity (say, n− log n) by choosing
the parameters for the relation R appropriately.

Result 1 (Informal). Assuming the existence of a resettably secure MPC that generates
a random instance of a hard relation and standard signature schemes, there exist signature
schemes for which the direct product does not amplify security beyond negligible.

One may wonder whether such counterexamples are particular to signature schemes. More
specifically, our above counterexample seems to crucially rely on the fact that the security
game for signatures is highly interactive (allowing us to embed an interactive MPC compu-
tation) and that the communication complexity between the challenger and attacker in the
security game can be arbitrarily high (allowing us to embed data from all of the independent
copies of the scheme into the attack on each individual one). Perhaps hardness still amplifies
beyond negligible for simpler problems, such as one-way functions, where the security game
is not interactive and has an a-priori bounded communication complexity. Our second re-
sult gives strong evidence that this too is unlikely, by giving a counterexmaple for one-way
functions. The counterexample relies on a new assumption on a hash functions called Ex-
tended Second Preimage Resistance (ESPR), which we introduce in this paper. Essentially,
this assumption says that given a random challenge x, it is hard to find a bounded-length
Merkle path that starts at x, along with a collision on it. To break many independent copies
of this problem, the attacker takes the independent challenges x1, . . . , xk and builds a Merkle

3

tree with them as leaves. If it manages to find a single collision at the root of tree (which
occurs with some probability independent of k), it will be able to find a witness (a Merkle
path starting at xi with a collision) for each of the challenges xi. So far, this gives us an am-
plification counterexample for a hard relation based on the ESPR problem (which is already
interesting), but, with a little more work, we can also convert it into a counterexample for
a one-way function based on this problem. For the counterexample to go through, we need
the ESPR assumption to hold for some fixed hash function (not a family), and so we cannot
rely on collision resistance. Nevertheless, we argue that the ESPR assumption for a fixed
hash function is quite reasonable and is likely satisfied by existing (fixed) cryptographic hash
functions, by showing that it holds in a variant of the random oracle model introduced by
Unruh [33], where an attacker gets arbitrary “oracle-dependent auxiliary input”. As argued
by [33], such model is useful for determining which security properties can be satisfies by a
single hash function rather than a family.

Result 2 (Informal). Assuming the existence of extended second preimage resistant
(ESPR) hash functions, there exist one-way relations and one-way functions for which the
direct product does not amplify security beyond negligible.

Overall, our work gives strong indications that the limitations of our reductionist proofs
for the direct product theorems might actually translate to real attacks for some schemes.

Related Work. Interestingly, a large area of related work comes from a seemingly differ-
ent question of leakage amplification [2, 1, 25, 23]. These works ask the following: given a
primitive P which is resilient to ℓ bits of leakage on its secret key, is it true that breaking k
independent copies of P is resilient to almost L = ℓk bits of leakage? At first sight this seems
to be a completely unrelated question. However, there is a nice connection between hardness
and leakage-resilience: if a primitive (such as a signature or one-way function) is hard to
break with probability ε, then it is resilient to log(1/ε) bits of leakage. This means that if
some counter-example shows that the leakage bound L does not amplify with k, then neither
does the security. Therefore, although this observation was never made, the counterexam-
ples to leakage amplification from [25, 23] seem to already imply some counterexample for
hardness. Unfortunately, both works concentrate on a modified version of parallel repeti-
tion, where some common public parameters are reused by all of the instances and, thus,
they are not truly independent. Indeed, although showing counterexamples for (the harder
question of) leakage amplification is still interesting in this scenario, constructing ones for
hardness amplification becomes trivial.3 However, the work of [23] also proposed that a
variant of their counterexample for leakage amplification may extend to the setting without
common parameters under a highly non-standard assumption about computationally sound
(CS) proofs. Indeed, this suggestion led us to re-examine our initial belief that such coun-
terexamples should not exist, and eventually resulted in this work. We also notice that our
counterexample for signature schemes (but not one-way functions) can be easily extended to
give a counterexample for leakage amplification without common parameters.

2 Hardness Amplification Definitions and Conjectures

In this work, we will consider a non-uniform model of computation. We equate entities
such as challengers and attackers with circuit families, or equivalently, Turing Machines with

3E.g., the hard problem could ask to break either the actual instance or the common parameter. While such
an example does not necessarily contradict leakage amplification, it clearly violates hardness amplification.

4

advice. We let n denote the security parameter. We say that a function ε(n) is negligible if
ε(n) = n−ω(1).

We begin by defining a general notion of (single prover) cryptographic games, which cap-
tures the security of the vast majority of cryptographic primitives, such as one-way functions,
signatures, etc.

Definition 2.1 (Games). A game is defined by a probabilistic interactive challenger C.
On security parameter n, the challenger C(1n) interacts with some attacker A(1n) and may
output a special symbol win. If this occurs, we say that A(1n) wins C(1n).

We can also define a class C of cryptographic games C ∈ C. For example the factoring
problem fixes a particular game with the challenger CFACTOR that chooses two random n-bit
primes p, q, sends N = p · q to A, and outputs win iff it gets back p, q. On the other hand,
one-way functions can be thought of as a class of games COWF , where each candidate one-
way function f defines a particular game Cf ∈ COWF where the challenger samples a random
x (from an appropriate domain), gives f(x) to the attacker, and outputs win if it get back x′

s.t. f(x′) = f(x). We assume that classes of games are only defined syntactically in terms of
the structure of the challenger in the security game and so, when we talk about a class like
one-way functions/relations or signatures (the only ones we will consider in this paper), it also
includes all insecure candidates. In fact, the reader can think of the notion of a cryptographic
game in some class as being interchangeable with the notion of a candidate scheme for the
corresponding primitive – each candidate scheme defines a concrete challenger/game that
captures its security. We now define what it means for a game to be hard (correspondingly,
for a candidate scheme to be secure).

Definition 2.2 (Hardness). We say that the game C is (s(n), ε(n))-hard if, for all sufficiently
large n ∈ N and all A(1n) of size s(n) we have Pr[A(1n) wins C(1n)] < ε(n). We say that the
game C is (poly, ε(n))-hard if it is (s(n), ε(n))-hard for all polynomial s(n). We say that the
game C is (poly, negl)-hard if it is (s(n), 1/p(n))-hard for all polynomials s(n), p(n).

Definition 2.3. [Direct Product] For a cryptographic game C we define the k-wise direct-
product game Ck, which initializes k independent copies C1, . . . , Ck of the challenger C. It
proceeds in rounds where, in each round, it receives input x̄ = (x1, . . . , xk) from the attacker,
gives each xi to the corresponding Ci receiving the reply yi, and finally replies with ȳ =
(y1, . . . , yk) to the attacker. It outputs the win symbol if and only if each of the k copies Ci
individually output win.

We note that specialized variants of the direct product also make sense in some applications,
and will discuss one such variant in the case of signatures. Finally, we are ready to for-
mally define what we mean by hardness amplification. Since we focus on negative results,
we will distinguish between several broad levels of hardness amplification and ignore exact
parameters. For example, we do not pay attention to the number of repetitions k needed to
reach a certain level of hardness (an important parameter for positive results), but are more
concerned with which levels of hardness are or are not reachable altogether.

Definition 2.4 (Hardness Amplification). For a fixed game C, we say that hardness amplifies
to ε = ε(n) if there exists some polynomial k = k(n) such that Ck is (poly, ε)-hard. We say
that hardness amplifies to negligible if there exists some polynomial k = k(n) such that Ck is
(poly, negl)-hard. For a class C of games, we say that:

5

1. The hardness of a class C amplifies to negligible if, for every game C ∈ C which is
(poly, 1

2)-hard, the hardness of C amplifies to negligible.

2. The hardness of a class C amplifies to ε(n) if, for every game C ∈ C which is (poly, 1
2)-

hard, the hardness of C amplifies to ε(n).

3. The hardness of a class C amplifies beyond negligible if there exists some negligible
function ε(n) for the entire class, such that the hardness of C amplifies to ε(n).

Remarks on Definition. The standard “direct product theorems” for classes such as one-
way functions/relations and signatures show that the hardness of the corresponding class
amplifies to negligible (bullet 1). For example, if we take any (poly, 1/2)-hard function f , then
a sufficiently large direct product fk will be (poly, negl)-hard.4 However, what “negligible”
security can we actually get? The result does not say and it may depend on the function f
that we start with.5 One could conjecture that there is some fixed negligible ε(n) such that
a sufficiently large direct product of any weak instantiation will amplify its hardness to ε(n).
This is amplification beyond negligible (bullet 3). More ambitiously, we could expect that

this negligible ε(n) is very small such as ε(n) = 2−nΩ(1)
or even 2−Ω(n). We explicitly state

these conjectures below.

Dream Conjecture (Weaker): For any class of cryptographic games C for which hardness
amplifies to negligible, the hardness of C also amplifies beyond negligible.

Dream Conjecture (Stronger): For any class of cryptographic games C for which hardness

amplifies to negligible, the hardness of C also amplifies to some ε(n) = 2−nΩ(1)
.

Our work gives counterexamples to both conjectures. We give two very different types
counterexamples: one for the classes of signature schemes (Section 3) and one for the class of
one-way functions/relations (Section 4). Our counterexamples naturally require that some
hard instantiations of these primitives exist to begin with, and our counterexamples for the
weaker versions of the dream conjecture will actually require the existence of exponentially
hard versions of these primitives. In particular, under strong enough assumptions, we will
show that for every negligible function ε(n) there is stand-alone scheme which is already
(poly, negl)-hard, but whose k-wise direct product is not (poly, ε(n))-hard, no matter how
large k is. In fact, we will rely on the following theorem that makes it easier to construct
such dramatic counterexamples to the dream conjectures. It tells us that it is sufficient to
just find a weakly secure scheme whose k-wise direct product can always be broken with some
fixed probability 2−c·n for some constant c ≥ 0, no matter how many copies k we take. We
can then use it to also get weakly secure schemes whose hardness does not amplify beyond
any negligible .

Theorem 2.5. Assume that a class C contains some game C which is (poly, 1
2)-hard but

whose k-wise direct-product Ck has an attack of size poly(k, n) with success probability 2−c·n,
for some constant c ≥ 0 independent of k. Then the hardness of the class C does not amplify
to any ε(n) = 2−nΩ(1)

. If, in addition, C is (s(n), 1
2)-hard for some s(n) = 2Ω(n), then the

hardness of C does not amplify beyond negligible.

4The choice of 1/2 is arbitrary and can be replaced with any constant or even any function bounded-away-
from 1. We stick with 1/2 for concreteness and simplicity.

5It also seemingly depends on the exact polynomial size s(n) of the attackers we are trying to protect
against. However, using a result of Bellare [4], the dependence on s(n) can always be removed.

6

Proof. The main idea is to take the original game with challenger C(1n) and convert it into a
modified challenger C′m(·)(1

n) which executes C(1m), where m = m(n) is some carefully chosen

value smaller than n. In particular, for a given function ε(n) ≥ 2−n, set m(n) = 1
c log(1/ε(n)).

Then the k-wise direct product of C′m(·) can be broken by a poly(k, m) = poly(n) attack with

success probability ≥ 2−c·m(n) ≥ ε(n).

For the first part of the theorem, we can take any ε(n) = 2−nδ
for any constant δ ∈ (0, 1],

and get the game C′m(·) where m(n) = 1
c log(1/ε(n)) = nδ/c. This game remains (poly, 1

2)-

hard since poly(n) = poly(m). Therefore for each such ε(n), there is a corresponding game
which is (poly, 1

2)-hard but whose k-wise direct product does not amplify to ε(n), no matter
how large k is.

For the second part of the theorem, we can take any negligible ε(n) = n−ω(1) ≥ 2−n and
get the game C′m(·) where m(n) = 1

c log(1/ε(n)). Now since, C is (s(n), 1
2)-hard for s(n) = 2Ω(n)

it means that C′m(·) is (s′(n), 1
2)-hard where s′(n) = s(m(n)) = 2Ω(log(1/ε(n))) = nω(1). So C′m(·)

is also (poly, 1
2)-hard. Therefore for each such negligible ε(n), there is a corresponding game

which is (poly, 1
2)-hard but whose k-wise direct product does not amplify to ε(n), no matter

how large k is.
(Remark: In the proof, we implicitly assume the class C is robust so that, when C ∈ C

then the corresponding game C′m(·) ∈ C. This is true for syntactic definitions of classes such as
candidate one-way functions or signatures. However, for the second part of the theorem, the
function m(n) may not be efficiently computable if log(1/ε(n)) is not efficiently computable
in poly(n) time. In that case, the challenger C′m(·) in the counterexample may be not be

uniformly efficient even when C is (it is always non-uniformly efficient since m(n) can be
hardcoded). We can either live with having non-uniform counterexamples or we can restrict
ourselves to showing a counterexample for every negligible function ε(n) for which log(1/ε(n))
is efficiently computable in poly(n) time.)

2.1 Hard and One-Way Relations

As a component of both counterexamples, we will rely on the following definition of hard
relations phrased in the framework of cryptographic games:

Definition 2.6 (Hard Relations). Let p be some polynomial and R ⊆
⋃

n∈N
{0, 1}n×{0, 1}p(n)

be an NP relation consisting of pairs (y, w) with instances y and wintesses w. Let L =
{ y : ∃ w s.t. (y, w) ∈ R} be the corresponding NP language. Let y ← SamL(1n) be a
PPT algorithm that samples values y ∈ L. For a relation R = (R,SamL), we define the
corresponding security game where the challenger C(1n) samples y ← SamL(1n) and the
adversary wins if it outputs w s.t. (y, w) ∈ R. As with other cryptographic games, we can
talk about (s(n), ε(n))-hard relations, as well as (poly, negl)-hard relations.

Note that, for hard relations, we only require that there is an efficient algorithm for
sampling hard instances y. Often in cryptography we care about a sub-class of hard relations,
which we call one-way relations, where is it also feasible to efficiently sample a hard instance
y along with a witness w. We define this below.

Definition 2.7 (One-Way Relation). Let R be an NP relation and L be the corresponding
language. Let (y, w)← SamR(1n) be a PPT algorithm that samples values (y, w) ∈ R, and
define y ← SamL(1n) to be a restriction of SamR to its first output. We say that (R,SamR)
is a one-way relation if (R,SamL) is a hard relation.

7

3 Counterexample for Signature Schemes

3.1 Overview

We use the standard notions of signature security, meaning existential unforgeability against
chosen message attack [16]. The work of [11] shows that the direct product of any stateless
weak signature schemes amplifies hardness to negligible. We now show that it does not
(in general) amplify hardness beyond negligible. For signatures, it is natural to consider a
variant of the direct product, which we call the “same-message direct product” where, instead
of asking the attacker to break k independent schemes by interacting with each challenger
separately, we also restrict the attacker to always querying the same message for all k schemes
in its signing queries and forging a signature on the same message for all k schemes. This
corresponds to the natural way of using many weak signature schemes to construct a single
strong signature by signing each message under each scheme separately. Since the “same-
message direct product” just restricts the attacker further, any counterexample of this form
will also imply a counterexample for the standard direct product (Definition 2.3). Therefore,
in the rest of the section we will consider the same-message direct product which gives us the
strongest and most meaningful counterexample result.

We will give a transformation from any standard signature scheme (Gen, Sign, Verify) into
a new signature scheme (Gen, Sign, Verify) whose hardness does not amplify (via a direct
product) beyond negligible. We start by giving an informal description of the transformation
to illustrate our main ideas. In order to convey the intuition clearly, we will first consider
a simplified case where the signing algorithm Sign of the (modified) scheme (Gen, Sign,
Verify) is stateful, and will then discuss how to convert the stateful signing algorithm into
one that is stateless.6

Embedding MPC in Signatures. Let (Gen, Sign, Verify) be any standard signature
scheme. Let F = {Fk}k∈N be a randomized k-party “ideal functionality” that takes no
inputs and generates a random instance y of a hard relation R = (R,SamL) according to the
distribution SamL. Further, let Π = {Πk}k∈N be a multi-party computation protocol that
securely realizes the functionality F for any number of parties k. Then, the new signature
scheme (Gen, Sign, Verify) works as follows.

Algorithms Gen and Verify are identical to Gen and Verify respectively. The signing
algorithm Sign is essentially the same as Sign, except that, on receiving a signing queries
of a “special form”, Sign interprets these as “protocol messages” for Πk and (in addition
to generating a signature of them under Sign) also executes the next message function of
the protocol and outputs its response as part of the new signature. A special initialization
query specifies the number of parties k involved in the protocol and the role Pi in which the
signing algorithm should act. The signing algorithm then always acts as the honest party
Pi while the user submitting signing queries can essentially play the role of the remaining
k − 1 parties. When Πk is completed yielding some output y (interpreted as the instance of
a hard relation R) the signing algorithm Sign will look for a signing query that contains a
corresponding witness w, and, if it receives one, will respond to it by simply outputting its
entire secret key in the signature. The security of the transformed signature (Gen, Sign,

6We note that in the setting of stateful signatures, hardness fails to amplify even to negligible since we
can embed the counterexamples of [5, 31] into the signature scheme. Nevertheless our initial description of
our counterexample for the stateful setting will clarify the main new result, which is a counterexample for the
stateless setting.

8

Verify) immediately follows from the security of the MPC protocol Πk against all-but-one
corruptions, the hardness of the relation R and the security of the original signature scheme.

Attacking the Direct-Product. Let us now briefly demonstrate an adversary A for the
k-wise direct product. Very roughly, A carefully chooses his signing queries so as to force
Sign1, . . . ,Signk to engage in a single execution of the protocol Πk, where each Signi plays
the role of a different party Pi, while A simply acts as the “communication link” between
them. This results in all component schemes Signi generating a common instance y of the
hard relation. Finally, A simply “guesses” a witness w for y at random and, if it succeeds,
submits w as a signing query, thereby learns the secret key of each component signature
scheme thereby breaking all k of them! Note that the probability of guessing w is bounded
by some negligible function in n and is independent of the number of parallel repetitions k.

Stateful to Stateless. While the above gives us a counterexample for the case where
Sign is a stateful algorithm, (as stated above) we are mainly interested in the (standard)
case where Sign is stateless. In order to make Sign a stateless algorithm, we can consider
a natural approach where we use a modified version Π′

k of protocol Πk: each party Pi in
Π′

k computes an outgoing message in essentially the same manner as in Πk, except that it
also attaches an authenticated encryption of its current protocol state, as well as the previous
protocol message. This allows each (stateless) party Pi to “recover” its state from the previous
round to compute its protocol message in the next round. Unfortunately, this approach is
insufficient, and in fact insecure, since an adversarial user can reset the (stateless) signing
algorithm at any point and achieve the effect of rewinding the honest party (played by the
signing algorithm) during the protocol Πk. To overcome this problem, we leverage techniques
from the notion of resettably-secure computation. Specifically, instead of using a standard
MPC protocol in the above construction, we use a recent result of Goyal and Maji [17] which
constructs an MPC protocol that is secure against reset attacks and works for stateless parties
for a large class of functionalities, including “inputless” randomized functionalities (that we
will use in this paper).

The above intuitive description hides many details of how the user can actually “drive”
the MPC execution between the k signers within the direct-product game where all signers
respond to a single common message. We proceed to make this formal in the following section.

3.2 Our Signature Scheme

We now give our transformation from any standard signature scheme into one whose hardness
does not amplify beyond negligible. We first establish some notation.

Notation. Let n be the security parameter. Let (Gen, Sign, Verify) be any standard
signature scheme. Further, let (R,SamL) be a hard relation as per Definition 2.6. Let
{PRFK : {0, 1}poly(n) → {0, 1}poly(n)}K∈{0,1}n} be a pseudo-random function family.

Stateless MPC. We consider a randomized k-party functionality F = {F}k∈N that does
not take any inputs; F simply samples a random pair y ← SamL(1n) and outputs y to all
parties. Let {Πk}k∈poly(n) be a family of protocols, where each Πk = {P1, . . . , Pk} is a k-party
MPC protocol for computing the functionality F in the public state model. This model is
described formally in Appendix A, and we only give a quick overview here. Each party Pi

9

is completely described by the next message function NMi, which takes the following four
values as input: (a) a string πj−1 that consists of all the messages sent in any round j − 1
of the protocol, (b) the public state statei of party Pi, and (c) the secret randomness ri. On
receiving an input of the form πj−1‖statei‖ri, NMi outputs Pi’s message in round j along with
the updated value of statei. We assume that an attacker corrupts (exactly) k−1 of the parties.
In the real-world execution, the attacker can arbitrarily call the next-message function NMi

of the honest party Pi with arbitrarily chosen values of the public state statei and arbitrary
message πj−1 (but with an honestly chosen and secret randomness ri). Nevertheless, the
final output of Pi and the view of the attacker can be simulated in the ideal world where the
simulator can “reset” the ideal functionality. In our case, that means that the attacker can
adaptively choose one of polynomially many honestly chosen instances y1, . . . , yq of the hard
relation which Pi will then accept as output.

The Construction. We now formally describe our signature scheme (Gen,Sign,Verify).

Gen(1n): Compute (pk, sk) ← Gen(1n). Also, sample a random tape K ← {0, 1}poly(n) and
a random identity id ∈ {0, 1}n. Output PK = (pk, id) and SK = (sk, K, id).

Sign(SK, m): To sign a message m using secret key SK = (sk, K, id), the signer outputs
a signature σ = (σ1, σ2) where σ1 ← Sign(sk, m). Next, if m does not contain the prefix
“prot”, then simply set σ2 = {0}. Otherwise, parse m = (“prot”‖IM‖πj‖state‖w), where
IM = k‖id1‖ . . . ‖idk such that state = state1‖ . . . ‖statek, then do the following:

• Let i ∈ [k] be such that id = idi. Compute ri = PRFK(IM). Then, apply the next
message function NMi of (stateless) party Pi in protocol Πk over the string πj‖statei‖ri

and set σ2 to the output value.7

• Now, if σ2 contains the output y of protocol Πk,
8 then further check whether (y, w) ∈ R.

If the check succeeds, set σ2 = SK.

Verify(PK, m, σ): Given a signature σ = (σ1, σ2) on message m with respect to the public
key PK = (pk, id), output 1 iff Verify(pk, m, σ1) = 1.

This completes the description of our signature scheme. We prove the following theorem
showing that the signature scheme satisfies basic signature security in Appendix B.

Theorem 3.1. If (Gen, Sign, Verify) is a secure signature scheme, {PRFK} is a PRF family,
R is a hard relation, and Πk is a stateless MPC protocol for functionality F , then the proposed
scheme (Gen,Sign,Verify) is a secure signature scheme.

3.3 Attack on the Direct Product

Theorem 3.2. Let (Gen,Sign,Verify) be the described signature scheme and let R =

(SamL, R) be the hard relation used in the construction. Assume that for any y
$

← SamL(1n),
the size of the corresponding witness w is bounded by |w| = p(n) for some polynomial p(·).

7Note that here σ2 consists of party Pi’s protocol message in round j + 1, and its updated public state
statei. See Section A for details.

8Note that this is the case when j is the final round in Πk. Here we use the property that the last round
of Πk is the output delivery round, and that when NMi is computed over the protocol messages of this round,
it outputs the protocol output.

10

Then, for any polynomial k = k(n), there is an attack against the k-wise direct product
running in time poly(k, n) with success probability ε(n) = 2−p(n).

We will prove Theorem 3.2 by constructing an adversary A that mounts a key-recovery
attack on any k-wise direct product of the signature scheme (Gen, Sign, Verify).

k-wise Direct Product. Let (Gen, Sign, Verify) denote the k-wise direct product of
the signature scheme (Gen, Sign, Verify), described as follows. Algorithm Gen runs
Gen k-times to generate k key pairs (PK1, SK1),. . . ,(PKk, SKk). To sign a message m,
Sign computes σi ← Sign(SKi, m) for every i ∈ k and outputs σ = (σ1, . . . , σk). Fi-
nally, on input a signature σ = (σ1, . . . , σk) on message m, Verify outputs 1 iff ∀i ∈ k,
Verify(PKi, m, σi) = 1.

Description of A. We now describe the adversary A for (Gen, Sign, Verify). Let
(PK1, . . . , PKk) denote the public key that A receives from the challenger of the signature
scheme (Gen, Sign, Verify), where each PKi = (pki, idi). The adversary A first sends a
signing query m0 of the form “prot”‖IM‖π0‖state‖w, where IM = k‖id1‖ . . . ‖idk, and π0 =
state = w = {0}. Let σ = (σ1, . . . , σk) be the response it receives, where each σi = σ1

i , σ
2
i . A

now parses each σ2
i as a first round protocol message πi

1 from party Pi followed by the public
state statei of Pi (at the end of the first round) in protocol Πk.
A now prepares a new signing query m1 of the form “prot”‖IM‖π1‖state‖w, where IM

and w are the same as before, but π1 = π1
1‖ . . . ‖πk

1 , and state = state1‖ . . . ‖statek. On
receiving the response, A repeats the same process as above to produce signing queries
m2, . . . , mt−1, where t is the total number of rounds in protocol Πk. (That is, each signing
query m2, . . . , mt−1 is prepared in the same manner as m1.)

Finally, let σ = (σ1, . . . , σk) be the response to the signing query mt−1. A now parses each
σ2

i as the round t protocol message πi
t from party Pi followed by the state statei of Pi. Now,

since the final round (i.e., round t) of protocol Πk is the output delivery round, and further, Πk

satisfies the publicly computable output property, A simply computes the protocol output y

from the messages π1
t , . . . , π

k
t . Now, A guesses a p(n)-sized witness w∗ $

← {0, 1}p(n) at random
and, if (y, w∗) ∈ R(x), it now sends the final signing query mt =“prot”‖IM‖πt‖state‖w, where
IM is the same as before, πt = π1

t ‖ . . . ‖πk
t , state = state1‖ . . . ‖statek, and w = w∗. Thus, A

obtains SK1, . . . , SKk from the challenger and can forge arbitrary signatures for the direct
product scheme. It’s clear that its success probability is at least 2−p(n).

Corollary 3.3. Assuming the existence hard relations and a general stateless MPC compilers,
the hardness of signature schemes does not amplify to any ε(n) = 2−nΩ(1)

. This gives a
counterexample to the strong dream conjecture for signature schemes. If we, in addition,
assume the existence of (2Ω(n), 2−Ω(n))-hard relations with witness size c ·n for some constant
c ≥ 0, then there exist signature schemes whose hardness does not amplify beyond negligible.
This gives a counterexample to the weak dream conjecture.

Proof. We essentially just combine Theorem 3.2 and Theorem 2.5. This gives the first part of
the corollary. For the second part of the corollary, a naive application of Theorem 2.5 would
require that the entire signature scheme from our above counterexample is exponentially
secure, which would require exponentially secure MPC. It turns out that this is overkill and
we just need the relation R to be exponentially secure. In particular, for any negligible
ε(n), we just instantiate the relation R with security parameter m(n) = −1

c log(1/ε(n)) in
which case the relation remains (poly, negl)-hard. Therefore, the resulting signature scheme
is (poly, negl)-secure but, by Theorem 3.2, the direct product can be broken in poly(n) time
with probability ε(n).

11

Remark on Leakage Amplification. We can also use the above idea to get a counterex-
ample to leakage-amplification of signature schemes. In particular, instead of using (just) a
hard relation R = (R,SamL), let us use a one-way relation R = (R,SamR) where we can

efficiently sample instance/witness pairs (y, w)
$
← SamR(1n). Let us also change the ideal

functionality F so that it samples (y, w)
$
← SamR(1n), outputs y to all parties, and gives a

secret share wi of w to each party Pi so that
⊕k

i=1 wi = w. We then use the same signature
construction as above, but with the protocol Π implementing the new functionality F . It
is easy to see that the stand-alone construction remains a secure signature scheme in the
standard sense without leakage, which also implies that it is secure to O(log n) bits of leakage
on its secret. However, the direct product of any k signatures can be broken just by leaking
the short witness w, whose size is independent of the number of schemes k. In particular,
w can be efficiently computed given only the secret keys of the k signature schemes, since
the randomness used by each signer during the execution of Π is a part of its secret key, and
hence the leakage can just run the protocol Π in its head and reconstruct w. This counterex-
ample yields a similar result as [23], showing lack of leakage amplification even when there
are no common parameters between the different schemes, but under standard computational
assumptions.

4 Counterexample for One-Way Functions and Relations

In Section 3, we proved that there exist signature schemes whose hardness does not amplify
beyond negligible. This already rules out the general conjecture that “for any game for
which hardness amplifies to negligible, hardness will also amplify to exponential (or at least
beyond negligible)”. Nevertheless, one might still think that the conjecture hold for more
restricted classes of games. Perhaps the simplest such class to consider is one-way functions.
Note that, unlike the case for signature schemes, the one-way function game does not allow
interaction and has bounded communication between attacker and challenger. Thus, the
general strategy we employed in Section 3 of embedding a multiparty computation inside
signature queries, will no longer work. In this section, we propose an alternate strategy for
showing that hardness of one-way functions does not amplify beyond negligible.

4.1 Extended Second-Preimage Resistant (ESPR) Hash Functions

Our construction is based on a new (non-standard) cryptographic security assumption on
hash functions. Let h : {0, 1}2n 7→ {0, 1}n be a hash function. We define a Merkle path of
length ℓ to be a tuple of the form

pℓ = (x0, (b1, x1), . . . , (bℓ, xℓ)) : bi ∈ {0, 1}, xi ∈ {0, 1}n.

Intuitively, x0 could be the leaf of some Merkle tree of height ℓ, and the values x1, . . . , xℓ

are the siblings along the path from the leaf to the root, where the bits bi indicate whether
the sibling xi is a left or right sibling. However, we can also talk about a path pℓ on its own,
without thinking of it as part of a larger tree. Formally, if pℓ is a Merkle path as above, let
pℓ−1 be the path with the last component (bℓ, xℓ) removed. The value of a Merkle path pℓ as
above is defined iteratively via:

h̄(pℓ) =







h(h̄(pℓ−1), xℓ) ℓ > 0, bℓ = 1
h(xℓ, h̄(pℓ−1)) ℓ > 0, bℓ = 0
x0 ℓ = 0

12

We call x0 the leaf of the path pℓ, and z = h̄(pℓ) is its root. We say that y = (xL, xR) ∈
{0, 1}2n is the known preimage of the path pℓ if xL, xR are the values under the root, so that
either xL = xℓ, xR = h̄(pℓ−1) if bℓ = 0, or xL = h̄(pℓ−1), xR = xℓ if bℓ = 1. Note that this
implies h(y) = h̄(pℓ). We say that y′ ∈ {0, 1}2n is a second preimage of the path pℓ if y′ 6= y
is not the known preimage of pℓ, and h(y′) = h̄(pℓ). We are now ready to define the extended
second-preimage resistance (ESPR) assumption. This assumption says that, given a random
challenge x0 ∈ {0, 1}n, it is hard to find a (short) path pℓ containing x0 as a leaf, and a
second-preimage y′ of pℓ.

Definition 4.1 (ESPR). Let h : {{0, 1}2n 7→ {0, 1}n}n∈N be a poly-time computable hash
function. We define the Extended Second Preimage Resistance (ESPR) assumption on h via
the following security game between a challenger and an adversary A(1n):

1. The challenger chooses x0
$
← {0, 1}n at random and gives it to A.

2. A wins if it outputs a tuple (pℓ, y
′), where pℓ is a Merkle path of length ℓ ≤ n containing

x0 as a leaf, and y′ is a second-preimage of pℓ.

In addition to requiring the ESPR assumption to hold, we will also assume that h is at
least slightly regular, so that every output has at least two pre-images. This implies that, for
any path pℓ there exists a second preimage and hence there is always an inefficient attack
against ESPR security.

Definition 4.2 (Slightly Regular Hash). We say that h : {{0, 1}2n 7→ {0, 1}n}n∈N is slightly
regular, if for every z ∈ {0, 1}n there exist at least two distinct pre-images y 6= y′ such that
h(y) = h(y′) = z.

Discussion. In the above definition, we want h to be a single fixed hash function and not
a function family. The notion of ESPR security seems to lie somewhere in between second-
preimage resistance (SPR) and collision resistance (CR), implying the former and being
implied by the latter.9 Unfortunately, collision resistance cannot be achieved by any fixed
hash function (at least w.r.t non-uniform attackers), since the attacker can always know
a single hard-coded collision as auxiliary input. Fortunately, there does not appear to be
any such trivial non-uniform attack against ESPR security, since the attacker is forced to
“incorporate” a random leaf x0 into the Merkle path on which it finds a collision. Therefore,
in this regard, it seems that ESPR security may be closer to SPR security, which can be
achieved by a fixed hash function (if one-way functions exist). Indeed, in Section 4.4, we give
a heuristic argument that modern (fixed) cryptographic hash functions already satisfy the
ESPR property, even against non-uniform attackers. We do so by analyzing ESPR security in
a variant of the random-oracle model, where the attacker may observe some “oracle-dependent
auxiliary input”. This model, proposed by Unruh [33], is intended to capture the properties
of hash functions that can be achieved by fixed hash functions, rather than function families.

4.2 A Counterexample to Hard Relations from ESPR

We begin by giving a counterexample for hard relations and later extend it to counterexamples
for one-way functions and relations.

9A hash function is SPR if, given a uniformly random y, it’s hard to find any y′ 6= y such that h(y) = h(y′).
It is CR if it is hard to find any y 6= y′ s.t. h(y) = h(y′).

13

Definition 4.3 (ESPR Relation). Given a hash function h we can define the NP relation
Rh with statements x ∈ {0, 1}n and witnesses w = (pℓ, y

′) where pℓ is a Merkle path of length
ℓ ≤ n containing x as leaf, and y′ is a second-preimage of pℓ. We define the distribution x←

SamLh(1n) which just samples x
$
← {0, 1}n uniformly at random and call Rh = (Rh,SamLh)

the ESPR relation.

Note that the NP language corresponding to Rh is defined as Lh
def
= {x : ∃ w s.t. (x, w) ∈

Rh }, and, if h is slightly regular, then Lh = {0, 1}∗ is just the language consisting of all
bit strings. Therefore SamLh does indeed sample from the language and Rh satisfies the
syntax of a hard relation. Moreover, if h is an (s(n), ε(n))-hard ESPR hash function, then
Rh = (Rh,SamL) is an (s(n), ε(n))-hard relation, since the security games are equivalent.

We now show that hardness does not amplify for the relation Rh. The main idea is that,
given k random and independent challenges x(1), . . . , x(k), the attacker builds a Merkle tree
with the challenges as leaves. Let z be the value at the top of the Merkle tree. Then the
attack just guesses some value y′ ∈ {0, 1}2n at random and, with probability ≥ 2−2n, y′

will be a second-preimage of z (i.e. h(y′) = z and y′ is distinct from the known preimage
y containing the values under the root). Now, for each leaf x(i), let pi

ℓ be the Merkle path
for the leaf x(i). Then the witness wi = (y′, pi

ℓ) is good witness for x(i). So, with probability
≥ 2−2n with which the attack correctly guessed y′, it breaks all k independent instances of
the relation Rh, no matter how large k is! By changing the relation Rh = (Rh,SamL) so

that, on security parameter n, the sampling algorithm SamL(1n) chooses x
$
← {0, 1}m with

m = m(n) being some smaller function of n such as m(n) = nδ for a constant δ > 0 or even
m(n) = log2(n), we can get more dramatic counterexamples where hardness does not amplify

beyond ε(n) = 2−nδ
or even ε(n) = n− log n. We now summarize the above discussion with a

formal theorem.

Theorem 4.4. Let h be a slightly regular, ESPR-secure hash function and letRh = (Rh,SamL)
be the corresponding hard relation. Then, for any polynomial k = poly(n), the k-wise direct
product of Rh is not (poly, 2−2n) secure. That is, there is a poly(k, n) attack against the
k-wise direct product of Rh having success probability 2−2n.

Proof. We first describe the attack. The attacker gets k independently generated challenges
x(1), . . . , x(k). Let ℓ be the unique value such that 2ℓ−1 < k ≤ 2ℓ, and let k∗ = 2ℓ be
the smallest power-of-2 which is larger than k. Let us define additional “dummy values”
x(k+1) = . . . = x(k∗) := 0n. The attack constructs a Merkle Tree, which is a full binary tree
of height ℓ, whose k∗ leaves are associated with the values x(1), . . . , x(k∗). The value of any
non-leaf node v is defined recursively as val(v) = h(val(vL), val(vR)) where vL, vR are the left
and right children of v respectively. For any leaf v(i) associated with the value x(i), let (v1 =
v(i), v2, . . . , vℓ, r) be the nodes on the path from the leaf v1 to the root r in the Merkle tree. The

Merkle path associated with the value x(i) is then defined by p
(i)
ℓ = (x(i), (x1, b1), . . . , (xℓ, bℓ))

where each xj is the value associated with the sibling of vj , and bj = 0 if vj is a right child
and 1 otherwise. Note that, if r is the root of the tree and z = val(r) is the value associated

with it, then h̄(p
(i)
ℓ) = z for all paths p

(i)
ℓ with i ∈ {1, . . . , k∗}. Furthermore let us label the

nodes vL, vR to be the children of the root r, the values xL, xR be the values associated with
them, and set y := (xL, xR). Then y is the known preimage such that h(y) = z, associated

with each one of the paths p
(i)
ℓ .

14

The attack guesses a value y′
$
← {0, 1}2n at random and, outputs the k-tuple of witnesses

(w1, . . . , wk) where wi = (p
(i)
ℓ , y′). With probability at least 2−2n, y′ is a second-preimage

of z with h(y′) = z and y′ 6= y (since h is slightly regular, such second preimage always

exists). If this is the case, then y′ is also a second preimage of every path p
(i)
ℓ . Therefore,

with probability ≥ 2−2n the attack finds a witness for each of the k instances and wins the
hard relation game for the direct product relation Rk

h.

Corollary 4.5. Assuming the existence of a slightly regular (poly, negl)-hard ESPR hash

functions, the hardness of hard relations does not amplify to 2−nΩ(1)
, giving a counterexam-

ple to the stronger dream conjecture for hard relations. If we instead assume the existence
of (2Ω(n), 2−Ω(n))-hard ESPR hash functions, then the hardness of hard relations does not
amplify beyond negligible, giving a counterexample to the weaker dream conjecture.

Proof. Follows directly by combining Theorem 2.5 and Theorem 4.4.

4.3 Extension to One-Way Relations and One-Way Functions

One-Way Relations. We can get essentially the same results as above for one-way rela-
tions rather than just hard relations. Assume that Row = (Row,SamRow) is any one-way
relation, and let Rhard = (Rhard,SamLhard) be a hard relation. Define the OR relation
Ror = (Ror,SamRor) via:

Ror
def
= {(y1, y2), (w1, w2) : (y1, w1) ∈ Rhard or (y2, w2) ∈ Row}

SamRor(1
n) : Sample y1 ← SamLhard(1

n), (y2, w2)← SamRow(1n). Out: ((y1, y2), (0, w2)).

Then Ror is (poly, negl)-hard as long as both ROW and Rhard are. However, the k-wise
direct product of Ror is no harder than that of Rhard. Therefore the results of Corollary 4.5
translate directly to one-way relations as well.

One-Way Functions. Let i(n) ≥ n be a polynomial and f : {{0, 1}i(n) → {0, 1}n }n∈N

be a one-way function. Let R = (R,SamL) be a hard relation where the sampling algorithm

SamL(1n) induces the same distribution over {0, 1}n as the distribution {f(x) : x
$
←

{0, 1}i(n)}. Assume that for y ∈ {0, 1}n, and witness w such that (y, w) ∈ R, the witness-size
is bounded by |w| = u(n). We define the counterexample one-way function

F : {0, 1}i(n) × {0, 1}n × {0, 1}u(n) × {0, 1}4n → {0, 1}n

via:

F (x, y, w, z)
def
=

{

y If (y, w) ∈ R ∧ z = 04n

f(x) Otherwise.

Note that the distribution of F (x, y, w, z) is statistically close to that of f(x) since the
probability of z = 04n is negligible.10 The preimage of any y ∈ {0, 1}n is either of the form
(·, y, w, ·) where (y, w) ∈ R or of the form (x, ·, ·, ·) where f(x) = y, and hence breaking the
one-wayness of F is no easier then breaking that of f or breaking the hard relation R.

10This is the only reason we include the input z.

15

Theorem 4.6. Assume that f is a one-way function and R a hard relation with matching
output distributions as above, and that both are (s(n), ε(n))-hard. Then the function F is a
(s(n), 2ε(n)+2−4n)-hard one-way function. On the other hand, if there is a poly(k, n) attack
on the k-wise direct product Rk of the relation R with success probability ε(n), than there
is also a poly(k, n) attack on the k-wise direct product F k of the one-way function F with
success probability ≥ ε(n)− 2−3n.

Proof. Assume that A is of size s(n) and has probability εF (n) in inverting F . When
(x, y, w, z) is chosen at random, the probability that z = 04n is just 2−4n and hence the

distribution of F (x, y, w, z) is (2−4n)-close to that of f(x). So, we have Pr[F (A(y)) = y | x
$
←

{0, 1}n, y = f(x)] ≥ εF (n)− 2−4n. For (x′, y′, w, z) = A(y), let Wfunc be the event that with
f(x′) = y and let Wrel be the event that (y, w) ∈ R. Then 2ε(n) ≥ Pr[Wfunc] + Pr[Wrel] ≥
εF (n)− 2−4n, which concludes the first part of the theorem.

For the second part of the theorem, assume that there is an attack A onRk. That is, given

(y1, . . . , yk)
$
← SamLk(1n), and (w1, . . . , wk) = A(y1, . . . , yk) we get (y1, w1), . . . , (yk, wk) ∈ R

with probability ≥ ε′(n). Then, A(y1, . . . , yk) also satisfies this condition when we choose

{yi
$
← F (xi, y

′
i, wi, zi)}

k
i=1 with probability ≥ ε′(n) − k2−4n ≥ ε′(n) − 2−3n since the two

distributions are (k2−4n)-statistically-close. Therefore, to invert F k on output (y1, . . . , yk)
we can just run (w1, . . . , wk) = A(y1, . . . , yk) and output the k pre-images of the form
(0i(n), yi, wi, 0

n).

The only challenge left is to instantiate the one-way function f and the relation R. We
would like to use the counterexample hard-relation Rh from Theorem 4.4 (or the variant
using smaller instances as in Corollary 4.5). In this case, we seem to need f to be a regular
one-way function so that the distribution of f(x) is just uniformly random n-bit strings.11

We summarize this below.

Corollary 4.7. Assume that there exists a regular one-way function f : {{0, 1}i(n) →
{0, 1}n}n∈N and slightly regular ESPR hash function h : {{0, 1}2n → {0, 1}n}n∈N, both of
which are (poly, negl)-hard. Then the hardness of one-way functions does not amplify beyond
2−Ω(n), giving a counterexample to the stronger dream conjecture for one-way functions. If f
and h are both (2Ω(n), 2−Ω(n))-hard then the hardness of one-way functions does not amplify
beyond negligible, giving a counterexample to the weaker dream conjecture.

Proof. Using Theorem 4.4, the k-wise direct product Rk
h of Rh has poly(k, n) sized attack

with success probability 2−2n. Using the second part of Theorem 4.6, this means that F k has
a poly(k, n) sized attack with success probability 2−2n− 2−3n ≥ 2−3n. On the other hand, by
the first part of Theorem 4.6, F is (poly, negl)-hard if both Rh, f are and is (2Ω(n), 2−Ω(n)-
hard if both Rh, f are. The corollary then follows by applying Theorem 2.5 to the one-way
function F .

It turns out that we do not need to make an additional assumption about regular one-way
functions f and instead directly use the ESPR hash function h in place of f . Firstly, we need
to show that ESPR security implies one-wayness, which is very similar to the proof that
SPR (second-preimage resistance) implies one-wayness. Secondly, we need to show that the
relation Rh used in our counterexample remains hard even when the instance x is sampled
as h(x1, x2) instead of uniformly at random.

11A function is regular if the every output has the same number of preimages.

16

Lemma 4.8. Let h : {0, 1}2n → {0, 1}n be an (s(n), ε(n))-hard ESPR hash function. Then
h is also an (s(n), ε(n) + 2−n)-hard one-way function.

Proof. Assume that there is an attack A of size s(n) which breaks one-wayness of h with

probability ε′(n). Let us consider the experiment where we sample y = (x0, x1)
$
← {0, 1}2n,

z = h(y), y′ = A(z). Let W be the event that h(y′) = z and E be the event that y′ = y. By
assumption Pr[W] = ε′(n). On the other hand Pr[E] ≤ 2−n since A must guess a random 2n
bit value y given only n bits of information z about it. Therefore Pr[W ∧¬E] ≥ ε′(n)− 2−n.

Let A′(x0) be an attacker which samples x1
$
← {0, 1}n, sets y = (x0, x1), z = h(y) and

calls A(z). Let p1 = (x0, x1) be a Merkle path of length 1 which evaluates to z and whose
known preimage is y = (x0, x1). If the event W ∧ ¬E occurs, than y′ is a second preimage
of the path p1 starting at the challenge leaf x0 and therefore A breaks ESPR security. This
proves the lemma.

Lemma 4.9. Let h : {0, 1}2n → {0, 1}n be an (s(n), ε(n))-hard ESPR hash function. Let
R′

h = (R′
h,SamL′

h) be just like the hard relation from our counterexample, with the modi-

fication that the distribution SamL′
h(1n) samples x′ = h(xL, xR) where (xL, xR)

$

← {0, 1}2n

instead of sampling x′ as a uniformly random n-bit value. Then there is some polynomial
p(n) such that R′

h is (s(n)− p(n), ε(n))-hard.

Proof. Assume that A(x′) is an attack against the relation R′
h. Then we can construct an at-

tackA′(x) against the ESPR security of h as follows. On random challenge x, the attackA′(x)

sets xL = x and samples xR
$
← {0, 1}n. It computes x′ = h(xL, xR) and calls A(x′) which out-

puts a Merkle path pℓ = (x′, (x1, b1) . . . , (xℓ, bℓ)) of size ℓ ≤ n−1 along with a second preimage
y′ of pℓ. The attack A′ then outputs the path p′ℓ+1 = (xL, (xR, 1), (x1, b1) . . . , (xℓ, bℓ)) and
the same preimage y′. Note that, if y′ is a second preimage of pℓ, it is also a second preimage
of p′ℓ+1. Therefore, the success probability of A′ against the ESPR security of h is the same
as that of A against the hardness of R′

h.

Putting Lemmas 4.8 and 4.9 together, we get a one-way function h and a relation R′
h that

meet the requirements of Theorem 4.6 under just the ESPR assumption. Namely,the output
distribution of h matches the distribution of instances on which R′

h is hard. Therefore, by
applying Theorem 2.5, we can get the same results as in Corollary 4.7 under just the ESPR
assumption.

Corollary 4.10. If there exists a slightly regular ESPR hash function h : {{0, 1}2n →
{0, 1}n}n∈N which is (poly, negl)-hard, then the hardness of one-way functions does not am-
plify beyond 2−Ω(n), giving a counterexample to the stronger dream conjecture for one-way
functions. If h is (2Ω(n), 2−Ω(n))-hard then the hardness of one-way functions does not amplify
beyond negligible, giving a counterexample to the weaker dream conjecture.

4.4 Justifying the ESPR Assumption

We now give some justification that ESPR hash functions may exist by showing how to
construct them in in a variant of the random-oracle (RO) model. Of course, constructions
in the random-oracle model do not seem to offer any meaningful guarantees for showing that
the corresponding primitive may be realized by a fixed hash function: indeed the RO model
immediately implies collision resistance which cannot be realized by a fixed hash function.
Rather, the RO model is usually interpreted as implying that the given primitive is likely to

17

be realizable by a family of hash functions. Therefore, we will work with a variant of the RO
model in which the attacker is initialized with some arbitrary “oracle-dependent auxiliary
input”. This model was proposed by Unruh [33] with the explicit motivation that:

“. . . oracle-dependent auxiliary input provides a tool for distinguishing the cases where

the use of a single function is sufficient (e.g., in the case where we require only one-

wayness) and where a keyed family of functions is necessary (e.g., in the case that we

require collision-resistance).”

For example, the auxiliary input may include some small number of fixed collisions on the
RO and therefore collision-resistance is unachievable in this model. By showing that ESPR
security is achievable, we provide some justification for this assumption.

Oracle-Dependent Auxiliary Input. Let O : {0, 1}2n 7→ {0, 1}n be a fixed length
random oracle. We define “oracle-dependent auxiliary input” of size p(n) as an arbitrary

function z : {{0, 1}2n 7→ {0, 1}n} 7→ {0, 1}p(n) which can arbitrarily “compresses” the entire
oracle O into p(n) bits of auxiliary information z(O). When considering security games in the
oracle-dependent auxiliary input model, we consider attackers AO(z(O)) which are initialized
with polynomial-sized oracle-dependent auxiliary input z(·).

In Appendix C, we prove the following theorem.

Theorem 4.11. Let O be modeled as a random oracle, and consider the ESPR game in
which h is replaced with O. Then, for any attacker AO(z(O)) with polynomial-sized auxiliary
input z(·) and making at most polynomially many queries to O, its probability of winning the
ESPR game is at most ε = 2−Ω(n).

5 Conclusion

In this work, we provide coutnerexamples to hardness amplification beyond negligible for
signatures and one-way functions. This raises several interesting open problems for future
research. Firstly, it would be very interesting to get a counterexample for one-way functions
under more standard assumptions, rather than assuming extended second-preimage resis-
tance (ESPR). Another interesting problem would be to find similar counterexamples for the
XOR lemma rather than for direct-product theorems. Lastly, since our counterexamples are
highly contrived, it would be interesting to identify some abstract properties that allow them
to go through, and attempt to form a more targeted conjecture on hardness amplification
beyond negligible for schemes which do not have these properties. In particular, despite our
counterexamples, we would tend to think that hardness should amplify exponentially with
the number of repetitions for most natural primitives.

References

[1] J. Alwen, Y. Dodis, M. Naor, G. Segev, S. Walfish, and D. Wichs. Public-key encryption
in the bounded-retrieval model. In EUROCRYPT, pages 113–134, 2010.

[2] J. Alwen, Y. Dodis, and D. Wichs. Leakage-resilient public-key cryptography in the
bounded-retrieval model. In CRYPTO, pages 36–54, 2009.

18

[3] B. Barak, O. Goldreich, S. Goldwasser, and Y. Lindell. Resettably-sound zero-knowledge
and its applications. In FOCS, pages 116–125, 2001.

[4] M. Bellare. A note on negligible functions. J. Cryptology, 15(4):271–284, 2002.

[5] M. Bellare, R. Impagliazzo, and M. Naor. Does parallel repetition lower the error in
computationally sound protocols? In FOCS, pages 374–383, 1997.

[6] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable zero-knowledge
(extended abstract). In STOC, pages 235–244, 2000.

[7] R. Canetti, S. Halevi, and M. Steiner. Hardness amplification of weakly verifiable puzzles.
In TCC, pages 17–33, 2005.

[8] R. Canetti, R. L. Rivest, M. Sudan, L. Trevisan, S. P. Vadhan, and H. Wee. Amplifying
collision resistance: A complexity-theoretic treatment. In CRYPTO, pages 264–283,
2007.

[9] K.-M. Chung, F.-H. Liu, C.-J. Lu, and B.-Y. Yang. Efficient string-commitment from
weak bit-commitment. In ASIACRYPT, pages 268–282, 2010.

[10] Y. Deng, V. Goyal, and A. Sahai. Resolving the simultaneous resettability conjecture
and a new non-black-box simulation strategy. In FOCS, pages 251–260, 2009.

[11] Y. Dodis, R. Impagliazzo, R. Jaiswal, and V. Kabanets. Security amplification for
interactive cryptographic primitives. In TCC, pages 128–145, 2009.

[12] C. Dwork, M. Naor, and O. Reingold. Immunizing encryption schemes from decryption
errors. In EUROCRYPT, pages 342–360, 2004.

[13] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press,
2001.

[14] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In STOC,
pages 218–229, 1987.

[15] O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s XOR-Lemma. Electronic Collo-
quium on Computational Complexity (ECCC), 2(50), 1995.

[16] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

[17] V. Goyal and H. K. Maji. Stateless cryptographic protocols. In FOCS, 2011.

[18] V. Goyal and A. Sahai. Resettably secure computation. In EUROCRYPT, pages 54–71,
2009.

[19] I. Haitner. A parallel repetition theorem for any interactive argument. In FOCS, pages
241–250, 2009.

[20] S. Halevi and T. Rabin. Degradation and amplification of computational hardness. In
TCC, pages 626–643, 2008.

[21] J. H̊astad, R. Pass, D. Wikström, and K. Pietrzak. An efficient parallel repetition
theorem. In TCC, pages 1–18, 2010.

19

[22] R. Impagliazzo, R. Jaiswal, and V. Kabanets. Chernoff-type direct product theorems.
Journal of Cryptology, 2008. (published online September 2008); preliminary version in
CRYPTO’07.

[23] A. Jain and K. Pietrzak. Parallel repetition for leakage resilience amplification revisited.
In TCC, pages 58–69, 2011.

[24] C. S. Jutla. Almost optimal bounds for direct product threshold theorem. In TCC,
pages 37–51, 2010.

[25] A. Lewko and B. Waters. On the insecurity of parallel repetition for leakage resilience.
In FOCS, pages 521–530, 2010.

[26] M. Luby and C. Rackoff. Pseudo-random permutation generators and cryptographic
composition. In STOC, pages 356–363, 1986.

[27] U. M. Maurer and S. Tessaro. Computational indistinguishability amplification: Tight
product theorems for system composition. In CRYPTO, pages 355–373, 2009.

[28] U. M. Maurer and S. Tessaro. A hardcore lemma for computational indistinguishability:
Security amplification for arbitrarily weak prgs with optimal stretch. In TCC, pages
237–254, 2010.

[29] M. Naor and O. Reingold. On the construction of pseudo-random permutations: Luby-
Rackoff revisited. J. of Cryptology, 12:29–66, 1999. Preliminary version in: Proc. STOC
97.

[30] R. Pass and M. Venkitasubramaniam. An efficient parallel repetition theorem for Arthur-
Merlin games. In STOC, pages 420–429, 2007.

[31] K. Pietrzak and D. Wikstrom. Parallel repetition of computationally sound protocols
revisited. In TCC, pages 86–102, 2007.

[32] S. Tessaro. Security amplification for the cascade of arbitrarily weak prps: Tight bounds
via the interactive hardcore lemma. In TCC, pages 37–54, 2011.

[33] D. Unruh. Random oracles and auxiliary input. In CRYPTO, pages 205–223, 2007.

[34] A. C.-C. Yao. Theory and applications of trapdoor functions (extended abstract). In
FOCS, pages 80–91, 1982.

A Stateless Multiparty Computation

In our counter-example for signature schemes given in Section 3, we use stateless multi-party
computation as a core building block. Essentially, we consider multi-party computation in
the setting where the parties are stateless devices, i.e., each party only supports a “request-
reply” interaction (i.e., the party just outputs f(x) when fed with x for some fixed f(x)).
Secure MPC protocols for this setting were recently given by Goyal and Maji [17]. In order to
construct such protocols, [17] first define resettably-secure multiparty computation and give a

20

protocol satisfying their notion. They then discuss a transformation from a resettably-secure
protocol into a stateless one using standard techniques.12

For our purposes, we find it more convenient to directly define the notion of stateless
multiparty computation. In order to do so, we turn to the standard real/ideal paradigm. Very
briefly, the ideal model is identical to the ideal model in the definition of resettably-secure
computation [17], where the adversary is allowed to reset the ideal functionality. The real
world is also defined in a manner similar to [17], except that we consider protocol execution
between stateless parties instead of stateful, resettable parties. Before we proceed to formally
describe the real and ideal world executions, we first describe the model of protocol execution
that we will consider for stateless parties.

Protocol execution in the public state model. Let Πk be a protocol for k stateful
parties P1, . . . , Pk. For simplicity, we assume that protocol Πk proceeds in rounds and that
in any round j, each party P ′

i sends a protocol message. We note that this is without loss of
generality since we can require parties to send “empty” messages. We further assume that
the messages in Πk are sent over the broadcast channel. We note that in the construction
of our counter-example for signature schemes in Section 3, we will only be interested in the
case where an adversary corrupts exactly k − 1 parties in the protocol Πk. In this case, the
above requirement is automatically satisfied. We now explain how the protocol Πk can be
executed when P1, . . . , Pk are stateless machines.

We consider execution in the public state model described as follows. Let A denote the
adversary. For each party Pi, let xi, ri denote its input and (fixed) random tape respectively.
We consider a state variable statei that contains the “current” protocol state of party Pi

(which is a function of its input xi, random tape ri and the protocol messages received so
far) at any point during the protocol execution. We assume that statei is a public string and
is available to A. Note that statei can be made public by using standard techniques: suppose
that each party Pi has a secret key si of an authenticated encryption scheme; then statei

is defined as the authenticated encryption (w.r.t. key si) of the actual protocol state of Pi.
Without loss of generality, we assume that si is contained in ri. Further note that each statei

is initialized to the “empty” string.
In order to describe how P1, . . . , Pk execute the protocol, we need to define the next

message function for each party Pi. The next message function NMi for party Pi takes the
following four values as input: (a) a string πj−1 that consists of all the messages sent in any
round j−1 of the protocol, (b) the public state statei of party Pi, (c) the input xi, and (d) the
(fixed) random tape ri. On receiving an input of the form πj−1‖statei‖xi‖ri, NMi outputs
Pi’s message in round j along with the updated value of statei. For notation convenience, we
define π0 to be the “empty” string.

Now, note that at any point, k public strings state1, . . . , statek are available to A. Then,
to execute the jth round of the protocol, the adversary A sends the string πj−1 (consisting
of all the messages from round j − 1) and statei to each party Pi. On receiving these values,

12Very briefly, the transformation works as follows. For simplicity, we only consider the two-party case. Let
Π′ = {P ′

1, P
′
2} be a resettably-secure protocol. The protocol Π for stateless parties P1 and P2 is defined as

follows. Each party Pi has a secret key of an authenticated encryption scheme. Party P1 computes the first
protocol message in the same manner as P ′

1; however, it sends to P2 not only the computed message but also
an authenticated encryption of its current protocol state. Party P2 computes the reply in the same manner as
P ′

2 and sends to P1 not just the computed reply but also (a) the received encrypted state of P1, and, (b) an
authenticated encryption of the current state of P2 using its own key. Thus, in each subsequent round, each
Pi “recover” its state from the previous round, and use it to compute the next outgoing message.

21

Pi applies the next message function NMi over πj−1‖statei‖xi‖ri to compute its outgoing
message in round j and the updated value of statei.

This completes our discussion on protocol execution in the public state model. We now
formally define the ideal and real world experiments and then give the security definition for
stateless MPC. Some of the text below is taken from [17].

Ideal World. We first define the ideal world experiment, where k parties interact with
an ideal functionality for computing a randomized function F . The execution in the ideal
world starts by the adversary S (who is given auxiliary input z) selecting an arbitrary subset
I ⊂ {P1, . . . , Pk} of parties to corrupt. The adversary also defines a number ini ∈ poly(n) for
each party which defines the total number of (possible) incarnations for each party Pi. Each

party Pi receives an input vector x(i) = {x
(i)
1 , . . . , x

(i)
ini
} consisting of ini inputs, one for each

incarnation. From here onwards, the ideal world execution proceeds as follows:

Select incarnation: The adversary S selects the incarnation for each of the honest parties.
The trusted party forwards each honest party Pi their respective incarnation index.

Send inputs to trusted party: Each honest party Pi sends its input x
(i)
ℓ (where ℓ is the

incarnation index for Pi chosen by S) to the trusted party. For each corrupted party
Pi ∈ I, S may select any input value and send it to the trusted party.

The trusted party computes the function: Let x′
1, . . . , x

′
k be the inputs that were sent

to the trusted party. If F is a randomized functionality, then the trusted party sam-
ples fresh randomness r and computes y = F(x′

1, . . . , x
′
k; r), else it computes y =

F(x′
1, . . . , x

′
k).

Adversary learns output: The trusted party sends y to S.

Honest parties learn output: S prepares a list of honest parties who should learn the
output. The trusted party forwards y to all parties whom S intends to receive their
output. The remaining honest parties receive ⊥.

Reset: The adversary can reset the ideal world at any point of time. When S decides to
reset the ideal world, it requests the trusted party to reset all honest parties and the
trusted party sends a reset signal to all honest parties. At this point, the ideal world
returns to the first stage where the adversary can select an incarnation for all parties.

Outputs: Each honest party outputs the message that it received from the trusted party. S
outputs an arbitrary ppt function of its entire view.

The output of the ideal world execution consists of the outputs of the honest parties
along with the output of the adversary S. We denote it by IDEALF

S,I(1
n, ~X, z), where n is

the security parameter and ~X = x1, . . . , xk.

Real World. The real-world execution begins by an adversary A (with auxiliary input z)
selecting any arbitrary subset I ⊂ {P1, . . . , Pk} of the parties to corrupt. A also specifies the
possible incarnations for each party Pi. The ℓth incarnation of a party Pi is defined by its

input x
(i)
ℓ and random tape r

(i)
ℓ .

To the start the protocol execution, the adversary chooses the initial incarnation ℓi for

each party Pi. This fixes the random tape of each party Pi to r
(i)
ℓi

. Now, parties P1, . . . , Pk

22

(with their respective incarnations ℓ1, . . . , ℓk) begin to execute the k-party protocol Πk in the
public state model in the manner as discussed earlier. The adversary A sends all messages
on behalf of the corrupted parties, and may follow an arbitrary polynomial-time strategy. In
contrast, the honest parties follow the instructions of Πk. The adversary A can reset any
honest party Pi at any point of time during the execution of the protocol. A may change

Pi’s incarnation to ℓ′i, in which case Pi uses the independently chosen random tape r
(i)
ℓ′i

.

Otherwise, Pi may be reset to an earlier state of the same incarnation ℓi; in this case Pi

reuses the same random tape r
(i)
ℓi

.
At the conclusion of the protocol execution, each honest party Pi, i 6∈ I reports its output

as instructed by Πk. The adversary may output an arbitrary ppt function of its view. The
overall output of the real-world experiment is defined as the output vector of the honest
parties and A. We denote it by REAL

Πk

A,I(1
n, ~X, z).

Security Definition. Having defined the ideal and real world experiments, we now give the
formal definition of stateless MPC. Roughly, we say that a protocol Πk securely computes a
functionality F if for every (resetting) adversary A in the real world, there exists a (resetting)
simulator S in the ideal world who can simulate the view of A.

Definition A.1 (Stateless MPC). A protocol Πk for stateless parties P1, . . . , Pk securely
computes a functionality f if for every ppt real adversary A, there exists an (expected) ppt

ideal adversary S such that for every z ∈ {0, 1}∗, input vector ~X, and I ⊂ {P1, . . . , Pk}, it
holds that

{IDEAL
F
S,I(1

n, ~X, z)}n∈N

c
≡ {REAL

Πk

A,I(1
n, ~X, z)}k∈N.

In this paper, we will use the following corollary of the main result in [17]. We refer the
reader to [17] for more details.

Corollary A.2 ([17]). Assuming semi-honest oblivious transfer, collision-resistant hash func-
tions, zaps, and a lossy encryption scheme, there exists a stateless MPC protocol for every
randomized functionality that does not take any inputs. Further, the number of resets in the
ideal world and the real world are equal.

Additional Properties. For our purposes, we will require the following additional prop-
erties from Πk:

Output delivery round: We require that the final round of protocol Πk is the output de-
livery round, i.e., each party Pi can compute the protocol output (which may be a valid
output or simply ⊥) from all the messages sent in the final round, and its own protocol
state. We note that this property can be easily enforced in the GMW protocol [14]
by first having the parties commit to their output shares (and proving correctness via
zero-knowledge); then in the final round, each party decommits (via a single message)
to its output share. Thus, on receiving all the decommitments, each party can compute
the correct output (or reject). Then, instantiating the stateless MPC protocol of Goyal
and Maji [17] with semi-honest GMW and then applying the same idea as above yields
a stateless MPC protocol with the desired property.

Now recall the next message function NMi of party Pi. Since (from the above assump-
tion) the last round of Πk is the output delivery round, when NMi is computed over the
protocol messages from the last round of Πk (and all the other necessary information;
see Section A), we define NMi to simply output the protocol output computed by Pi.

23

Publicly computable output: For simplicity we will restrict ourselves to functionalities
where all parties receive a common output. We will assume that the output of protocol
Πk can be determined “publicly” from the transcript of the output delivery round. Note
that this property is satisfied by the GMW protocol; thus the protocol of Goyal and
Maji instantiated with semi-honest GMW inherits this property as well.

B Security of the Signature Scheme

Proof Sketch. We will prove Theorem 3.1 by contradiction. Specifically, we will show that
given a ppt adversary A that forges signatures for the signature scheme (Gen,Sign,Verify)
with non-negligible probability δ, we can construct a ppt adversary B that forges signatures
for the signature scheme (Gen, Sign, Verify) with non-negligible probability δ′ = δ − negl(n).

Description of B. Let C denote the challenger for the signature scheme (Gen, Sign, Verify).
Very roughly, B works by internally running the adversary A; B answers A’s (signing) queries
by using the responses (to its own queries) from C, and then outputs the signature forgery
output by A. We now give more details.

On receiving a public key pk from C, A samples a random tape K ← {0, 1}poly(n) and
a random identity id ∈ poly(n), and sends PK = (pk, id) as the public key to A. Now,
whenever A sends a signing query m, B does the following:

1. B forwards the (signing) query m to C and obtains a signature σ1 on m.

2. Further, using identity id and random tape K, B computes σ2 in the same manner as
the honest signing algorithm Sign, except that whenever Sign is forced to output the
secret key, B outputs ⊥.

More specifically, recall that on receiving a signing query of the form “prot”‖IM‖πj‖state‖w,
where IM = k‖id1‖ . . . ‖idk and state = state1‖ . . . ‖statek, Sign plays the role of party
Pi in protocol Πk and computes σ2 as Pi’s outgoing message in round j + 1 of Πk by
applying the next message function NMi over πj and statei. Further recall that when
j corresponds to the final round of Πk, then Sign computes the protocol output y and
if (y, w) ∈ R, then it output σ2 as the secret key. Then, B computes σ2 in the same
manner as Sign, except that when j corresponds to the final round of Πk, if (y, w) ∈ R,
B simply outputs ⊥.

Finally, when A outputs a forgery (m∗, σ∗), B outputs (m∗, σ∗) and stops. This completes
the description of B.

Now, let ε be the probability that B outputs the abort symbol. Then, it follows imme-
diately from the above description that B outputs a valid forgery for (Gen,Sign,Verify)
with probability δ′ = δ − ε. We now argue that ε = negl(n).

Let q be the total number of queries that A makes. Then, it follows that there are at
most q different “initialization messages” IMj sent by A (as part of its signing queries). Let
m ≤ q be the total IM’s, denoted by IM1, . . . , IMm. As a first step, instead of using PRFK(·)
to generate the random tape for the protocol party (say) Pi played by B corresponding to
any instance of IMj = kj‖id

j
1‖ . . . ‖idj

kj
, we now simply pick a fresh random tape. It follows

from the security of the PRF family that the view of A in this experiment is indistinguishable
from the previous one.

Note that if the total probability of abort is ε, then there must exist an IMj such that A
causes an abort for this IMj with probability at least ε

m . From the previous step, we have

24

that each IMj = kj‖id
j
1‖ . . . ‖idj

kj
corresponds to an independent execution of Πkj

(under reset

attacks by A). We now pick an IMj = kj‖id
j
1‖ . . . ‖idj

kj
at random; with probability at least

1
m , A must cause an abort in this instance with probability at least ε

m .
Now, suppose that ε is non-negligible in n. Then, since m ∈ poly(n), we have that A

causes an abort in the instance IMj with non-negligible probability. We will show how to break
the security of the hard relation R with non-negligible probability, which is a contradiction.
To see this, note that if A causes an abort for this instance of IMj , then there must exist a
witness w∗ ∈ R(y) in the view of A, where y is the protocol output. By the security of the
resettably-secure protocol Πkj

, it follows that there exists a simulator S that produces an
indistinguishable view containing a w∗ ∈ R(y). We can thus simply take y from an external
party, and run S to find a witness w∗ ∈ R(y), which contradicts the security of the hard
relation R.

C ESPR in Random Oracle Model with Auxiliary Input

We begin with some tools from the work of [33], which make it very easy to prove theorems
in this model.

Definition C.1 (Pre-Sampling [33]). For a set S = {(x1, y1), . . . , (xs, ys)} ⊆ {0, 1}2n×{0, 1}n

with xi distinct, we define the random-oracle with pre-sampling S as P[S] : {0, 1}2n 7→
{0, 1}n which, on query x, checks if there exists some (x, y) ∈ S and if so returns y. If x
has already been queried, the same answer is given again. Otherwise, a uniformly random

element y
$
← {0, 1}2n is given.

The following lemma follows from the main theorem of [33] and shows that giving an
attacker oracle-dependent auxiliary input on the RO O is no worse than using some RO P[S]
with a pre-sampling S of some slightly super-polynomial size.

Lemma C.2. Let CO be the challenger for a game in the random oracle model and let
AO(z(O)) be an attacker with p = p(n)-sized auxiliary input. Assume C,A together make
at most q = q(n) queries to the RO and Pr

[

AO(z(O)) wins CO
]

≥ ε. Then, for any s =
s(n), there exists some B making at most q RO queries and some set S of size s such that

Pr
[

BP[S] wins CP[S]
]

≥ ε−
√

pq
2s .

(More directly, the main theorem from [33] just says that there exists some pre-sampling

S(O), which depends on O, such that Pr[AP[S(O)](z(O)) wins CP[S(O)]] ≥ ε −
√

pq
2s . Our

version then follows by fixing the best choice of B = A(z(O)), S = S(O).)

Given the above tools, we are ready to prove Theorem 4.11, showing that the ESPR
assumption holds in the random oracle model with auxiliary input.

Proof of Theorem 4.11. First assume that there is an attacker A with p = p(n)-sized
auxiliary input z(·) and making q = q(n) queries to the RO for which the probability of
AO(z(O)) winning the ESPR game is ε. Then, by applying Lemma C.2, we get that there
is an attacker B and some set S of size s = 2n/2 such that the probability of “BP[S] winning
the ESPR game when O is replaced with P[S]” (dented by the event W) is at least Pr[W] ≥

ε−
√

p · q · 2−n/2−1 = ε− 2−Ω(n).

25

For simplifying notation we define the function

flip(x0, x1, b)) =

{

(x0, x1) if b = 1
(x1, x0) otherwise.

The attacker B, on challenge x
$
← {0, 1}n outputs the Merkle path pℓ = (x, (x1, b1) . . . , (xℓ, bℓ))

and y′. Let us assume (w.l.o.g.) that B always makes queries to its oracle P = P[S] on y′

and on all of the values needed to evaluate the Merkle path:

P(flip(x, x1, b1))→ x′
2, P(flip(x′

2, x2, b2))→ x′
3, . . . ,P(flip(x′

ℓ, xℓ, bℓ))→ z.

Let y = flip(x′
ℓ, xℓ, bℓ) be the known preimage associated with the Merkle path pℓ whose root

has value z. Let us define E to be the event that the known preimage satisfies y ∈ S. Then
Pr[W] ≤ Pr[W ∧ E] + Pr[W ∧ ¬E].

Since the event W ∧¬E implies that the attacker finds a collision P[S](y) = P[S](y′) and
with y 6∈ S, we can bound it by Pr[W ∧ ¬E] ≤ O(q2)/2n = 2−Ω(n).

We now bound Pr[W ∧ E] ≤ Pr[E]. For v ∈ {0, 1}n, we say that v is S-extendable if
there exist some v′ ∈ {0, 1}n such that one of flip(v, v′, 0) or flip(v, v′, 1) is contained in S.
Let E1 be the event that the attacker makes a RO query u ∈ ({0, 1}n)2 such that u 6∈ S,
and gets a response v which is S-extendable. Let E2 be the event that the random challenge
x is S-extendable. Then Pr[E] ≤ Pr[E1] + Pr[E2]. To see this, consider the first x′

j among
x′

1 = x, x′
2, . . . , x

′
ℓ which is S-extendable (there must be one if E occurs). Then either j = 1,

in which case E2 occurs, or j > 1, in which case flip(x′
j−1, xj−1, bj−1) is not in S, but x′

j is
S-extendable and so E1 occurs. We can bound Pr[E1] ≤ O(q · s)/2n and Pr[E2] ≤ O(s)/2n

so Pr[W ∧ E] ≤ O(q · s)/2n = 2−Ω(n).
Putting it all together we get ε − 2−Ω(n) ≤ Pr[W] ≤ 2−Ω(n) implying that ε = 2−Ω(n).

26

	Introduction
	Hardness Amplification Definitions and Conjectures
	Hard and One-Way Relations

	Counterexample for Signature Schemes
	Overview
	Our Signature Scheme
	Attack on the Direct Product

	Counterexample for One-Way Functions and Relations
	Extended Second-Preimage Resistant (ESPR) Hash Functions
	A Counterexample to Hard Relations from ESPR
	Extension to One-Way Relations and One-Way Functions
	Justifying the ESPR Assumption

	Conclusion
	Stateless Multiparty Computation
	Security of the Signature Scheme
	ESPR in Random Oracle Model with Auxiliary Input

