Forward Secret Encrypted RAM: Lower Bounds and Applications

Alexander Bienstock ${ }^{1}$, Yevgeniy Dodis ${ }^{1}$, and Kevin Yeo ${ }^{2}$
${ }^{1}$ New York University
\{abienstock, dodis\}@cs.nyu.edu
${ }^{2}$ Google and Columbia University
kwlyeo@google.com

Abstract

In this paper, we study forward secret encrypted RAMs (FS eRAMs) which enable clients to outsource the storage of an n-entry array to a server. In the case of a catastrophic attack where both client and server storage are compromised, FS eRAMs guarantee that the adversary may not recover any array entries that were deleted or overwritten prior to the attack. A simple folklore FS eRAM construction with $O(\log n)$ overhead has been known for at least two decades. Unfortunately, no progress has been made since then. We show the lack of progress is fundamental by presenting an $\Omega(\log n)$ lower bound for FS eRAMs proving that the folklore solution is optimal. To do this, we introduce the symbolic model for proving cryptographic data structures lower bounds that may be of independent interest.

Given this limitation, we investigate applications where forward secrecy may be obtained without the additional $O(\log n)$ overhead. We show this is possible for oblivious RAMs, memory checkers, and multicast encryption by incorporating the ideas of the folklore FS eRAM solution into carefully chosen constructions of the corresponding primitives.

1 Introduction

In recent years, there is an increasing desire to outsource the storage of data to remote servers (such as cloud service providers). By outsourcing, organizations can avoid dealing with problems arising from storing data such as global availability, replication, handling outages, etc. On the other hand, outsourcing incurs new problems with respect to privacy. In many settings, the outsourced data is stored by thirdparty entities that may not be completely trustworthy. As a result, there is a need for cryptographic protocols that guarantee the outsourced data remains private even when stored by the potentially untrusted storage servers.

A straightforward attempt to obtain privacy is to encrypt all data before being sent to the servers. In more detail, the data owner (also referred to as the client) will store a private key locally and encrypt all data that will be outsourced to the servers. The storage servers will never see the outsourced data in plaintext. Unfortunately, this protocol critically assumes that the client's storage always remains secure. In the case of a catastrophic attack where the client storage is compromised, the adversary may be able to decrypt all prior ciphertexts observed by the server to obtain the outsourced data in plaintext. Catastrophic attacks will inevitably leak the current state of outsourced data as the client should be able to retrieve the current outsourced data for use. However, we can still aim to provide strong privacy guarantees for prior iterations of outsourced data that may have been overwritten and/or deleted in the past. This is the core problem that we will study in our work.

In more precise terminology, we denote this primitive as forward secret encrypted RAMs or FS eRAMs. The notion of forward secret encrypted RAMs is not new and has been studied several times in the past two decades under different names such as "secure deletion" 41|43|44|7|45], "how to forget a secret" 20], "self-destruction" [22] and "revocability" [11] to list some examples. FS eRAMs consider the setting with a client and server where the client outsources the storage of an array with n entries to the potentially untrusted server that enables the client to perform read and write operations to any of the n array entries. Note that deletion is supported by simply writing \perp to any array entry. For security, FS eRAMs guarantee that even after a catastrophic corruption of both the client and server storage (and with knowledge of the access pattern to server storage cells from reads and writes), the adversary may only decrypt the array's contents at the time of the compromise. Any array entries that have been overwritten prior to the attack may not be recovered.

All prior FS eRAM constructions may be unified with a single folklore solution with logarithmic overhead that was, to our knowledge, first presented in [20]. The folklore construction utilizes a binary

Fig. 1. Folklore Forward Secret Encrypted RAM construction from [20. In this case, we have $s=2, n=8$, and so we have two trees rooted at the secret cells, each with four leaves corresponding to data cells. The two roots store encryption keys, while every other interior node stores an encryption of a key which was used to encrypt the contents of the node's children. All cells, except for the two roots, reside in public storage. We depict with red font the execution of the operation write(Sec, Pub, $d_{4}^{\prime}, 4$) by showing that the keys at the interior nodes on the path of the leaf holding $\mathbf{E}_{k_{3}}\left(d_{4}\right)$ are replaced by new keys which in turn are used to re-encrypt their children (including new data d_{4}^{\prime}). This operation reads and overwrites $O(\log (n / s))$ cells asymptotically and deletes from Sec any keys that could be used to recover the old data d_{4}.
tree with n leaf nodes that will be used to store array entries. Each internal node stores a symmetric encryption key that is used to encrypt the contents of its two children. The leaf nodes store array entries encrypted by their parent node's key. Finally, the root's encryption key is stored in client memory. To read an array entry, the corresponding root-to-leaf path is downloaded and decrypted sequentially starting from the root node. For writing to an array entry, the root-to-leaf path is downloaded along with the children of all nodes in the path and the leaf node's contents are replaced with the new entry. All encryption keys of internal nodes in the root-to-leaf path are re-generated randomly and all ciphertexts are re-encrypted using the new keys before being uploaded back to the server. Figure 1 presents a diagram of the folklore construction. For both operations, the communication and computation costs are $O(\log n)$. If the client has the capability to store $O(s)$ keys, the efficiency may be reduced to $O(\log (n / s))$ by storing the top $O(\log s)$ levels of the tree in client storage. This folklore construction has been extended in many interesting ways such as handling dynamic array sizes 44 and more complex tree structures like B-trees [45].

Even though this folklore solution has been known for more than two decades, there have been no improvements on the asymptotic efficiency. This leads to the very important question of "Is the folklore forward secret encrypted RAM construction optimal?". Another important question is "If the folklore solution is optimal, are there important applications or settings where one can incorporate forward secret encrypted RAMs without incurring the additional logarithmic overhead?". In this work, we study both questions and answer affirmatively.

1.1 Our Main Result: Lower Bound

As the main result of our work, we present a lower bound for forward secret encrypted RAMs showing the folklore construction is optimal. In the past, lower bounds for cryptographic data structures were mainly proved in either the balls-and-bins [23|12] or cell probe model [53|32|30|40|29|39|33] that lie on opposite ends of the spectrum in terms of flexibility. The balls-and-bins models insists that each server memory location (bins) may store at most one opaque encrypted array entry (balls). Nothing else may be stored in server memory. Therefore, the balls-and-bins model does not encompass the folklore FS eRAM construction that utilizes server memory to store encrypted keys. On the other hand, the cell probe model allows arbitrary encodings of array entries to be stored in server memory. Due to this flexibility, proving cell probe lower bounds is viewed as the holy grail. However, cell probe lower bounds are very difficult to prove and there are long-standing gaps between lower bounds in the cell probe model and more restrictive models.

At a high level, the cell probe model only charges data structures for probing (either reading/writing) a cell. Probing a single cell accounts for one unit cost of computation. All other resources of the data structure may be used without cost, including computation besides cell probes, randomness generation,
etc. However, this does not apply to adversaries who are typically expected to be PPT. We refer readers to [53] for a formal definition with respect to data structures and [32] with respect to cryptographic data structures.

It turns out that when computation is free, we can construct a simple FS eRAM with only $O(1)$ cell probes. Each of the n entries are encrypted using authenticated encryption. To retrieve an entry, the data structure retrieves the ciphertext and tries to decrypt with all keys until succeeding. This is technically a valid, but practically infeasible, construction in the cell probe model.

To circumvent this problem, one could also require that the data structure is a PPT algorithm. However, this only rules out natural usages of encryption and other cryptographic primitives. Data structures may use cryptographic primitives in unnatural manners (like with weaker security parameters) trying to find an encryption scheme that is breakable by the data structure yet is intractable for the adversary. Unfortunately, this phenomenon occurs due to the assumptions of the adversary's and data structure's computational powers (along with the data structure's private state) as opposed to studying the hardness of the FS eRAM problem.

To address this gap, we introduce the symbolic model for proving lower bounds for cryptographic data structures inspired by prior works [3519] for other primitives. The symbolic model enables server cells to only store strings that are derived from a structured grammar that incorporates natural usage of important cryptographic primitives (encryption, (dual)PRFs, etc.). The symbolic model strikes a balance between the balls-and-bins and cell probe model by enabling more flexible server storage beyond just encrypted array entries (like the balls-and-bins model) but not arbitrary encodings (like the cell probe model). Importantly, our symbolic model encompasses the folklore solution. In the symbolic model, we prove our main result showing that the folklore solution is optimal.

Theorem 1 (Informal). For any client storage s, any forward secret encrypted RAM in the symbolic model must use $\Omega(\log (n / s))$ overhead.

Our Lower Bound Techniques. We provide a simple, non-adaptive adversary that at each time t selects a random virtual cell to overwrite with new data. We show that after each of these operations, in expectation, the contents of logarithmically (in n / s) many public and secret cells that were used by the protocol become unusable by the protocol. I.e., because the protocol must force itself to delete some of the secrets which it used to recover the old data, for any encoding of some other secret in a public or secret cell, if decoding requires a deleted secret, the encoding is useless. Since we show that we can identify $\Omega(\log (n / s))$ different such cells at each instant, we reach our lower bound.

To show that the contents of logarithmically-many cells become useless at each t, we abstract the relationship between the contents of the secret cells, the keys that the protocol uses, and the virtual cells at each instant into a directed graph \mathcal{G} in Definition 9 , which we call the key-data graph. More specifically, the contents in each secret cell, the keys that the protocol uses (and can thus recover using the contents of the secret and public cells), and the virtual cells at some time t are the vertices of \mathcal{G}. Each key vertex has an edge to another vertex if it was used in a (d)PRF computation to generate the target vertex, or it was used in the generation of a string (e.g., as an encryption key) in one of the public or secret cells that encodes the target vertex. Additionally, each vertex corresponding to the contents of a secret cell that is not a key has an edge to another vertex if it encodes the target vertex.

By correctness, we show that at each instant of the protocol, for every data item stored in the virtual cells, there exists a collection of paths starting from vertices corresponding to secret cells and ending at the vertex corresponding to the data. These paths abstract the notion that together with the contents of the public cells at that instant, those secret cells (and not any subset of them) can recover the data. Moreover, these paths satisfy the special property that if the corresponding data cell is overwritten, all of the vertices along at least one of these paths must be made indefinitely inaccessible by the protocol for it to no longer be able to recover the old data. This choice of paths is completely determined by the protocol and indeed the protocol may make this choice in an effort to minimize the amount of computation it has to do. By proving a graph-theoretic lemma about the out-degrees of the nodes on any such chosen path in the key-data graph (i.e. that they sum to $\log n / s$), we show that in expectation over the virtual cell which the adversary chooses to overwrite, the number of cells which can no longer be used to access the secrets they encode as a consequence of all of the vertices on the path becoming inaccessible is $\Omega(\log (n / s))$ in expectation.

1.2 "Bypassing" the Lower Bound

Equipped with the knowledge that the folklore solution is optimal, we investigate applications where FS eRAMs may be incorporated without the additional logarithmic overhead. At a high level, we will show that the folklore FS eRAM construction may be overlaid into constructions that already utilize tree-like structures. We prove this is true for three such primitives.

Oblivious RAMs. Oblivious RAMs (ORAMs) [23|42|24|48|38|5] are cryptographic primitives in the client-server setting that obfuscate the client's access pattern to the underlying array entry even when the server observes physical accesses to server storage. Note ORAMs do not protect against client corruption. The best ORAM constructions require $O(\log n)$ overhead. A naive composition with FS eRAMs incurs $O\left(\log ^{2} n\right)$ overhead. In Section 5 we provide a construction that essentially avoids additional overhead over ORAM:

Theorem 2 (Informal). There exists a construction that is both a forward secret encrypted RAM and an oblivious $R A M$ with $O(\log n \cdot f(n))$ overhead and $O(1)$ client storage for any function $f(n)=\omega(1)$.

As an additional contribution, we also show that stronger notions of forward secret obliviousness are expensive in the cell probe model. One natural notion might be to provide forward secrecy for access patterns. After client compromise, the server may not learn information about the prior accesses to data. We denote this as strong oblivious forward secret encrypted RAMs. We note a similar lower bound was presented in 45], but only in the balls-and-bins model. Our result is slightly stronger since it is proved in the cell probe model.

Theorem 3 (Informal). For any client storage s, any strong oblivious forward secret encrypted RAM in the cell probe model must use $\Omega(n-s)$ overhead.

Memory Checkers. Memory checkers (MCs) 10|37|15], are cryptographic primitives in the client-server setting which provide authenticity of an outsourced data array for the client. MCs require $\Omega(\log n / \log \log n)$ overhead [21, and the best known constructions require $O(\log n)$ overhead ${ }^{1}$ Again, a naive composition with FS eRAM also provides forward secrecy of the data, but requires $O\left(\log ^{2} n\right)$ overhead. In Section 6 we provide a construction that avoids the extra overhead:

Theorem 4 (Informal). There exists a forward secret memory checker with $O(\log n)$ overhead and $O(1)$ client storage.

Multicast Encryption. Multicast encryption (ME) is a primitive that allows a group manager to securely and efficiently distribute secrets to an evolving group of users. After each group membership change, a new epoch is initiated, and the group manager sends ciphertexts over a broadcast channel which allow only the current group members to derive the next group secret ${ }_{2}^{2}$ ME has been widely studied in the literature [51|52|27|28|13|36|47]. Indeed, these works can be unified into a folklore construction based on binary trees which tightly achieves optimal $O(\log n)$ communication and computational complexity per epoch with respect to the lower bound of [35]. However, this folklore construction has large group manager secret state and does not protect against corruption of this state. In Section 7 we provide a construction that achieves group manager FS, while reducing its secret state to $O(1)$ size and retaining the optimal efficiency of the folklore solution, without an extra $O(\log n)$ factor of computational overhead:

Theorem 5 (Informal). There exists an ME construction that is forward secret with respect to group manager corruptions, has $O(1)$ group manager secret storage, and $O(\log n)$ communication and computation per epoch.

[^0]
2 Lower Bound Model

In this section, we present a general framework for proving computational lower bounds on cryptographic or privacy-preserving data structures using a symbolic model, then formalize it for the case of FS eRAM. The symbolic model we present is inspired by the one used for communication complexity lower bounds originally by Micciancio and Panjwani in 35] for multicast encryption and also recently in 9 for concurrent group ratcheting ${ }^{3}$

2.1 Framework for Symbolic Private Data Structure Lower Bounds

The first step in proving a lower bound on some private data structure in our symbolic framework is to decide which primitives are allowed in the constructions. Based on these primitives, one has to define a grammar within the model which specifies exactly the types of strings that can be created and stored in the structure to keep the data private. For example, if one of the allowed primitives is encryption, then the grammar must specify strings that correspond to encryption keys and encryptions of certain other strings derived from the grammar. If no other primitives are allowed, for example PRFs, then the constructions can only use such a key to generate more ciphertexts according to the grammar, and not other keys through PRF computations, for example. This grammar only defines the exact form of strings that can be generated by the allowed primitives, but does not on its own define how these strings can be used to recover the data.

The manner in which constructions can use sets of strings derived from the grammar to recover other strings, including data, is specified by an entailment relation. We emphasize that this relation takes as input strings derived from the grammar, generated by the functionality of the allowed primitives, and outputs other strings within the grammar, also based on the functionality of the allowed primitives. For example, if a construction stores a set of strings which include a ciphertext within the grammar that is generated by an encryption algorithm, along with the encryption key, the entailment relation specifies that the plaintext that also falls within the grammar can be recovered via the decryption algorithm. We note that unlike in traditional models, we only define the syntax and security of the allowed primitives implicitly within the grammar and entailment relation. Further utilizing the encryption example, if the key for a ciphertext is not available, then the entailment relation prohibits derivation of the underlying plaintext (and thus it is secure).

Grammars and corresponding entailment relations can generally be used for lower bounds on any private data structures. Indeed, we will provide our own in Section 2.2 However, we again stress that for some arbitrary private data structure, one might use a completely different grammar and entailment relation to show a lower bound in the symbolic framework. To apply the grammar and entailment relation to a lower bound for a specific private data structure, one has to provide syntax, correctness, and security definitions in the symbolic model. For correctness, in general, constructions must derive strings from the grammar to store in the data structure and later use these strings, along with the entailment relation, to derive the plaintext data that they store. For security, we use the implicit security definitions for the allowed primitives within the grammar and entailment relation to show that an adversary cannot derive certain data using certain other strings (e.g., encrypted storage). In general, such security definitions may not be as strong as the standard (e.g., indistinguishability based) definitions for private data structures. However, proving a lower bound based on a weaker adversarial model only strengthens the result.

2.2 Symbolic Definitions for Allowed Primitives

Our symbolic model allows the FS eRAM cells (secret and public) to store only certain types of strings generated by the functionality of our allowed primitives and specified by our grammar, which can only be interpreted and utilized via our entailment relation. We introduce the allowed primitives, the grammar and entailment relation in this section. Note again: our grammar and entailment relation for these primitives can be used for other private data structure lower bounds in the symbolic framework, but some such lower bounds may also allow for other primitives (e.g., public key techniques), and use some other grammar, and/or entailment relation.

[^1]Cryptographic primitives. The primitives which we choose to consider in our lower bound encompass all of the reasonable primitives which one would use for FS eRAM, while excluding those that are too powerful and inefficient in practice. Indeed, a trivial construction exists from Puncturable Encryption (PE) [14] $1625|26| 50 \mid 49$, by simply revoking all overwritten ciphertexts. However, PE is a strong primitive and is seen as too computationally inefficient for most practical applications (see e.g., [6]). Therefore, we do not consider PE in our model and indeed view a corollary of our lower bound as a lower bound on the overhead of PE schemes from practical primitives.

Thus, we choose to include only those primitives that are natural and useful for FS eRAM, as well as not too powerful as to make the problem trivial. Since FS eRAM protocols are carried out by a single entity, we only consider symmetric techniques. Namely, we include symmetric encryption, (dual) pseudorandom functions, and secret sharing. These are all of the primitives (and more) which the folklore construction and all other constructions in the literature use 44|1120. In fact, only symmetric encryption is used in these prior constructions. We include (dual) pseudorandom functions, as they have been shown to achieve speedups for many other primitives. We note that FS eRAMs are easy to achieve with two non-colluding servers as the array may be secret shared between the two servers. Therefore, we add secret sharing in the case that it may be useful even in the single-server setting. We introduce the primitives here, before defining them formally in our grammar and entailment relation.

An encryption algorithm \mathbf{E} takes as input a key K and string C, and outputs a ciphertext $C^{\prime}=$ $\mathbf{E}_{K}(C)$. Informally, $\mathbf{E}_{K}(C)$ hides the string C. Symbolically, the string C can be recovered from the ciphertext, only by using the key K and corresponding decryption algorithm: $\mathbf{D}_{K}\left(\mathbf{E}_{K}(C)\right)=C$.

A PRF is an efficiently computable function \mathbf{F} that takes as input a single key K_{1} and some string C and outputs a pseudorandom and independent key $K_{2}: \mathbf{F}\left(K_{1}, C\right)=K_{2}$. Symbolically, K_{2} can only be computed with \mathbf{F} on input K_{1} and not some other input key $K_{1}^{\prime} \neq K_{1}$.

We also consider dPRFs which are efficiently computable functions $\mathbf{d F}$ that take as input two keys K_{1} and K_{2} and output a pseudorandom and independent key $K_{3}: \mathbf{d F}\left(K_{1}, K_{2}\right)=K_{3}$. Symbolically, K_{3} can only be computed with $\mathbf{d F}$ on input K_{1} and K_{2} and not some other pair of keys ($K_{1}^{\prime}, K_{2}^{\prime}$) such that either $K_{1}^{\prime} \neq K_{1}$ or $K_{2}^{\prime} \neq K_{2}$. The output key of both PRFs and dPRFs can be used as encryption keys.

A secret sharing scheme allows one to split a string C into shares $\mathbf{S}_{1}(C), \ldots, \mathbf{S}_{\mathrm{n}}(C)$, for some fixed integer n, such that C can only be recovered from certain subsets of the shares. These subsets are defined using an access structure $\Gamma \subseteq 2^{\{1, \ldots, \mathrm{n}\}}$. For each subset $I \in \Gamma$, if we are given the set of shares $\mathbf{S}_{I}(C)=\left\{\mathbf{S}_{i}(c)\right\}_{i \in I}$ of some string C, then we can efficiently recover C using the reconstruction function $\mathbf{R}: \mathbf{R}\left(I, S_{I}(C)\right)=C$. Symbolically, if we only have a set of shares $S_{I^{\prime}}(C)$ for some $I^{\prime} \notin \Gamma$, then we cannot recover C.

Grammar and entailment relation definitions. We will allow cells of the FS eRAM to contain strings which are arbitrary nested combinations of encryption, PRFs, dPRFs, and secret sharing. We formally allow cell contents to be described by strings derived from the grammar in the left of Figure 2

$$
\begin{array}{l|l}
C \rightarrow K\left|\mathbf{E}_{K}(C)\right| \mathbf{S}_{1}(C)|\ldots| \mathbf{S}_{\mathrm{n}}(C) \mid D & c \in \mathrm{C} \Longrightarrow \mathrm{C} \vdash c \\
K \rightarrow R|\mathbf{F}(K, C)| \mathbf{d F}(K, K) & \mathrm{C} \vdash k \Longrightarrow \mathrm{C} \vdash \mathbf{F}(k, c), \forall c \\
& \mathrm{C} \vdash k_{1}, k_{2} \Longrightarrow \mathrm{C} \vdash \mathbf{d F}\left(k_{1}, k_{2}\right) \\
& \mathrm{C} \vdash \mathbf{\mathbf { E } _ { k } (c) , k \Longrightarrow \mathrm { C } \vdash c} \\
& \exists I \in \Gamma: \forall i \in I, \mathrm{C} \vdash \mathbf{S}_{i}(c) \Longrightarrow \mathrm{C} \vdash c \\
\hline
\end{array}
$$

Fig. 2. Definitions of: 1. (left) the grammar used in our symbolic model to describe the strings which any FS eRAM protocol can create and store in secret and public cells, and 2. (right) the entailment relation \vdash, where in the second through fourth rules, k, k_{1}, k_{2} are of type K in our grammar.

The variables C and K in the grammar represent strings and keys, D is a variable that ranges over the arbitrarily large set of plaintext strings which we allow the user to write into the virtual cells of the FS eRAM, and R ranges over an arbitrarily large set of truly random keys. We will call strings created from variable K as keys and those from variable D as data throughout the next two sections. Observe that the input to PRFs that is not the key can be any string C derived from the grammar. Some remarks:

- We emphasize that the data cells can only hold strings of type D. We mainly make this restriction for simplicity so that data cannot be used as keys, secret shares, or ciphertexts in any protocol. Note: the adversary in the security definition, as will be later seen, chooses the contents of the data cells.
- For convenience, we do not allow ciphertexts or secret shares to be encryption keys or (d)PRF keys. Our proof may be modified to enable ciphertexts or secret shares to be keys if desired.
- We assume that all cells are of approximately the same length, and that each of them can hold any one string derived from the grammar. This means that the functions $\mathbf{E}, \mathbf{F}, \mathbf{d F}, \mathbf{S}$ have outputs of about the same length.

Again, it is important to observe that the strings specified by the above grammar are purely syntactic and without any meaning. Their only intended meaning is described by the entailment relation $\mathrm{C} \vdash c$, specifying which strings c can be recovered given a set of strings C. This entailment relation follows naturally from the standard cryptographic definitions for the primitives we consider (and inductively from the base case): 1. For PRFs, one can only compute the function if the key is revealed; 2. For dPRFs, one can only derive an output for a given input if they have both keys (security holds if only one key is revealed); 3. For encryption, one can only derive the underlying plaintext of a ciphertext if they have the key; and 4. For secret sharing, one can reconstruct a secret that has been shared only if they have all shares for a given subset of the access structure. We formally define the relation in the right part of Figure 2 and add the following useful definition.

Definition 1. For any C, we denote the set of strings that can be recovered from C using \vdash as $\operatorname{Rec}(\mathrm{C})$.

2.3 FS eRAM Symbolic Definition

Now we provide the formal definition of FS eRAM in our symbolic model. Throughout the execution of an FS eRAM protocol Π, it forward secretly stores a user-chosen ordered n-element array D of virtual cells, which hold strings of type D in our grammar. We refer to these cells as the data cells and their initial contents as array D_{0}. We again emphasize that data cells can only hold strings of type D in our grammar, and thus cannot hold strings arbitrarily derived from C in our grammar.

At each instant t, Π is given one data cell $i \in[n]$ to overwrite with new data d so that the contents of the data cells at time t, D_{t}, satisfy: $\mathrm{D}_{t}[i]=d$ and $\mathrm{D}_{t}[j]=\mathrm{D}_{t-1}[j], \forall j \in[n] \backslash\{i\}$. Π proceeds using an array of $s(\ll n)$ secret cells, Sec, and a (possibly arbitrarily large) array of public cells Pub, which can hold strings derived from our above grammar ${ }^{[}$We emphasize that in normal protocol execution, the cells in Pub can always be viewed by an adversary \mathcal{A}, while the cells in Sec cannot be viewed by \mathcal{A} until corruption. Π has the following syntax:

Definition 2 (Syntax). A Forward Secret Encrypted RAM protocol $\Pi=$ (init, write) consists of the following algorithms:
$-\operatorname{init}\left(\mathrm{D}_{0}=\left(d_{1}, \ldots, d_{n}\right)\right)$, which takes in the n initial data cell contents D_{0} and computes the initial state of the cells Sec and Pub using strings derived from C in our grammar.

- write (i, d), which takes in a cell index i and new data d and overwrites the contents of some cells of Sec and Pub using strings derived from C in our grammar.
$-\operatorname{read}(i)$, which takes in a cell index i and using the contents of the cells of Sec and Pub (and the entailment relation) returns the data d_{i} stored there.

We note that Π need not be deterministic either in choosing contents of cells or in choosing which cells to write to, i.e., Π could have access to an arbitrarily long, finite random string \mathcal{R} at each instant. However, as we will later describe, the adversary that we consider to reach our lower bound is agnostic to any randomness that Π uses.

An adversary \mathcal{A} specifies the data D_{0} input to the init algorithm, as well as for each $t>0$, the cell i and data d input to the write algorithm. At each instant t, we refer to the contents of Sec and Pub as arrays Sec_{t} and Pub_{t}, respectively. For any sequence of data cells chosen by $\mathcal{A}, \widetilde{\mathrm{D}}_{t}=\left(\mathrm{D}_{0}, \mathrm{D}_{1}, \ldots, \mathrm{D}_{t}\right)$, let $\operatorname{Pub}\left(\widetilde{\mathrm{D}}_{t}\right)$ denote the union of all strings written to public cells by Π when $\mathrm{D}_{0}, \mathrm{D}_{1}, \ldots, \mathrm{D}_{t}$ are specified by calls to init and write, i.e. $\operatorname{Pub}\left(\widetilde{\mathrm{D}}_{t}\right)=\cup_{i=0}^{t} \operatorname{Pub}_{i}$. Similarly, let $\operatorname{Sec}\left(\widetilde{\mathrm{D}}_{t}\right)$ denote the union of all strings

[^2]written to secret cells by Π as a result of $\widetilde{\mathrm{D}}_{t}$, i.e., $\operatorname{Sec}\left(\widetilde{\mathrm{D}}_{t}\right)=\cup_{i=0}^{t} \operatorname{Sec}_{i}$. Additionally, at any time t, we refer to all of the previous strings of each cell of D_{t} as $\operatorname{Prev}\left(\mathrm{D}_{t}\right)=\left(\bigcup_{j=0}^{t-1} \mathrm{D}_{j}\right) \backslash \mathrm{D}_{t}{ }^{5}$

For correctness, we intuitively require that with Sec_{t} and Pub_{t}, Π should be able to recover and successfully return $\mathrm{D}_{t}[i] \leftarrow \operatorname{read}(i)$ for all $i \in[n]$. For forward secrecy, at each instant t, we also want to protect all data that used to be in D , but was since overwritten, in case of a corruption of Sec_{t} by \mathcal{A}. We abstract the above conditions (without explicitly providing read or corruption oracles to \mathcal{A}) using the following definition:

Definition 3 (Correctness and Security). Π is correct and secure if for all t, and all sequences $\widetilde{\mathrm{D}}_{t}$ determined by an adversary \mathcal{A} :

- (Correctness): All of the data cells D_{t} can be recovered by the contents of the secret and public cells and successfully returned at time t : For every $i \in[n], d_{i} \leftarrow \operatorname{read}(i)$, where $d_{i}=D_{t}[i]$ and $\left.\mathrm{D}_{t}[i] \in \operatorname{Rec}\left(\mathrm{Sec}_{t} \cup \mathrm{Pub}_{t}\right)\right]^{6}$
- (Security): The previous contents of all cells in D with respect to time t cannot be recovered by the contents of the secret cells at time t and all public cells written to up to time $t: \forall d \in \operatorname{Prev}\left(\mathrm{D}_{t}\right), d \notin$ $\operatorname{Rec}\left(\mathrm{Sec}_{t} \cup \operatorname{Pub}\left(\widetilde{\mathrm{D}}_{t}\right)\right)$.

Again, we note that the security of this definition is not as strong as an indistinguishability-based definition, as we require explicit recovery of previous data to break security. However, this only strengthens our lower bound.

We will measure the computational complexity of the protocol Π by amortizing over the number of unique strings derived from our grammar that are written to the public and secret cells throughout the execution of the protocol. This measure of course does not track all of the computation of some protocol Π, which only strengthens our lower bound. For example, we do not count the computational cost of any of our primitives. Formally, the computational cost $c\left(\widetilde{\mathrm{D}}_{t}\right)$, incurred by an execution of the protocol when run on input $\widetilde{\mathrm{D}}_{t}$, is defined as

$$
c\left(\widetilde{\mathrm{D}}_{t}\right):=\frac{\left|\operatorname{Pub}\left(\widetilde{D}_{t}\right) \cup \operatorname{Sec}\left(\widetilde{D}_{t}\right)\right|}{t+1} .
$$

3 Forward Secret Encrypted RAM Lower Bound

In this section, we prove the following Theorem in several steps.
Theorem 6. There exists a non-adaptive, randomized adversarial sequence of init and write operations such that for any FS eRAM protocol Π that is correct and secure with respect to Definition 3, the amortized computational complexity cost incurred by the protocol when executed against that strategy is in expectation $\Omega(\log (n / s))$.

Before we formalize our lower bound, we start with a simple example which demonstrates an important observation needed in our proof, and which we will refer to throughout the proof. Suppose that at time t, we have $s=1, n=4$ and keys k_{1}, k_{2}, k_{3} such that $k_{1} \in \operatorname{Sec}_{t}$. Further, we have $\left\{\mathbf{E}_{k_{1}}\left(k_{2}\right), \mathbf{E}_{k_{1}}\left(k_{3}\right), \mathbf{E}_{k_{2}}\left(d_{1}\right)\right.$, $\left.\mathbf{E}_{k_{2}}\left(d_{2}\right), \mathbf{E}_{k_{2}}\left(\mathbf{E}_{k_{3}}\left(d_{3}\right)\right), \mathbf{E}_{k_{3}}\left(d_{4}\right)\right\} \subseteq \operatorname{Pub}\left(\widetilde{\mathrm{D}}_{t}\right)$, for $\mathrm{D}_{t}=\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}$. We can informally abstract this into a graph depicting the relations between keys and data shown in Figure 3

The graph demonstrates that k_{1} encodes information about k_{2} and k_{3}, while k_{2} and k_{3} both encode some information about d_{3}. Additionally, k_{2} encodes information about d_{1} and d_{2}, while k_{3} encodes information about d_{4}. Now suppose that virtual cell 3 (corresponding to d_{3}) is overwritten by some adversary. The goal of the protocol is effectively to create a new graph that retains as much reachability, in the graph theoretic sense, from the secret cells as possible (since we want to minimize the amount of computation needed to achieve correctness), while still disabling any ability to recover d_{3} if any of the keys in the new graph are obtained by the adversary.

[^3]

Fig. 3. Key-data graph $\mathcal{G}_{\Pi}\left(\widetilde{\mathrm{D}}_{t-1}\right)$ at time $t-1$ as defined by Definition 9 for an execution of an FS eRAM protocol Π in which $s=1, n=4, k_{1} \in \operatorname{Sec}_{t-1}$ (denoted by its square border), $\left\{\mathbf{E}_{k_{1}}\left(k_{2}\right), \mathbf{E}_{k_{1}}\left(k_{3}\right)\right.$, $\left.\mathbf{E}_{k_{2}}\left(d_{1}\right), \mathbf{E}_{k_{2}}\left(d_{2}\right), \mathbf{E}_{k_{2}}\left(\mathbf{E}_{k_{3}}\left(d_{3}\right)\right), \mathbf{E}_{k_{3}}\left(d_{4}\right)\right\} \subseteq \operatorname{Pub}\left(\widetilde{\mathrm{D}}_{t-1}\right)$, and $\mathrm{D}_{t-1}=\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}$. Since k_{1} minimally recovers d_{3} according to Definition 4 the collection of paths \mathcal{P}_{3}^{t-1} that exist according to Lemma 1 are $P_{3,1}:=k_{1} \rightarrow k_{2} \rightarrow d_{3}$, represented by blue edges, and $P_{3,2}:=k_{1} \rightarrow k_{3} \rightarrow d_{3}$, represented by thick red edges. By Lemma 2 , if at time t, d_{3} is overwritten, all of the vertices on one of these paths must become indefinitely useless (see Definitions 5 . 6). Since k_{2} can be used to recover more data (besides d_{3}) than k_{3} can, the protocol may choose to make the vertices of $P_{3,2}$ useless at time t (represented by dashed borders). In this case, all of the strings in Pub ($\left.\widetilde{\mathrm{D}}_{t}\right)$ corresponding to the dashed edges $k_{1} \rightarrow k_{2}, k_{1} \rightarrow k_{3}, k_{3} \rightarrow d_{3}$, and $k_{3} \rightarrow d_{4}$ become indefinitely useless at time t (see Definition 8), as the protocol can no longer recover the keys and data that they encapsulate. However, we stress that the choice of the path $P_{3,1}$ or $P_{3,2}$ on which all nodes must become useless at time t is determined by the protocol.

In our example, it is sufficient to remove k_{1}, as then k_{2} and k_{3}, and thus d_{3} cannot be recovered. However, this may be a rather inefficient method, as k_{2} and k_{3} also encode information about data d_{1}, d_{2}, d_{4}, and thus the protocol would have to generate fresh encodings of them for correctness. Unfortunately, we cannot retain reachability to both k_{2} and k_{3} : it is necessary to remove either one of the edges $k_{2} \rightarrow d_{3}$ or $k_{3} \rightarrow d_{3}$ in the graph (which is done by removing k_{2} or k_{3}, respectively), since together, they can be used to recover d_{3} from $\mathbf{E}_{k_{2}}\left(\mathbf{E}_{k_{3}}\left(d_{3}\right)\right)$, but the absence of one of them enables secrecy of d_{3}. Furthermore, it is still necessary to remove k_{1}, as it alone can recover d_{3} by recovering k_{2} and k_{3}. In this case, the protocol may want to remove just k_{1} and k_{3}, as retaining reachability to k_{2} retains reachability to two data cells, without any extra computation (as opposed to just one if reachability to k_{3} is retained). However, we emphasize that the choice of which key to retain reachability to is indeed completely decided by the protocol, and the adversary does not have any control over this. The key to our proof is to lower bound the minimal amount of reachability, corresponding to edges in the graph and ciphertexts stored in public and secret cells in the protocol, that must be lost after each operation. Note that this is not the exact formalization, as the proof needs to handle several subtleties and complex cases, as later detailed in this section.

To do this, we will first abstract a meaningful graph-theoretic notion to determine the (amortized) minimum number of unique strings that any FS eRAM protocol, captured by our symbolic model, must write to its public and secret cells during each operation to preserve forward secrecy and correctness.

3.1 Minimality and Usefulness

We first introduce the notion of sets of strings defined by our grammar minimally recovering other sets of strings. Intuitively, a set C of strings minimally recovers another set C^{\prime} of strings if the strings of C can together recover the strings of C^{\prime} (using the contents of the public cells up to time t, too), but the removal of any string $c \in \mathbb{C}$ prevents the recovery of at least one string $c^{\prime} \in \mathrm{C}^{\prime}$.

Definition 4. A set C of strings minimally recovers set C^{\prime} of strings if $\mathrm{C}^{\prime} \subseteq \operatorname{Rec}\left(\mathrm{C} \cup \operatorname{Pub}\left(\widetilde{\mathrm{D}}_{t}\right)\right)$ and for any $c \in \mathrm{C}, \mathrm{C}^{\prime} \nsubseteq \operatorname{Rec}\left((\mathrm{C} \backslash\{c\}) \cup \operatorname{Pub}\left(\widetilde{\mathrm{D}}_{t}\right)\right)$.

If C^{\prime} contains a single element c^{\prime}, we may only write " C recovers c^{\prime} " at certain points throughout our exposition (instead of C^{\prime} or $\left\{c^{\prime}\right\}$).

Now, for any execution of an FS eRAM protocol Π, at certain instants some of the keys that have been used by it may be accessible by the secret cells, while others may not. We call such keys useful and useless, respectively.

Definition 5. A key k is useful at time t if $\exists S \subseteq \operatorname{Sec}_{t}$ such that S minimally recovers k. It is useless otherwise.

The set of useful keys at time t is denoted UsefulKeys ${ }_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$. The intuition behind this definition is that as data cells are overwritten, at least some of the keys that the protocol used to recover the previous data (if there are any) for correctness cannot be used anymore, for otherwise, previous data would be accessible, which would violate security. For example, in Figure 3, keys k_{1} and k_{3} become useless at time t, because they can be used to recover d_{3}. Similarly, we can define data in terms of usefulness.

Definition 6. Data d is useful at time t if $d \in \mathrm{D}_{t}$. It is useless otherwise.
We also define usefulness for strings derived by our grammar (that are not keys), based on the keys that are used to create them, and if they are accessible by the adversary at a given time. We first recall that there are four types of cryptographic operations we allow to derive strings from our grammar: encryptions, secret sharing, and (d)PRF computations. Based on this, we define how a string from our grammar can encapsulate a key or data:

Definition 7. We say that a string c encapsulates key or data c^{\prime}, if c is the result of arbitrarily nested encryption and secret sharing operations on c^{\prime}; i.e., $c=e_{1}\left(e_{2}\left(\ldots\left(e_{l}\left(c^{\prime}\right) \ldots\right)\right)\right.$ for some $l \geq 1$, where each e_{i} is either $\mathbf{E}_{k_{i}}$ for some key k_{i} or \mathbf{S}_{j} for some $j \in[\mathrm{n}]$.

Definition 8. A string c that encapsulates c^{\prime}, as in Definition 7 above, is useless at time t if

- at least one e_{i} corresponds to $\mathbf{E}_{k_{i}}$ for $k_{i} \notin \operatorname{UsefulKeys}_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$, or
$-c \notin \operatorname{Sec}_{t} \cup \operatorname{Pub}\left(\widetilde{\mathrm{D}}_{t}\right) \cdot{ }^{7}$
Otherwise, it is useful.
It is important to note that usefulness is dynamic: keys and strings that are useful at one instant may be useless at another instant. As noted above, every time a data cell is overwritten, some of the keys that can be used to recover its old contents must become useless for security and thus all strings that were in part generated by such keys (via the encryption algorithm, \mathbf{E}), as well as some strings which encapsulated these keys or the data, must become useless too. For example, in Figure 3, since keys k_{1} and k_{3} become useless at time t, strings $\left\{\mathbf{E}_{k_{1}}\left(k_{2}\right), \mathbf{E}_{k_{1}}\left(k_{3}\right), \mathbf{E}_{k_{2}}\left(\mathbf{E}_{k_{3}}\left(d_{3}\right)\right), \mathbf{E}_{k_{3}}\left(d_{4}\right)\right\} \subseteq \operatorname{Pub}\left(\widetilde{\mathrm{D}}_{t}\right)$ must too.

Our goal is to show that after every write operation, logarithmically many (in n / s) strings stored in public and secret cells must become useless. Such strings may have been generated and stored in their respective cells at any time in the past, but the protocol incurs a computational cost of at least one per string.

3.2 Key-Data Graph

We will interpret secret cells, keys, and data using graph-theoretic terminology. For any execution of the protocol Π on a sequence of data cells $\widetilde{\mathrm{D}}_{t}$, we associate a directed graph $\mathcal{G}_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$ called the key-data graph at that time. Each vertex in the graph is either a string in a secret cell at time t, a useful key at time t, or a data cell at time t, and edges between the vertices abstract the process of key or data recovery (by use of the entailment relation \vdash).

Definition 9. Let Π be a Forward Secret Encrypted RAM protocol executed with a sequence of data cells $\widetilde{\mathrm{D}}_{t}$. The Key-Data Graph for the protocol at time t is a directed graph $\mathcal{G}_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)=(\mathcal{V}, \mathcal{E})$, where $\mathcal{V}=U s e f u l \operatorname{Keys}_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right) \cup \operatorname{Sec}_{t} \cup \mathrm{D}_{t}$ and \mathcal{E} is the set of all ordered pairs $\left(v_{1}, v_{2}\right) \in \mathcal{V} \times \mathcal{V}$ such that at least one of the following is true:

1. $\exists c$ s.t. $v_{2}=\mathbf{F}\left(v_{1}, c\right)$.
2. $\exists k \in \operatorname{UsefulKeys}{ }_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$ s.t. $v_{2}=\mathbf{d F}\left(v_{1}, k\right)$ or $v_{2}=\mathbf{d F}\left(k, v_{1}\right)$.
3. $\exists c \in \operatorname{Pub}\left(\widetilde{\mathrm{D}}_{t}\right) \cup \operatorname{Sec}_{t}$ s.t. $c=e_{1}\left(\mathbf{E}_{v_{1}}\left(e_{2}\left(v_{2}\right)\right)\right.$) (for arbitrary sequences of encryption and sharing operations e_{1}, e_{2}).
${ }^{7}$ Note that we do not say $c \notin \operatorname{Rec}\left(\operatorname{Sec}_{t} \cup \operatorname{Pub}\left(\widetilde{\mathrm{D}}_{t}\right)\right)$, since for our lower bound we want to only count those strings that were actually stored in some secret cell and are erased at some time. Also, as will be seen later, it must be that for any such string that we count in our lower bound, it must further be that $c \notin \operatorname{Rec}\left(\operatorname{Sec}_{t} \cup \operatorname{Pub}\left(\widetilde{\mathrm{D}}_{t}\right)\right)$.
4. $v_{1} \in \operatorname{Sec}_{t}, v_{2} \in \operatorname{UsefulKeys}{ }_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right) \cup \mathrm{D}_{t}$ and v_{1} encapsulates v_{2}.

We note that in Figure 3, we depict exactly $\mathcal{G}_{\Pi}\left(\widetilde{\mathrm{D}}_{t-1}\right)$ for the simple example, which demonstrates that this definition can flexibly handle general schemes

In the following lemma, we show that if a set of vertices C in $\mathcal{G}_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$ minimally recovers some other vertex v_{j}, then there is a collection of paths from the vertices of C to v_{j} in $\mathcal{G}_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$ such that every vertex on the path (except for the vertices of C) is minimally recovered by its predecessors on these paths.

Lemma 1. For any FS eRAM protocol Π, for every $t \geq 0$, for every sequence of data cell updates $\widetilde{\mathrm{D}}_{t}$ performed by \mathcal{A} and for every useful key or data $v_{j} \in \mathcal{V}$ and (non-empty) set $\mathrm{C} \subseteq \mathcal{V}$, if C minimally recovers v_{j}, then there exists a collection of paths \mathcal{P} from all $v_{i} \in \mathrm{C}$ to v_{j} (at least one per individual vertex $\left.v_{i}\right)$ in $\mathcal{G}_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$ such that for every v along these paths, except for the $v_{i} \in \mathrm{C}$, the set of strings $\left\{v_{1}, \ldots, v_{\ell}\right\} \subseteq$ UsefulKeys ${ }_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right) \cup \operatorname{Sec}_{t}$ that have an edge to v on one of the paths minimally recover v.
Proof. Consider some C and v_{j} satisfying the conditions in the lemma statement. Let $q \geq 1$ be the smallest number of applications of the entailment relation \vdash required to recover v_{j} from C and $\operatorname{Pub}\left(\widetilde{\mathrm{D}}_{t}\right)$. We prove the lemma using induction over q. I.e., for all $q \geq 1$ and every C that can minimally recover v_{j} in q steps, there is a collection of paths \mathcal{P} originating from the v_{i} in C and ending at v_{j} in $\mathcal{G}_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$ satisfying the lemma statement.

The statement is true for $q=1$ since in this case $\mathrm{C}=\left\{v_{j}\right\}$ and so there is a trivial path from v_{j} to itself. Now, suppose that the statement is true for all values of q smaller than an integer $Q>1$. So, for all $q<Q$, every set $\mathrm{C} \subseteq \mathcal{V}$ that can minimally recover v_{j} in q steps has a collection of paths in $\mathcal{G}_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$ leading from every $v_{i} \in \mathrm{C}$ to v_{j} and for every vertex v along the paths, the vertices from which it has incoming edges along the paths form a set which minimally recovers v.

Consider any set $\mathrm{C} \subseteq \mathcal{V}$ that can minimally recover v_{j} in Q steps. It must be that there exists some set C^{\prime} such that $1 . \mathrm{C}^{\prime}$ can minimally recover v_{j} in less than Q steps, and 2 . for each $c^{\prime} \in \mathrm{C}^{\prime}$, either
(i) there exists some $k \in \mathrm{C}$ and some string c such that $\mathbf{F}(k, c)=c^{\prime}$ and k minimally recovers c^{\prime}, or
(ii) there exists keys $k_{1}, k_{2} \in$ UsefulKeys ${ }_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$ such that (a) $k_{1} \in \mathrm{C}$, (b) $k_{2} \in \mathrm{C}$, or (c) both $k_{1}, k_{2} \in \mathrm{C}$ and $\mathbf{d F}\left(k_{1}, k_{2}\right)=c^{\prime}$, where in cases (a), (b), (c), just k_{1}, just k_{2}, or $\left\{k_{1}, k_{2}\right\}$ minimally recover c^{\prime}, respectively, or
(iii) c^{\prime} is a key or data and there exists sets $C^{\prime \prime} \subseteq \operatorname{Pub}\left(\widetilde{D}_{t}\right)$ and $C^{\prime \prime \prime} \subseteq \operatorname{Sec}_{t} \cap C$ (each possibly empty) whose strings encapsulate c^{\prime} and $\mathrm{C}_{e} \subseteq \mathrm{C}$, a set of useful encryption keys used in the generation of these strings, such that $C^{\prime \prime \prime} \cup C_{e}$ minimally recovers $c^{\prime}, 8$ or
(iv) $c^{\prime} \in \mathrm{C}$.

Moreover, for any string $c^{\prime} \in \mathrm{C}^{\prime}$ satisfying case (i), it must be $c^{\prime} \in$ UsefulKeys ${ }_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$ because $c^{\prime} \in$ $\operatorname{Rec}(\{k\}) \subseteq \operatorname{Rec}\left(\operatorname{Sec}_{t} \cup \operatorname{Pub}\left(\widetilde{\mathrm{D}}_{t}\right)\right)$, since $k \in \operatorname{Usefulkeys}_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$. For any string satisfying case (ii), it must be that $c^{\prime} \in \operatorname{UsefulKeys}{ }_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$ because $c^{\prime} \in \operatorname{Rec}\left(\left\{k_{1}, k_{2}\right\}\right) \subseteq \operatorname{Rec}\left(\operatorname{Sec}_{t} \cup \operatorname{Pub}\left(\widetilde{\mathrm{D}}_{t}\right)\right)$, since $k_{1}, k_{2} \in$ UsefulKeys ${ }_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$. For any key or data $c^{\prime} \in \mathrm{C}^{\prime}$ satisfying case (iii), it must be that $c^{\prime} \in$ UsefulKeys ${ }_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right) \cup$ D_{t} because: If c^{\prime} is a key, we have that $c^{\prime} \in \operatorname{Rec}\left(\mathrm{C}_{e} \cup \mathrm{C}^{\prime \prime \prime} \cup \operatorname{Pub}\left(\widetilde{\mathrm{D}}_{t}\right)\right) \subseteq \operatorname{Rec}\left(\operatorname{Sec}_{t} \cup \operatorname{Pub}\left(\widetilde{\mathrm{D}}_{t}\right)\right)$, since $\mathrm{C}_{e} \subseteq$ UsefulKeys ${ }_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$ and $\mathrm{C}^{\prime \prime \prime} \subseteq \operatorname{Sec}_{t}$. If c^{\prime} is data, we must have that $v_{j} \in \mathcal{V}$ so $c^{\prime}=v_{j} \in \mathrm{D}_{t}$, for otherwise, since data cells have no outgoing edges, C^{\prime} does not minimally recover v_{j}. Thus, we have shown that $\mathrm{C}^{\prime} \subseteq \mathcal{V}$.

We also note that we can choose to consider only C^{\prime} that contain c^{\prime} corresponding to case (iii) that are the keys or data which are encapsulated by $C^{\prime \prime}$ and $C^{\prime \prime \prime}$ (and not some intermediary strings $c_{\text {bad }}$ encapsulating c^{\prime} in C^{\prime}, which could be in Sec_{t}, for example) because v_{j} in the lemma statement is a useful key or data. Therefore the encapsulated c^{\prime} must either be v_{j} itself or some key that must be used to minimally recover v_{j}. Thus, if C contains enough keys which were used in the generation of the strings of $C^{\prime \prime} \cup C^{\prime \prime \prime}$ that (in addition to the cells of $C^{\prime \prime \prime}$) can minimally recover c^{\prime} anyway, then we can just directly include c^{\prime} in C^{\prime}. If C does not contain enough of those keys, then we can just choose C^{\prime} that lessens the number of applications of the entailment relation needed to recover a sufficient set of those keys, and defer inclusion of c^{\prime} until some later set.

Continuing, by the inductive hypothesis, there are a collection of paths from the $c^{\prime} \in \mathrm{C}^{\prime}$ satisfying the lemma statement, and prepending the paths with:

[^4]- in case (i), the edge $k \rightarrow c^{\prime}$,
- in case (ii,a), the edge $k_{1} \rightarrow c^{\prime}$, in case (ii,b) the edge $k_{2} \rightarrow c^{\prime}$, in case (ii,c) the edges $k_{1} \rightarrow c^{\prime}$ and $k_{2} \rightarrow c^{\prime}$,
- in case (iii), the edges $k \rightarrow c^{\prime}$, for each $k \in \mathrm{C}_{e}$, and the edges $c_{\mathrm{Sec}} \rightarrow c^{\prime}$, for each $c_{\mathrm{Sec}} \in \mathrm{C}^{\prime \prime \prime}$, and
- in case (iv), nothing,
extends these paths appropriately. Indeed, by the case analysis above, for each $c^{\prime} \in \mathrm{C}^{\prime}$ the nodes in C corresponding to its incoming edges on the paths minimally recover c^{\prime}. Furthermore, if any nodes $c \in \mathrm{C}$ do not have any edges to nodes in C^{\prime}, then since C^{\prime} minimally recovers v_{j} and all of the nodes in C^{\prime} can be recovered by the other nodes of C, C does not minimally recover v_{j}, a contradiction. Thus we have shown the inductive step holds for all $Q>1$.

Now we show a quick proposition which establishes that at each time t, any data $d_{i} \in \mathrm{D}_{t}$ cannot be solely recovered by the contents of the public cells up to time t and thus there must exist some non-empty set of strings in the secret cells that minimally recovers d_{i} :

Proposition 1. For any $d_{i} \in \mathrm{D}_{t}$, it must be that $d_{i} \notin \operatorname{Rec}\left(\operatorname{Pub}\left(\widetilde{\mathrm{D}}_{t}\right)\right)$ and thus $\exists S_{i} \subseteq \operatorname{Sec}_{t}$ such that $S_{i} \neq \emptyset$ and S_{i} minimally recovers d_{i}.

Proof. The proof for this is quite basic: if $d_{i} \in \operatorname{Rec}\left(\operatorname{Pub}\left(\widetilde{\mathrm{D}}_{t}\right)\right)$, then if the adverary's next operation is write (i, d) for some data d, then at time $t+1$, for example, it is clear that $d_{i} \in \operatorname{Prev}\left(\mathrm{D}_{t+1}\right)$ and also that $d_{i} \in \operatorname{Rec}\left(\operatorname{Pub}\left(\widetilde{\mathrm{D}}_{t+1}\right)\right) \subseteq \operatorname{Rec}\left(\operatorname{Sec}_{t+1} \cup \operatorname{Pub}\left(\widetilde{\mathrm{D}}_{t+1}\right)\right)$, which violates security. Thus, a contradiction is reached.

Now, by correctness, it must be that $d_{i} \in \operatorname{Rec}\left(\mathrm{Sec}_{t} \cup \mathrm{Pub}_{t}\right)$, so with the above, it must be that there exists some non-empty $S_{i} \subseteq \operatorname{Sec}_{t}$ such that S_{i} minimally recovers d_{i}.

As a result of this proposition, we have that for each $d_{i} \in \mathrm{D}_{t}$ at time t, there exists at least one collection of paths \mathcal{P}_{i}^{t} from the $s_{j} \in S_{i}$ to d_{i} satisfying the conditions of Lemma 1 . In the example of Figure 3 the collection of paths $\mathcal{P}_{3}^{t-1}=\left\{P_{3,1}, P_{2,1}\right\}$, where $P_{3,1}:=k_{1} \rightarrow k_{2} \rightarrow d_{3}$ and $P_{3,2}:=k_{1} \rightarrow k_{3} \rightarrow$ d_{3}, represents one such collection of paths that must exist as a result of Lemma 1 , since $\left\{k_{1}\right\}$ minimally recovers d_{3}. Observe, however, that in general, there could be multiple such path collections (even from the same $S_{i} \subseteq \operatorname{Sec}_{t}$) for each d_{i} (for example, if in Figure 3 we also have $\mathbf{E}_{k_{1}}\left(d_{3}\right) \in \operatorname{Pub}\left(\widetilde{\mathrm{D}}_{t+1}\right)$, then we also have the collection consisting of just $k_{1} \rightarrow d_{3}$); we cannot restrict protocols to just one collection, even though having more does not seem fruitful. So, for each $i \in[n]$, there may exist r_{i} non-empty secret cell subsets $S_{i, j} \subseteq \mathrm{Sec}_{t}, j \in\left[r_{i}\right]$ that minimally recover d_{i}, and $r_{i}^{\prime} \geq r_{i}$ corresponding path collections $\mathcal{P}_{i, l}^{t}, l \in\left[r_{i}^{\prime}\right]$, which therefore must exist by Lemma 1

We also note that by the proof of Lemma 1, every string stored in a secret cell $c_{\mathrm{Sec}} \in \operatorname{Sec}_{t}$ that exists on these paths and is not a key or data has no incoming edges on the paths from other path nodes.

We now show how any FS eRAM protocol Π must handle such collections of paths at every time t in order to preserve security.

Lemma 2. If at time t, an adversary \mathcal{A} executes write $\left(i, d_{i}^{\prime}\right)$ for $d_{i}^{\prime} \neq \mathrm{D}_{t-1}[i]$, then, for every collection of paths $\mathcal{P}_{i, l}^{t-1}, l \in\left[r_{i}^{\prime}\right]$, from some non-empty $S_{i, j} \subseteq \operatorname{Sec}_{t-1}$ that minimally recovers $\mathrm{D}_{t-1}[i]$, all of the vertices (data, keys, and strings in secret cells) on at least one of the paths $P_{i}^{*} \in \mathcal{P}_{i, l}^{t-1}$, must become useless for all times $t^{\prime} \geq t$.

Proof. Since \mathcal{A} queries write $\left(i, d_{i}^{\prime}\right), \Pi$ must alter the contents of the secret cells and the partition of useful and useless keys so that $d_{i} \notin \operatorname{Rec}\left(\operatorname{Sec}_{t^{\prime}} \cup \operatorname{Pub}\left(\widetilde{\mathrm{D}}_{t^{\prime}}\right)\right)$ for all $t^{\prime} \geq t$, where d_{i} was the string stored in data cell i at time $t-1$ (i.e., what d_{i}^{\prime} replaces at time t).

Now, consider one such collection of paths $\mathcal{P}_{i, l}^{t-1}$. If $d_{i} \in \operatorname{Sec}_{t-1}$, i.e., $\mathcal{P}_{i, l}^{t-1}$ only consists of the trivial path from d_{i} to itself, then, looking ahead to Section 3.3 the adversary will never again write d_{i} to D , and thus d_{i} becomes useless for all $t^{\prime} \geq t$. Otherwise, we will proceed inductively starting from the sink of all of these paths, d_{i} (and ending at a node right after the source of one of them). Let V_{i} and E_{i} be the set of vertices and edges in all of the paths of $\mathcal{P}_{i, l}^{t-1}$, respectively. We know from Lemma 1 that the set $R:=\left\{v: v \in V_{i},\left(v, d_{i}\right) \in E_{i}\right\}$, indeed minimally recovers d_{i}. Thus, for security, since we must have that $d_{i} \notin \operatorname{Rec}\left(\operatorname{Sec}_{t^{\prime}} \cup \operatorname{Pub}\left(\widetilde{\mathrm{D}}_{t^{\prime}}\right)\right)$, it must be that $\exists v^{*} \in R$ such that $v^{*} \notin \operatorname{Rec}\left(\operatorname{Sec}_{t^{\prime}} \cup \operatorname{Pub}\left(\widetilde{\mathrm{D}}_{t^{\prime}}\right)\right)$ for all $t^{\prime} \geq t$, i.e., $v^{*} \notin$ UsefulKeys $_{\Pi}\left(\widetilde{\mathrm{D}}_{t^{\prime}}\right) \cup \operatorname{Sec}_{t^{\prime}}$. So, if v^{*} was in UsefulKeys ${ }_{\Pi}\left(\widetilde{\mathrm{D}}_{t-1}\right)$ or Sec_{t-1}, it can no longer be useful at each time t^{\prime} (it is deleted at time t and can never be generated again, by definition of
the symbolic model). We must then recurse on v^{*}, continuing until we reach some source in $\mathcal{P}_{i, l}^{t-1}$, i.e., some key or string $c^{*} \in \operatorname{Sec}_{t-1}$, that must become useless.

Therefore, we conclude that all of the vertices on at least one of the paths $P_{i}^{*} \in \mathcal{P}_{i, l}^{t-1}$ must become indefinitely useless at time t.

It is important to note that the protocol Π has control over which path P_{i}^{*} in each $\mathcal{P}_{i, l}^{t-1}$ must have all of its nodes become useless at time t (and there could in fact be overlap between collections, even for the same i). For example in Figure 3, it may be that either of $P_{3,1}$ or $P_{3,2}$ have all of their nodes become useless at time t. We depict in that figure that the path which Π chooses is $P_{3,2}$.

The rest of the lower bound proof will proceed by considering for each t and $i \in[n]$, an arbitrary collection of paths \mathcal{P}_{i}^{t} and for each such collection, the path P_{i}^{*} that minimizes the sum of the number of outgoing edges of type 3 or 4 in Definition 9 from its vertices. We do so to focus on the minimum number of strings that are actually stored in public and secret cells, corresponding to tangible actions that Π took in the past to put them there, that Π must make useless at each time t. In particular, we remove all edges (such as those for (d)PRFs) that may not require such storage. We do this by, in Definition 11 first choosing an arbitrary collection \mathcal{P}_{i}^{t} for each $i \in[n]$ and considering only the edges on those paths, then restricting these paths to only edges of type 3 or 4 , and finally further restricting to only those edges on path P_{i}^{*} for each $i \in[n]$. First, a helpful definition:

Definition 10. Let $G=(\mathcal{V}, \mathcal{E})$ be a directed graph and let P be some path in G. The out-degree of P in G, denoted out ${ }_{G}(P)$, is the number of edges in \mathcal{E} that start from a node in P. That is,

$$
\text { out }_{G}(P)=\sum_{v \in P} \text { out }_{G}(v) .
$$

Definition 11. For any FS eRAM protocol Π, executed with a sequence of data cell updates $\widetilde{\mathrm{D}}_{t}$, the succinct key-data graph at time t, denoted $\hat{\mathcal{G}}_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$, is a modification of $\mathcal{G}_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$ formed by

- first, choosing for each $i \in[n]$ an arbitrary collection of paths \mathcal{P}_{i}^{t} in $\mathcal{G}_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$ specified by Lemma 1 and which must exist by Proposition 1, starting from the vertices of some arbitrary non-empty $S_{i} \in \operatorname{Sec}_{t}$ that minimally recovers d_{i} and ending at d_{i},
- second, including an edge from $\mathcal{G}_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$ if and only if it is contained in the collection of paths \mathcal{P}_{i}^{t} for some $i \in[n]$,
- third, for each $i \in[n], l \in\left[\ell_{i}\right]$, where ℓ_{i} the number of paths in \mathcal{P}_{i}^{t}, for any non-empty sequence of edges $\left(e_{1}, \ldots, e_{m}\right)$ on path $P_{i, l} \in \mathcal{P}_{i}^{t}$ such that each $e_{j}=\left(v_{j-1}, v_{j}\right)$ for $j \in[m-1]$ is a (d)PRF edge of type 1 or $2, e_{m}=\left(v_{m-1}, v_{m}\right)$ is not a (d)PRF edge, and v_{0} does not have any incoming (d)PRF edges on $P_{i, l}$, removing all of the edges in the sequence and replacing them with the single edge $e=\left(v_{0}, v_{m}\right)$ for only $P_{i, l}$,
- fourth, taking the union of these edges for all $i \in[n]$, and finally
- including an edge if and only if it is contained in the path P_{i}^{*} for some $i \in[n]$ such that out $\left(P_{i}^{*}\right)=$ $\min _{P_{i, l} \in \mathcal{P}_{i}^{t}}$ out $\left(P_{i, l}\right)$, where the outdegree of the nodes is over only the edges from the last step.
One can observe that vertices representing data cells are of course sinks, i.e., they have no outgoing edges, in $\mathcal{G}_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$ and $\hat{\mathcal{G}}_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$. In addition, at most s secret cells can be represented in $\mathcal{G}_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$ and $\hat{\mathcal{G}}_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$, by definition. Furthermore, if a data cell d_{i} is not itself in Sec_{t} at time t, by Proposition 1] it must be that some non-empty subset $S_{i} \subseteq \operatorname{Sec}_{t}$ minimally recovers d_{i}, and so there must be some collection of paths \mathcal{P}_{i}^{t} in $\mathcal{G}_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$ starting at the secret cells of S_{i} and ending in edges of type 3 or 4 at d_{i}. Thus, there must still be one path in $\hat{\mathcal{G}}_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$ starting at some secret cell $c_{\mathrm{Sec}} \in \operatorname{Sec}_{t}$ and ending at d_{i}. We will call such paths \widehat{P}_{i}^{*}.

3.3 Adversarial Strategy

We now describe the strategy used by the adversary to prove the lower bound. The adversary will use a simple non-adaptive randomized strategy. Initially, the adversary inputs n distinct strings of type D to be stored in the data cells: $\mathrm{D}_{0}=\left(d_{1}, \ldots, d_{n}\right)$ to the init algorithm. At each instant t, the adversary will pick a cell i uniformly at random to write data d that has never before been in $\mathrm{D}_{t^{\prime}}$ for $0 \leq t^{\prime} \leq t$, i.e. write (i, d). We will show that in expectation, the number of strings stored in secret and public cells combined that become useless after time t is logarithmically-many (in terms of n / s). Before proving Theorem 6 we provide an instrumental graph-theoretic lemma in proving our lower bound.

Lemma 3. Let $G=(\mathcal{V}, \mathcal{E})$ be an arbitrary graph and let $S=\left\{u_{1}, \ldots, u_{s}\right\}, D=\left\{v_{1}, \ldots, v_{n}\right\}$ be any sets of nodes in the graph such that for each $v_{i} \in D, \exists u_{j} \in S$ such that there is a path P_{i} from u_{j} to v_{i} and there is no $k \neq i$ such that v_{k} occurs in P_{i}. Then if $i \in[n]$ is chosen uniformly at random:

$$
\mathbb{E}\left[\text { out }_{G}\left(P_{i}\right)\right] \geq \log _{2}(n / s)
$$

We first show two lemmas that are important for our proof of Lemma 3 The proof of Lemma 4 is provided in Appendix A.
Lemma 4. The sum $S=\sum_{i=1}^{d} \log \left(x_{i}\right) \cdot \frac{x_{i}}{m}$, with the constraints that $\forall i \in[d], x_{i}>0, m>0$, and $\sum_{i=1}^{d} x_{i}=m$, is such that $S \geq \log (m / d)$.

Lemma 5. Let $G=(\mathcal{V}, \mathcal{E})$ be an arbitrary graph and let $\left\{v, v_{1}, \ldots, v_{m}\right\}$ be any set of nodes in the graph such that for each $i \in[m]$, there is a path P_{i} from v to v_{i} and there is no $j \neq i$ such that v_{i} occurs in P_{j}. Then, if $i \in[m]$ is chosen uniformly at random:

$$
\mathbb{E}\left[\text { out }_{G}\left(P_{i}\right)\right] \geq \log _{2}(m)
$$

Proof. We will prove this lemma by induction over m. We will treat paths as sequences of nodes and for any two paths P and $Q, P \cdot Q$ denotes the path that is formed by concatenating P and Q.

For $m=1$, the lemma is trivially true. The path from v to v_{1}, P_{1}, is the only path under consideration and has out-degree at least $\log _{2}(1)=0$.

We now hypothesize that for all values of m less than some $\widetilde{m} \geq 2$, the statement of the lemma is true: for all $m<\widetilde{m}$, all sets of nodes $\left\{v_{1}, \ldots, v_{m}\right\} \in \mathcal{V}$ and all sets of paths $\left\{P_{1}, \ldots, P_{m}\right\}$, such that for all $i \leq m, P_{i}$ is a path from v to v_{i} and v_{i} does not lie on P_{j} for any $j \neq i$, if $i \in[m]$ is chosen uniformly at random, then $\mathbb{E}\left[\right.$ out $\left._{G}\left(P_{i}\right)\right] \geq \log _{2}(m)$.

Now consider any subset of $\mathcal{V},\left\{v_{1}, \ldots, v_{\widetilde{m}}, v\right\}$, such that there are paths $\left\{\widetilde{P}_{1}, \ldots, \widetilde{P}_{\widetilde{m}}\right\}$, each path \widetilde{P}_{i} going from v to v_{i} and no v_{i} lying on \widetilde{P}_{j} for $j \neq i$. Without loss of generality, we can assume that all of these paths are loop free. Let P be the largest common prefix of $\widetilde{P}_{1}, \ldots, \widetilde{P}_{\widetilde{m}}$; that is, P is the longest path such that for each \widetilde{P}_{i}, there is a path \widetilde{Q}_{i} for which $\widetilde{P}_{i}=P \cdot \widetilde{Q}_{i}$. Let \widetilde{v} be the last node in P. We assumed the \widetilde{P}_{i} 's to be loop-free, so there is exactly one path \widetilde{Q}_{i} for each \widetilde{P}_{i} such that $\widetilde{P}_{i}=P \cdot \widetilde{Q}_{i}$. We now partition the set $\left\{\widetilde{Q}_{1}, \ldots, \widetilde{Q}_{\widetilde{m}}\right\}$ based on the first node in these paths: for each set \mathbf{Q}_{j} in the partition, the first node on each of the \widetilde{Q}_{i} 's in \mathbf{Q}_{j} is the same, say \widetilde{v}_{j}. We let d be the size of this partition (must be $d \geq 2$). Corresponding to the partition of the \widetilde{Q}_{i} 's, we can partition the nodes into d sets: let $\mathcal{V}_{1}, \ldots, \mathcal{V}_{d}$ be these sets.

Since we pick $i \in[\widetilde{m}]$ uniformly at random, the probability that we pick a node in one of these sets is weighted by its size. Consider the set \mathcal{V}_{j} that v_{i} is in. Let \widetilde{G}_{j} be the graph formed by taking the union of the \widetilde{Q}_{i} 's corresponding to \mathcal{V}_{j}. The set of paths $\left\{\widetilde{Q}_{i}\right\}_{v_{i} \in \mathcal{V}_{j}}$ has the property that each \widetilde{Q}_{i} is a path from \widetilde{v}_{j} to v_{i} and no v_{i} lies on a path \widetilde{Q}_{j} for $j \neq i$. Moreover the node $v_{i} \in \mathcal{V}_{j}$ that is selected, is done so uniformly at random. Now, for every such set \mathcal{V}_{j} of size $\hat{m}<\widetilde{m}$, we can apply the inductive hypothesis to show that since $i \in[\hat{m}]$ is picked uniformly at random, $\mathbb{E}\left[\right.$ out $\left._{\widetilde{G}_{j}}\left(P_{i}\right)\right] \geq \log _{2}(\hat{m})$.

Therefore, we can calculate $\mathbb{E}\left[\right.$ out $\left._{G}\left(P_{i}\right)\right]$ as follows:

$$
\begin{gathered}
\mathbb{E}\left[\text { out }_{G}\left(P_{i}\right)\right]=\sum_{j=1}^{d} \mathbb{E}\left[\text { out }_{G}\left(P_{i}\right) \mid v_{i} \in \mathcal{V}_{j}\right] \cdot \operatorname{Pr}\left[v_{i} \in \mathcal{V}_{j}\right] \\
\geq \sum_{j=1}^{d}\left(d+\mathbb{E}\left[\text { out }_{\widetilde{G}_{j}}\left(P_{i}\right)\right]\right) \cdot \operatorname{Pr}\left[v_{i} \in \mathcal{V}_{j}\right] \geq \sum_{j=1}^{d}\left(d+\log _{2}\left(\left|\mathcal{V}_{j}\right|\right)\right) \cdot \frac{\left|\mathcal{V}_{j}\right|}{m},
\end{gathered}
$$

which by Lemma 4, is shown to be:

$$
\geq d+\log _{2}\left(\frac{m}{d}\right) \geq \log _{2}(m)
$$

Proof (Lemma 3). For each $v_{i} \in D$, consider an arbitrary node $u_{j} \in S$ such that there is a path P_{i} from u_{j} to v_{i}. We can then partition the nodes D according to which node $u_{j} \in S$ they have a path from. We let s^{\prime} be the number of sets in this partition $\left(0<s^{\prime} \leq s\right)$ and call these sets U_{j} (corresponding to the $u_{j} \in S$ that its nodes have a path from). Let \widetilde{G}_{j} be the graph formed by taking the union of the P_{i} 's corresponding to the v_{i} in U_{j}. Since $i \in[n]$ is chosen uniformly at random, the set U_{j} which v_{i} is in is weighted by its size.

We calculate:

$$
\begin{aligned}
& \mathbb{E}\left[\text { out }_{G}\left(P_{i}\right)\right]=\sum_{j=1}^{s^{\prime}} \mathbb{E}\left[\text { out }_{G}\left(P_{i}\right) \mid v_{i} \in U_{j}\right] \cdot \operatorname{Pr}\left[v_{i} \in U_{j}\right] \\
\geq & \sum_{j=1}^{s^{\prime}} \mathbb{E}\left[\text { out }_{\widetilde{G}_{j}}\left(P_{i}\right)\right] \cdot \operatorname{Pr}\left[v_{i} \in U_{j}\right] \geq \sum_{j=1}^{s^{\prime}} \log _{2}\left(\left|U_{j}\right|\right) \cdot \frac{\left|U_{j}\right|}{n},
\end{aligned}
$$

by Lemma 5

$$
\geq \log _{2}\left(n / s^{\prime}\right) \geq \log _{2}(n / s)
$$

by Lemma 4
Now, we are ready to prove Theorem 6
Proof (Theorem (6). In the setting of succinct key-data graphs, sets S and D in Lemma 3 correspond to the secret cells and data cells, respectively, at time t, i.e., Sec_{t} and Pub_{t}. Each path $P_{i}=\widehat{P}_{i}^{*}$ corresponds to the path starting from some secret cell u_{j} to the data cell v_{i} that has the minimum number of outgoing edges over all $P_{i, l} \in \mathcal{P}_{i}^{t}$, for some arbitrary \mathcal{P}_{i}^{t}, which correspond to strings that must be stored in the public or secret cells of Π. Since no data cells have outgoing edges, for every $i \in[n]$, no data cell v_{k}, $k \neq i$ lies on the path \widehat{P}_{i}^{*}. Thus, Lemma 3 implies that for every $t \geq 1$, the data cell v_{i} replaced by \mathcal{A} at time t is such that in expectation, \widehat{P}_{i}^{*} will always have out-degree at least $\log _{2}(n / s)$ in $\hat{\mathcal{G}}_{\Pi}\left(\widetilde{\mathrm{D}}_{t}\right)$. Since \widehat{P}_{i}^{*} corresponds to the path from a secret cell to d_{i} which minimizes the number of outgoing edges corresponding to strings that must be stored in the public or secret cells of Π, any other path that Π chooses whose nodes must become useless after time t (by Lemma 2 must have at least $\log _{2}(n / s)$ such edges in expectation.

Once all of the vertices on some such path become useless, all strings in public or secret cells that were in part generated by them become useless by definition. For example, in Figure 3. since the vertices on $P_{3,2}$ become useless, each string $\mathbf{E}_{k_{1}}\left(k_{2}\right), \mathbf{E}_{k_{1}}\left(k_{3}\right), \mathbf{E}_{k_{2}}\left(\mathbf{E}_{k_{3}}\left(d_{3}\right)\right), \mathbf{E}_{k_{3}}\left(d_{4}\right)$ becomes useless. So, under the above adversarial strategy, at least $\log _{2}(n / s)$ strings stored in public or secret cells become useless after time t, in expectation. We only mark each string as useless once because:

- if a key in the set, which minimally recovers the key or data that the string encapsulates, using that string, is indefinitely inaccessible by the protocol, the protocol is indefinitely unable to recover the key or data using the string (and also the string can never be reproduced, by definition of the symbolic model),
- otherwise, if the string was stored in a secret cell on the path P_{i}^{*}, then from Lemma 2 we know that it must become useless indefinitely and therefore never be stored in a secret cell again.

Therefore, in both cases, there will never be any edge in any future succinct key-data graph that corresponds to the string. Moreover, since v_{i} is never added back to a data cell by the adversary, the strings remain useless for all $t^{\prime} \geq t$.

Therefore, we have shown that throughout the execution of any protocol Π, at least $\frac{t}{t+1} \cdot \log _{2}(n / s) \geq$ $\left(1-\frac{1}{t}\right) \cdot \log _{2}(n / s)=(1-o(1)) \cdot \log _{2}(n / s)$ strings which were stored in public or secret cells become useless in expectation through time t, proving Theorem 6

4 Stronger Forward Secret Encrypted RAM Definitions

We note that our FS eRAM computational lower bound in Section 3 uses a different, weaker definition in our symbolic model based on recoverability (which only makes our lower bound stronger). For our upper bounds, we will use the typical indistinguishability-based security that we define here in the standard model of computation.

Definition 12 (Forward Secret Encrypted RAM). A Forward Secret Encrypted RAM (FS eRAM) protocol $\Pi=$ (init, read, write) consists of the following algorithms:
$-(\operatorname{Sec}, \operatorname{Pub}) \leftarrow \operatorname{init}\left(1^{\lambda}, s, n\right)$, which initializes public cells Pub and s secret cells Sec, where n is the number of virtual cells and λ is the security parameter.
$-\left(\mathrm{Sec}^{\prime}, \mathrm{Pub}^{\prime}, d\right) \leftarrow \operatorname{read}(\mathrm{Sec}, \mathrm{Pub}, i)$, which returns data d of virtual cell $i \in[n]$.
$-\left(\mathrm{Sec}^{\prime}, \mathrm{Pub}^{\prime}\right) \leftarrow$ write $(\operatorname{Sec}, \operatorname{Pub}, d, i)$, which replaces the contents of virtual cell $i \in[n]$ with data d.
Correctness. An FS eRAM scheme is correct if for any sequence of operations:

$$
\operatorname{Pr}\left[\left(\cdot, \cdot, d^{*}\right) \leftarrow \operatorname{read}(\operatorname{Sec}, \operatorname{Pub}, i): d^{*}=d\right]=1,
$$

for any execution of read(Sec, Pub, i) in the sequence after an execution of write(Sec, Pub, d, i) and before a subsequent execution of write(Sec, Pub, d^{\prime}, i), for some data d^{\prime}, in the sequence where the probability is over the random coin tosses of the protocol.

Security. We define security with respect to the following game between a challenger and an adversary. We emphasize that the adversary has read-access to all of Pub (which is usually encrypted) on which the FS eRAM operates, as well as the access pattern to cells of Pub during operations.

The challenger initially chooses $b \in\{0,1\}$ uniformly at random and runs (Sec, Pub) $\leftarrow \operatorname{init}\left(1^{\lambda}, s, n\right)$ (where $s \ll n=\operatorname{poly}(\lambda)$). Then, the adversary has access to (polynomial-many queries of) the following oracles:

- $\operatorname{write}(d, i)$, which computes write(Sec, Pub, $d, i)$.
- corrupt(), which simply returns Sec.
$-\operatorname{chall}\left(d_{0}, d_{1}, i\right)$, which computes write(Sec, Pub, $\left.d_{b}, i\right)$.
An adversary is not allowed to call corrupt () after a call to chall $\left(d_{0}, d_{1}, i\right)$, without first using write (d, i) to overwrite the i-th virtual cell with some other data d, since otherwise they would trivially win. Observe that w.l.o.g. there is no oracle for $\operatorname{read}()$ since the adversary already knows the data in cells which they filled using write(), and should not know the data in cells filled via chall(). Further observe that the following definition provides forward secrecy, since upon some legal corrupt() call after some $\operatorname{chall}\left(d_{0}, d_{1}, i\right)$ call, the adversary \mathcal{A} should not be able to guess the bit b, i.e. whether d_{0} or d_{1} was stored in virtual cell i.

Definition 13 (Forward Secret Encrypted RAM Security). A Forward Secret Encrypted RAM protocol Π is secure if for every adversary \mathcal{A} that runs in time $\operatorname{poly}(\lambda)$:

$$
|\operatorname{Pr}[\mathcal{A} \rightarrow 1 \mid b=1]-\operatorname{Pr}[\mathcal{A} \rightarrow 1 \mid b=0]| \leq \operatorname{neg}(\lambda) .
$$

Recall the folklore construction of Figure 1 It is clear that this construction is secure with respect to Definition 13 due to standard IND-CPA security of symmetric encryption. Once the adversary queries $\operatorname{write}(d, i)$ after a $\operatorname{chall}\left(d_{0}, d_{1}, i\right)$ query, all of the keys on the path of cell i, including those in Sec, are refreshed, and encryptions of the children of the path nodes are recomputed. Thus no information about the challenge bit b can be garnered from a corrupt() query.

5 Oblivious Forward Secret Encrypted RAM

In this section, we consider combining the notion of forward secret encrypted RAMs with oblivious RAMs (or ORAMs). ORAMs are a well-studied cryptographic primitive (see [23|42|24|48|38|5] and references therein) that provides security for the patterns of data access. At a high level, ORAMs guarantee that adversaries may not distinguish between two equal-length operational sequences even when viewing accesses to encrypted data. We note that ORAMs do not consider the setting where adversaries corrupt client storage.

Looking forward, we first formally define oblivious forward secret encrypted RAMs. We present both a strong and a weak notion combining obliviousness and forward secrecy. First, we present a linear cell probe lower bound for the strong variant. To obtain sub-linear overhead, we consider the weaker notion and present an optimal construction with logarithmic overhead. As a result, we show that one can add a weaker notion of obliviousness to forward secret encrypted RAMs without asymptotic overhead.

5.1 Definitions

The syntax of ORAMs are identical to the syntax of FS eRAMs presented in Definition 12 where secret cells Sec are client storage and public cells Pub are server storage. Therefore, we omit a formal notion of ORAM syntax and refer readers back to FS eRAM syntax if needed.

We start by defining the most natural notion of oblivious forward secret encrypted RAMs. When the adversary corrupts client storage and views the current memory contents, the adversary should not be able to distinguish between any two equal-length operational sequences that result in the current memory contents. At a high level, this notion provides forward secrecy for both the memory contents as well as the access patterns performed by the client prior to corruption. We denote this notion as strong oblivious forward secret encrypted RAMs.

Definition 14 (Strong Oblivious Forward Secret Encrypted RAM). Consider any two equallength sequences of read and write operations O_{1} and O_{2} such that the contents of the array after both sequences are executed are identical. Let $\mathcal{V}(O)$ be the adversary's view when executing sequence O that includes contents of server (public) cells, all accesses to server cells and corrupted secret cells after O is executed. For any pair of such sequences O_{1} and O_{2} and any PPT adversary \mathcal{A}, a protocol Π is a strong oblivious forward secret encrypted RAM if

$$
\left|\operatorname{Pr}\left[\mathcal{A}\left(\mathcal{V}\left(O_{1}\right)\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(\mathcal{V}\left(O_{2}\right)\right)=1\right]\right| \leq \operatorname{neg} \mid(\lambda) .
$$

We show in Section 5.2 that this strong notion requires linear overhead in the cell probe model. As a result, we need to consider a weaker security notion to obtain reasonable (or even sub-linear) overhead. Another natural composition of forward secret encrypted RAMs and oblivious RAMs is to trivially combine the two security notions together. If we consider an adversary that never corrupts client storage, then the access pattern to data remains secure (identical to ORAM guarantees). When the adversary corrupts client storage, all deleted memory contents are not recoverable by the adversary (identical to forward secret guarantees). In the case of client corruption, no security guarantees are offered about the client's access patterns prior to corruption. We denote this security as weak oblivious forward secret encrypted RAMs. As this is the notion that enables interesting sub-linear constructions, we will also refer to this notion as simply oblivious forward secret encrypted RAMs. We start by defining oblivious RAM:

Definition 15 (Oblivious RAM). Consider any two equal-length sequences of read and write operations O_{1} and O_{2}. Let $\mathcal{V}(O)$ be the adversary's view when executing sequence O that includes contents of server (public) cells and all accesses to server cells. For any pair of such sequences O_{1} and O_{2} and any PPT adversary \mathcal{A}, a protocol Π is an oblivious RAM if

$$
\left|\operatorname{Pr}\left[\mathcal{A}\left(\mathcal{V}\left(O_{1}\right)\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(\mathcal{V}\left(O_{2}\right)\right)=1\right]\right| \leq \operatorname{negl}(\lambda) .
$$

Definition 16 ((Weak) Oblivious Forward Secret Encrypted RAM). A protocol Π is a (weak) oblivious forward secret encrypted $R A M$ if Π is both a forward secret encrypted $R A M$ and an oblivious RAM.

5.2 Strong Oblivious FS eRAM Requires Linear Overhead

In this section, we prove a very strong lower bound in the cell probe model 53|32 about constructions that provide our strong notion of oblivious forward secrecy. That is, any construction that protects access patterns even if the adversary is able to corrupt client storage. We show that the expected overhead of such constructions must be on the order of accessing the entire array of n items (except for those stored in client memory). In other words, we note that the trivial construction that downloads the entire array, re-encrypts and re-uploads back to the server is the optimal construction. We note a variant of this lower bound is presented by Roche et al. [45] in the balls-and-bins model. Our lower bound is slightly stronger as it is proven in the cell probe model. Formally, we prove the following theorem:

Theorem 7. Let Π be a construction storing n array entries each of bits that is a strong oblivious forward secret encrypted RAM in the cell probe model. Let w is the cell size in bits. If Π uses at most s bits of client storage, then the expected amortized overhead of Π must be $\Omega((n b-s) / w)$ cell probes.

Let Π be a computational protocol that stores an array of n entries and each entry is b bits that uses s bits of client storage. Furthermore, suppose that Π provides strong oblivious forward secrecy. That is, the access pattern remains hidden even when client storage is corrupted by the adversary. We will also assume that using client storage for Π and a subset of server storage, it is possible to determine the subset of array entries that may be decoded using the subset of server storage and client storage. Furthermore, we assume that the decoding of array entries may be done efficiently (that is, PPT). To our knowledge, all forward secret encrypted RAMs and oblivious RAMs satisfy this property. For all prior constructions, one could simply execute the operation read (i) and check whether all relevant probed cells (ignoring dummy cell probes) appear in the subset of server storage to determine whether the i-th array entry could be decoded.

Our lower bounds are proved in the cell probe model. Server storage is split up into cells each of w bit size. We assume that each cell consists of $w=\Omega(\log n)$ bits such that each cell is large enough to hold cell locations (so there are 2^{w} cell locations at most). The only cost in the cell probe model is reading and/or overwriting a cell. The action of reading or overwriting a cell is denoted as probing the cell. All other operations outside of cell probes are free of charge. Free operations include computation, accessing or modifying client storage, accessing a random oracle, etc.

Note that the entire array may be encoded using $n b / w$ cells. If we assume that client memory is used to store as much information about the array as possible, then the server must use $(n b-s) / w$ cells to store the array. In other words, the expected overhead of the construction must download on the order of the entire array. A trivial asymptotically optimal construction is to simply download the entire array for each operation, re-encrypt locally with a new key and re-upload the array back to the server. Therefore, our lower bounds are tight.

We note that a variant of our theorem was proven by Roche et al. [45] in the weaker balls-and-bins model with the same assumption that there exists a PPT algorithm to determine all array entries that may be decoded with a subset of server memory and client memory. In the balls-and-bins model, each array entry is modelled as an indivisible ball and server memory as bins that may store at most one ball. This is equivalent to a non-coding assumption on the array entries. Our lower bounds in the cell probe model are stronger since they rule out strong oblivious forward secret encrypted RAMs even when data structures perform arbitrary encoding of the array entries before storing in server memory.

We consider the following worst case sequence of the form:

$$
\operatorname{write}\left(1, B_{1}\right), \ldots, \operatorname{write}\left(n, B_{n}\right)
$$

where each B_{i} is a uniformly random string of b-bits. Our proof will analyze the amortized efficiency over all n operations. Denote probe (i) to be the set of cells that are probed during the i-th write operation of write $\left(i, B_{i}\right)$. We will prove the following lemma:

Lemma 6. $\operatorname{Pr}_{i \sim U_{n}}[|\operatorname{probe}(i)|>(n b / 100-s / 2) / w] \geq 1 / 2$ where U_{n} is the uniform distribution over the set $\{1, \ldots, n\}$.

We quickly note this lemma would complete Theorem 7
Proof (Theorem 7). Lemma 6 implies the expected total cell probes over n operations is $n / 2 \cdot(n b / 100-$ $s / 2) / w$. Therefore, the expected amortized number of cell probes over all n operations is $\Omega((n b-s) / w)$.

Consider the subset $S_{i} \subseteq\{1, \ldots, n\}$ of array entries that may be decoded using the knowledge of probe (i) (both the cell locations and contents) as well as the entire contents of client storage such as private keys. We show that S_{i} cannot be too large. That is, only a subset of the n array entries may be decoded using the probed cells and client storage. Intuitively, this makes sense the array n entries contain $n b$ bits of entropy but the probed cells and client storage only use $n b / 100$ cells. We prove the following about the subset S_{i}.

Lemma 7. Consider the operational sequence $O=$ write $\left(1, B_{1}\right), \ldots$, write $\left(n, B_{n}\right)$ executed by Π. Suppose there exists $i \in\{1, \ldots, n\}$ such that write $\left(i, B_{i}\right)$ probes probe (i) where $|\operatorname{probe}(i)| \leq(n b / 100-s / 2) / w$. If S_{i} is the set of indices whose array entries may be decoded using probe (i) and client storage after the execution of write $\left(i, B_{i}\right)$, then it must be that $\operatorname{Pr}\left[\left|S_{i}\right|>99 n / 100\right]<3 / 4$ over the choice of randomness used by Π to execute the sequence O.

Proof. Towards a contradiction, suppose that $\operatorname{Pr}\left[\left|S_{i}\right|>99 n / 100\right] \geq 3 / 4$. We present an impossible oneway compression scheme of a uniformly random $n b$-bit string using Π. We formally present the scheme using Alice (encoder) and Bob (decoder). Alice receives a uniformly random $n b$-bit string (or an array of n entries where each entry is a uniformly random b-bit string). Bob will only receive Alice's message and decode the string. For our contradiction, we show that Alice's message size will be smaller than $n b$ bits in expectation.

Alice's Encoding Algorithm. Receives B_{1}, \ldots, B_{n} as input.

1. Execute Π on write $\left(1, B_{1}\right), \ldots$, write $\left(i-1(i-1), B_{i-1}\right)$.
2. Execute Π on write $\left(i, B_{i}\right)$ to obtain the subset of probed server cells probe (i).
3. Set S_{i} to be the subset of array entries that may be decoded using probe (i) using the client storage after the execution of write $\left(i, B_{i}\right)$.
4. If $\left|S_{i}\right|<99 n / 100$, then Alice's encoding starts with a 0 -bit followed by a trivial encoding of B_{1}, \ldots, B_{n} using $n b$ bits.
5. When $\left|S_{i}\right| \geq 99 n / 100$, then Alice's encoding starts with a 1-bit followed by \mid probe $(i) \mid$, then the locations and contents of probe (i) using $2 w \mid$ probe $(i) \mid$ bits and the client storage of s bits. For the remaining array entries B_{j} such that $j \notin S_{i}$, Alice encodes them trivially in increasing index order using $b\left(n-\left|S_{i}\right|\right)$ bits.

Bob's Decoding Algorithm. Receives Alice's encoding.

1. If Alice's encoding starts with a 0 -bit, then decode trivially.
2. Otherwise, Bob decodes probe (i) and client storage.
3. Bob computes the all array entries whose indices appear in S_{i}.
4. Using the remainder of Alice's encoding, Bob iterates through indices in $j \in\{1, \ldots, n\}$ in increasing order. For each $j \notin S_{i}$, Bob trivially decodes B_{j} using the next b bits of Alice’s encoding. Afterwards, Bob decodes all of B_{1}, \ldots, B_{n}.

Analysis. If $\left|S_{i}\right|<99 n / 100$, then Alice's encoding size is $n b+1$ bits. This occurs with probability at most $3 / 4$. For the other case, Alice's encoding size is

$$
1+O(\log n)+(2 w)(n b / 100-s / 2) / w+s+b\left(n-\left|S_{i}\right|\right) \leq O(\log n)+n b / 50+n b / 100 \leq n b / 20
$$

bits since $|\operatorname{probe}(i)| \leq(n b / 100-s / 2) / w$ and $S_{i} \geq 99 n / 100$. Therefore, the Alice's expected message size is:

$$
1+(3 n b / 4)+n b / 20<n b=H\left(B_{1}, \ldots, B_{n}\right)
$$

contradicting Shannon's source coding theorem.
Proof (Lemma (6). Towards a contradiction, suppose that

$$
\operatorname{Pr}_{i \sim U_{n}}[|\operatorname{probe}(i)| \leq(n b / 100-s / 2) / w] \geq 1 / 2
$$

We construct a PPT adversary \mathcal{A} that will distinguish the following sequences. The first is the worst case sequence $S_{0}=\operatorname{write}\left(1, B_{1}\right), \ldots$, write $\left(n, B_{n}\right)$. The other sequence S_{1} is identical to S_{0} except by swapping two random operations. Formally, \mathcal{A} picks two uniformly an index i uniformly at random from $\{1, \ldots, 199 n / 200\}$ and j uniformly at random from $\{199 n / 200+1, \ldots, n\} . S_{1}$ is obtained by swapping the i-th and j-th operation in S_{0}.
\mathcal{A} will observe the first j write operations. Furthermore, \mathcal{A} will observe the subset of cells probed in the j-th write operation, denoted by probe (j). Afterwards, \mathcal{A} will corrupt and gain access to all client storage. At the time of corruption, note that the plaintext array contents are identical as the same j write operations were performed except for the i-th and j-th operation being switched in the two sequences.

Next, \mathcal{A} will utilize the protocol Π to construct the subset of array indices S that may be decoded using the corrupted client storage and the subset of server cells probe (j). Finally, \mathcal{A} checks whether the indices i and j appear in S. If $i \in S$ and $j \notin S$, then \mathcal{A} will guess that S_{1} was executed. If $i \notin S$ and $j \in S$, then \mathcal{A} will guess that S_{0} was executed. In any other case, \mathcal{A} will guess between S_{0} and S_{1} with equal probability by flipping an unbiased coin.

To analyze the adversary's guessing probability, suppose that S_{0} is executed. For correctness, it must be the case that the write operation write $\left(j, B_{j}\right)$ must have encoded the uniformly random string B_{j} in the client storage and subset of probed cells probe (j). Therefore, it must be that $j \in S$. We now analyze the probability that $i \notin S$. By Lemma 7, S contains at most $99 n / 100$ indices. Note that the choice of i-th operation that was chosen to be swapped with the j-th operation is chosen uniformly at random. Therefore, $\operatorname{Pr}[i \in S]=(99 n / 100) /(199 n / 200) \leq 999 / 1000$. Therefore, \mathcal{A} has advantage at least $1 / 1000$ when S_{1} is executed. For the case when S_{1} is executed, we simply note that i must always appear S. Therefore, the adversary guesses correctly with probability at least $1 / 2$. Put together, \mathcal{A} has advantage at least $1 / 2000$ contradiction security and completing the proof.

5.3 Oblivious Forward Secret Encrypted RAM Construction

We start by presenting a naive composition of oblivious RAM and forward secret encrypted RAM constructions. Throughout this section, we will measure overhead with respect to encrypted array entries. For example, $O(\log n)$ communication means $O(\log n)$ encrypted array entries. As in the lower bound of Section 5.2 we make the natural assumption that cell size is $\Omega(\log n)$ bits, and also array entries are $O(\log n)$ bits. The idea is to take any forward secret encrypted RAM and replace each memory access using an oblivious RAM. While this guarantees both obliviousness and forward secrecy, the efficiency is not optimal. Note that forward secret encrypted RAMs use $O(\log n)$ memory accesses. Each memory access in an ORAM costs $O(\log n)$ overhead incurring a total $O\left(\log ^{2} n\right)$ overhead. We note that prior works have studied this primitive such as [45]. To our knowledge, the best current construction requires $O\left(\log ^{2} n\right)$ overhead ${ }^{9}$

Our construction utilizes two observations. First, tree-based ORAMs are quite conducive to incorporate the folklore FS eRAM solution. However, all tree-based ORAMs 48] require $O\left(\log ^{2} n\right)$ overhead. On the other hand, hierarchical ORAMs [23|42|38|5] obtain $O(\log n)$ overhead but there is no straightforward way to incorporate the folklore FS eRAM solution. To obtain our result, we compose tree-based and hierarchical ORAMs to obtain a faster solution. At a high level, we use tree-based ORAMs and replace the recursive position map with a hierarchical ORAMs. We describe our new constructions below.
Overview. Our construction will avoid this additional logarithmic overhead incurred by ORAM over forward secret encrypted RAMs. Without loss of generality, suppose we are storing n array entries $\mathrm{D}[0], \ldots, \mathrm{D}[n-1]$ where n is a power of two. Our construction uses three components: a complete binary tree, a stash and an oblivious RAM. The binary tree is inspired by prior works for tree-based ORAMs [48]. The tree will have n leaf nodes and $\log n$ levels used to store the n array entries. Every node in the binary tree has capacity to store up to a constant number of array entries. Each of the n array entries, $\mathrm{D}[i]$, will be uniquely assigned a uniformly random leaf node of the tree denoted by Leaf (i). The tree maintains the invariant that if any array entry $\mathrm{D}[i]$ is stored in the binary tree, then $\mathrm{D}[i]$ will be stored in a node that appears on the unique root-to-leaf path for leaf Leaf (i). If $\mathrm{D}[i]$ is not stored in the tree, then it will be stored (along with Leaf (i)) in the stash denoted by Stash. Additionally, we need to maintain a position map, PMAP, that stores the assigned leaf nodes for each array entry, that is, $\operatorname{PMAP}[i]=\operatorname{Leaf}(i)$.

Binary Tree. Whenever an array entry $\mathrm{D}[i]$ is either read or overwritten, the root-to-leaf path to Leaf (i) will be accessed along with the stash Stash to obtain $\mathrm{D}[i]$. Afterwards, Leaf (i) is re-initialized by picking amongst the n leaf nodes uniformly at random with PMAP being updated accordingly. Finally, $\mathrm{D}[i]$ is stored in Stash with its updated Leaf (i). To ensure Stash remains small, entries in Stash are evicted in a greedy manner whenever a root-to-leaf path is accessed. If there is space in the root node, any item in Stash may be evicted into the root node (as the root appears on every root-to-leaf node path). Generally, for any node accessed in a root-to-leaf path, any data entry $\mathrm{D}[i]$ whose leaf node Leaf (i) appears in the sub-tree rooted at the node may be evicted until reaching the node's capacity. Prior works proved that the Stash remains small except with negligible probability. Formally, Stash contains at most $\omega(\log n)$ items except with probability negligible in n. Additionally, it has been showing that accessing the tree is oblivious.

To obtain forward secrecy, we embed the folklore FS eRAM ideas into the binary tree. Each internal node in the binary tree will additionally store a random encryption key that will be used to encrypt the

[^5]contents of both children. Each time a root-to-leaf path is accessed, all children of nodes in the root-to-leaf path will also be accessed. All encryption keys of nodes in the path will be re-generated. Furthermore, all nodes will be re-encrypted using their parent's new encryption key. The newly re-encrypted nodes will be uploaded back to the server for storage. This modification guarantees forward secrecy for the data.

Position Map and Stash. Next, we consider the position map PMAP. Note that PMAP only stores relationships between entries and leaf nodes. In particular, PMAP does not store any information about the array entry contents. As a result, we only need to focus on obliviousness for PMAP. We choose to store PMAP in any oblivious RAM. If we choose the construction in [5], reading or overwriting any entry PMAP $[i]$ requires only $O(\log n)$ overhead as PMAP contains only n entries. Finally, the Stash is handled by encrypting the array entries $\mathrm{D}[i]$ that it contains, along with their corresponding leaves Leaf (i), and storing the ciphertexts on the server. Making the natural assumption that the cell size is $\Omega(\log n)$ bits and can fit memory addresses, we can encode Leaf (i) using $O(\log n)$ bits, and thus additionally storing Leaf (i) does not incur any extra overhead.

Read and Write Algorithms. Altogether, a read or write to the oblivious forward secure encrypted RAM works as follows. To read/overwrite $\mathrm{D}[i]$, the leaf node Leaf (i) is queried from PMAP using ORAM operations. Next, the root-to-leaf path to Leaf (i), children of nodes in the root-to-leaf path and Stash are downloaded and decrypted. $\mathrm{D}[i]$ is then retrieved and updated if needed. A new uniformly random Leaf (i) is generated and written back to PMAP, and $\mathrm{D}[i]$ is placed into Stash with its new Leaf (i). Items are greedily evicted from Stash into the downloaded root-to-leaf path using their Leaf (i) as guidance. Each node is padded to the maximum capacity with dummies if needed. All encryption keys of internal nodes are freshly sampled and all nodes are encrypted using the parent node's encryption keys before being uploaded back to the server. The root is encrypted with a freshly generated client-stored encryption key. Finally, Stash is padded to the maximum capacity with dummies and re-encrypted using the new client key before being uploaded to the server.

Theorem 8. For any function $f(n)=\omega(1)$, there exists a (weak) oblivious forward secret encrypted $R A M$ with $O(\log n \cdot f(n))$ overhead, $O(n)$ server storage and $O(1)$ client storage.

Our construction is essentially optimal except for the multiplicative $\omega(1)$ factor as we already proved that forward secure encrypted RAMs require $\Omega(\log n)$ overhead. Similarly, it is known that ORAMs also require $\Omega(\log n)$ overhead [23|32].

Proof. For forward secrecy, we only need to consider the binary tree and Stash as PMAP stores no information about memory contents. Using the same proof techniques from the folklore solution, it is straightforward to see that the tree is forward secure. Similarly, Stash is re-encrypted using a fresh key that is discarded after each operation. So, our construction is a forward secret encrypted RAM.

To prove obliviousness, we note that Stash is always downloaded, re-encrypted and uploaded for each query. So accessing Stash is oblivious to the operation being performed. As PMAP is stored in an ORAM, obliviousness is already guaranteed. For the tree, note that each operation queries a uniformly random root-to-leaf path and all children of nodes in the path. Therefore, our construction is an oblivious RAM.

In terms of efficiency, note the total server storage is $O(n)$ and client storage is $O(1)$ consisting of PMAP ORAM client storage and a single encryption key. In terms of overhead, each read/write operation requires download and re-uploading $O(\log n)$ tree nodes each with $O(1)$ array entry capacity, a Stash of $\omega(\log n)$ array entries and their corresponding leaves (see [48] for analysis) and two ORAM operations with $O(\log n)$ overhead. Altogether, the total overhead is $\omega(\log n)$ completing the proof.

6 Forward Secret Memory Checkers

In this section, we combine forward secret encrypted RAMs with memory checkers (MCs) to get forward secret memory checkers (FS MCs). Memory checking is a well-studied cryptographic notion [10 37|15|21] that provides authenticity for outsourced data storage. Intuitively, MCs use some small local storage to guarantee that an adversarial server cannot alter outsourced data entries without the MC noticing (and outputting that a bug has occurred).

We will first define our combined notion of FS MCs then provide a scheme which overlays the folklore FS eRAM scheme with a tree-based MC from [10] that uses ideas from Merkle Trees [34]. As a result,
we will achieve $O(1)$ secret storage, $O(n)$ remote storage, and $O(\log n)$ overhead, i.e., a scheme which provides memory checking with no additional asymptotic overhead to the folklore FS eRAM scheme ${ }^{10}$ Our construction is optimal with respect to both our $\Omega(\log n)$ lower bound on the overhead of FS eRAM and the best known $O(\log n)$ overhead construction for MCs (and almost optimal with respect to the $\Omega(\log n / \log \log n)$ MC lower bound of [21]).11

6.1 Forward Secret Memory Checker Definition

For FS MCs, we alter the syntax of FS eRAMs presented in Definition 12 to highlight the interaction between the FS MC and the potentially malicious remote server. Before reading the data from a virtual cell i, the FS MC must first receive the relevant (but possibly maliciously fabricated) public cells from the server. Additionally, to write to a cell i, the FS MC must first receive the relevant public cells from the server as above, then send new public cells to the server, which the FS MC expects to be written in place of the old public cells.

Definition 17 (Forward Secret Memory Checker). A Forward Secret Memory Checker (FS MC) $\Pi=$ (init, retrieve, read, write, commit) consists of the following algorithms ${ }^{122}$
$-(\operatorname{Sec}, \operatorname{Pub}) \leftarrow \operatorname{init}\left(1^{\lambda}, n\right)$, which initializes public cells Pub and secret cells Sec, where n is the number of virtual cells and λ is the security parameter.
$-S \leftarrow \operatorname{index}(i)$, which the server uses to identify $S \subseteq\{1, \ldots,|\mathrm{Pub}|\}$, a sparse subset of indices of the cells of Pub associated with virtual cell i. We refer to these cells of Pub as $\operatorname{Pub}_{\text {index }}(i)$.
$-\left(\operatorname{Sec}^{\prime}, d\right) \leftarrow \operatorname{read}(\operatorname{Sec}, \mathrm{C}, i)$, which the FS MC uses to obtain the data d of virtual cell i, where in the case of an honest server, C is expected to be $\mathrm{Pub}_{\operatorname{index}(i)}$. In the case that the FS MC wants to report a loss of integrity, it may output $d \leftarrow$ bug.
$-\left(\mathrm{Sec}^{\prime}, \mathrm{C}^{\prime}\right) \leftarrow$ write $(\mathrm{Sec}, \mathrm{C}, d, i)$, which the FS MC uses to replace the contents of virtual cell i with data d, where in the case of an honest server, C is expected to be $\operatorname{Pub}_{\text {index }(i)}$. The FS MC will provide the server with new public cells C^{\prime} relevant to virtual cell i with which an honest server will replace cells $\operatorname{Pub}_{\text {index }(i)}$. In the case that the FS MC wants to report a loss of integrity, it may output $\mathrm{C}^{\prime} \leftarrow$ bug.

Correctness. An FS MC scheme is correct if for any sequence of operations executed by the FS MC and an honest server:

$$
\operatorname{Pr}\left[\left(\cdot, d^{*}\right) \leftarrow \operatorname{read}\left(\operatorname{Sec}, \operatorname{Pub}_{\text {index }(i)}, i\right): d^{*}=d\right]=1,
$$

for any execution of $\left(\cdot, d^{*}\right) \leftarrow \operatorname{read}\left(\operatorname{Sec}, \operatorname{Pub}_{\operatorname{index}(i)}, i\right)$ in the sequence after an execution of $\left(\operatorname{Sec}^{\prime}, \mathrm{C}^{\prime}\right) \leftarrow$ write $\left(\operatorname{Sec}, \operatorname{Pub}_{\text {index }(i)}, d, i\right)$, and before a subsequent execution of $\left(\operatorname{Sec}^{\prime}, \mathrm{C}^{\prime}\right) \leftarrow$ write $\left(\operatorname{Sec}, \operatorname{Pub}_{\text {index }}(i), d^{\prime}, i\right)$, where the probability is over the random coin tosses of the protocol.

Security. We now provide the security definition of FS MCs. The adversary in the game will adaptively specify the sequence of operations that the FS MC performs and have the ability to choose which cells C to provide to the FS MC challenger for read() and write() operations.

Throughout, the security game will store a dictionary $\mathrm{D}[\cdot]$ containing the correct data items at each index $i \in[n]$, corresponding to the most recent adversarial write or challenge to that index i. For every $i \in[n], \mathrm{D}[i] \leftarrow \perp$ initially. The challenger initially chooses $b \in\{0,1\}$ uniformly at random, runs (Sec, Pub) $\leftarrow \operatorname{init}\left(1^{\lambda}, n\right)$, sends Pub to the adversary \mathcal{A}, and deletes it. Then the adversary has access to (polynomial-many queries of) the following oracles:
$-\operatorname{read}(\mathrm{C}, i): \mathcal{A}$ sends public cells C for data cell i to the challenger who then computes $\left(\mathrm{Sec}^{\prime}, d\right) \leftarrow$ $\operatorname{read}(\mathrm{Sec}, \mathrm{C}, i)$. If $d \notin\{\mathrm{D}[i], \mathrm{bug}\}$, the game outputs win and ends. Note: d is not sent to \mathcal{A}.

- write $(\mathrm{C}, d, i): \mathcal{A}$ sends public cells C and data d to overwrite virtual cell i with to the challenger who then computes $\left(\mathrm{Sec}^{\prime}, \mathrm{C}^{\prime}\right) \leftarrow$ write $(\mathrm{Sec}, \mathrm{C}, d, i)$. The challenger then sends C^{\prime} back to \mathcal{A}, and deletes it. Additionally, if $\mathrm{C}^{\prime} \neq \mathrm{bug}$, the game sets $\mathrm{D}[i] \leftarrow d$.

[^6]$-\operatorname{chall}\left(\mathrm{C}, d_{0}, d_{1}, i\right): \mathcal{A}$ sends public cells C and data d_{0}, d_{1} to overwrite data cell i with to the challenger who then computes $\left(\mathrm{Sec}^{\prime}, \mathrm{C}^{\prime}\right) \leftarrow$ write $\left(\mathrm{Sec}, \mathrm{C}, d_{b}, i\right)$. The challenger then sends C^{\prime} back to \mathcal{A}, and deletes it. Additionally, if $\mathrm{C}^{\prime} \neq$ bug, the game sets $\mathrm{D}[i] \leftarrow d_{b}$.
$-\operatorname{corrupt}():$ The challenger simply sends the contents of Sec to \mathcal{A}.
Finally, \mathcal{A} outputs a bit b^{\prime} and the game outputs win if and only if $b^{\prime}=b$.
As in the FS eRAM security definition, \mathcal{A} is not allowed to call corrupt() after a call to $\operatorname{chall}\left(\mathrm{C}, d_{0}, d_{1}, i\right)$, without first a call to write (C, d, i) to overwrite the i-th virtual cell with some other data d, in which the challenger returns $C^{\prime} \neq b$ bg, since otherwise they would trivially win.

Definition 18 (Forward Secret Memory Checker Security). A Forward Secret Memory checker is secure if for every PPT adversary \mathcal{A},

$$
\left.\left\lvert\, \operatorname{Pr}[\mathcal{A} \text { wins }]-\frac{1}{2}\right. \right\rvert\, \leq \operatorname{neg} l(\lambda)
$$

6.2 Forward Secret Memory Checker Construction

Fig. 4. Depiction of how our Forward Secret Memory Checker overwrites Sec and Pub index $_{\text {(01) }}$ after an execution of write $\left(\mathrm{Sec}, \mathrm{Pub}_{\mathrm{index}(01)}, d_{01}^{\prime}, 01\right)$. For every internal node v along the root-to-leaf path of leaf 01, as well as their siblings, the ciphertext $c t_{v}^{\prime}=\mathbf{E}_{k_{p}^{\prime}}\left(k_{v}^{\prime}\right)$ is regenerated with the new keys $k_{v}^{\prime}, k_{p}^{\prime}$ at v and its parent p, respectively (for siblings of path nodes, $k_{v}^{\prime}=k_{v}$, the current key). For leaves 00 and $01, c t_{00}^{\prime}=\mathbf{E}_{k_{0}^{\prime}}\left(d_{00}\right), c t_{01}^{\prime}=\mathbf{E}_{k_{0}^{\prime}}\left(d_{01}^{\prime}\right)$. For every node u on only the root-to-leaf path of leaf 01 ($n o t$ their siblings), the hash function h_{u}^{\prime} and corresponding hash value $x_{u}^{\prime}=h_{u}^{\prime}\left(c t_{u . c_{1}}^{\prime}\left\|h_{u . c_{1}}^{\prime}\right\| x_{u . c_{1}}^{\prime}\left\|c t_{u . c_{2}}^{\prime}\right\| h_{u . c_{2}}^{\prime} \| x_{u . c_{2}}^{\prime}\right)$ is regenerated, where one child u.c.c or u.c , w.l.o.g., $u . c_{1}$, is not on the root-to-leaf path, and thus $h_{u . c_{1}}^{\prime}=h_{u . c_{1}}, x_{u . c_{1}}^{\prime}=x_{u . c_{1}}$ (their current values). Also, h_{w} and x_{w} are the all-zero string if w is a leaf.

Our FS MC construction is depicted in Figure 4 We overlay the folklore FS eRAM solution, which uses IND-CPA secure symmetric encryption for forward secrecy, with the MC solution of [10], which uses universal one-way hash functions (UOWHF) for integrity. Both utilize a binary tree with n leaf nodes to store the data elements in Pub, and store the root in Sec. Note: It is possible to construct a family of UOWHF given any one-way function [46], but the use of UOWHFs requires the assumption that the word size of the RAM is $\ell=n^{\epsilon}$, for any $\epsilon>0$.

More specifically, each leaf node i holds $c t_{i}=\mathbf{E}_{k_{p}}\left(d_{i}\right)$, where k_{p} is the encryption key of the parent p of i. Each internal node v holds $\left(h_{v}, c t_{v}=\mathbf{E}_{k_{p}}\left(k_{v}\right), x_{v}=h_{v}\left(c t_{v . c_{1}}\left\|h_{v . c_{1}}\right\| x_{v . c_{1}}\left\|c t_{v . c_{2}}\right\| h_{v . c_{2}} \| x_{v . c_{2}}\right)\right)$, where here and in the following, $\|$ represents concatenation, k_{v}, k_{p} are the encryption keys of v and its parent p, respectively, $h_{v}, h_{v . c_{1}}, h_{v . c_{2}}$ are the description of the hash functions used at v and the children $v . c_{1}, v . c_{2}$ of v, respectively (which can be described in $O(\ell)$ bits), $c t_{v . c_{1}}, c t_{v . c_{2}}$ are the ciphertexts stored at the children $v . c_{1}, v . c_{2}$, respectively, and $x_{v . c_{1}}, x_{v . c_{2}}$ are the hashes at the children $v . c_{1}, v . c_{2}$, respectively. If $v . c_{1}, v . c_{2}$ are leaves, $h_{v . c_{1}}, x_{v . c_{1}}, h_{v . c_{2}}, x_{v . c_{2}}$ are the all-zero string. The root node, stored in Sec contains $\left(h_{r}, k_{r}, x_{r}=h_{r}\left(c t_{r . c_{1}}\left\|h_{r . c_{1}}\right\| x_{r c_{1}}\left\|c t_{r . r . c_{2}}\right\| h_{r . c_{2}} \| x_{r . c_{2}}\right)\right)$, where k_{r} is the root encryption key. The FS MC algorithms are as follows:

- init $\left(1^{\lambda}, n\right)$: Initializes a complete binary tree with n leaves in Pub, with data \perp at each node, Sec $\leftarrow \perp$.
- index (i) : Returns the indices of the cells of the root-to-leaf path nodes of leaf i, along with all path nodes' siblings.
$-\operatorname{read}(\mathrm{Sec}, \mathrm{C}, i)$: Given (what the FS MC believes to be) the root-to-leaf path of leaf i and siblings along the path in C from the server, the FS MC:
- First checks $x_{r}=h_{r}\left(c t_{r . c_{1}}\left\|h_{r . c_{1}}\right\| x_{r . c_{1}}\left\|c t_{r . c_{2}}\right\| h_{r . c_{2}} \| x_{r . c_{2}}\right)$.
- Then, for every internal node v along the path to i, the FS MC checks $x_{v}=h_{v}\left(c t_{v . c_{1}}\left\|h_{v . c_{1}}\right\| x_{v . c_{1}} \|\right.$ $\left.c t_{v . c_{2}}\left\|h_{v . c_{2}}\right\| x_{v . c_{2}}\right)$ and decrypts $k_{v} \leftarrow \mathbf{D}_{k_{p}}\left(c t_{v}\right)$.
- Finally, at leaf node i, the FS MC decrypts $d_{i} \leftarrow \mathbf{D}_{k_{p}}\left(c t_{i}\right)$.

If any hash check fails, the FS MC outputs $d_{i} \leftarrow$ bug, otherwise, it outputs d_{i}. The FS MC does not change Sec.

- write(Sec, C, $\left.d_{i}^{\prime}, i\right)$: Given (what the FS MC believes to be) the root-to-leaf path of leaf i and siblings along the path in C, the FS MC
- First verifies and decrypts all of the nodes (including siblings) in C as in read() above; if the test on any node fails, the FS MC outputs $\mathrm{C}^{\prime} \leftarrow$ bug and does not change Sec. Otherwise,
- For each internal node v on the root-to-leaf path of i, except for the parent of i, the FS MC regenerates k_{v}^{\prime} and $c t_{v . c_{1}}^{\prime}=\mathbf{E}_{k_{v}^{\prime}}\left(k_{v . c_{1}}^{\prime}\right), c t_{v . c_{2}}^{\prime}=\mathbf{E}_{k_{v}^{\prime}}\left(k_{v . c_{2}}^{\prime}\right)$, where if $v . c_{1}$ is not on the root-to-leaf path, $k_{v . c_{1}}^{\prime}=k_{v . c_{1}}$ (its current key), and symmetrically if $v . c_{2}$ is not.
- Then for the parent p of i, the FS MC regenerates k_{p}^{\prime} and $c t_{i}^{\prime}=\mathbf{E}_{k_{p}^{\prime}}\left(d_{i}^{\prime}\right)$ and for the sibling j of $i, c t_{j}^{\prime}=\mathbf{E}_{k_{p}^{\prime}}\left(d_{j}\right)$.
- Next, for each internal node v on the root-to-leaf path of i, the FS MC regenerates h_{v}^{\prime} and $x_{v}^{\prime}=h_{v}^{\prime}\left(c t_{v . c_{1}}^{\prime}\left\|h_{v . c_{1}}^{\prime}\right\| x_{v . c_{1}}^{\prime}\left\|c t_{v . c_{2}}^{\prime}\right\| h_{v . c_{2}}^{\prime} \| x_{v . c_{2}}^{\prime}\right)$ where if $v . c_{1}$ is not on the root-to-leaf path, $h_{v . c_{1}}^{\prime}=$ $h_{v . c_{1}}, x_{v . c_{1}}^{\prime}=x_{v . c_{1}}^{\prime}$ (its current values), and symmetrically if $v . c_{2}$ is not.
C^{\prime} is set to store the updated ciphertexts, hash functions, and hash values at their corresponding nodes, and Sec^{\prime} is set to store the regenerated hash function h_{r}^{\prime}, root key k_{r}^{\prime}, and hash value x_{r}^{\prime}.

Intuitively, the root key and hash stored in Sec ensure that the ciphertexts at the root's children will decrypt to the correct keys, while still ensuring privacy. Then, inductively, the decrypted keys and corresponding hashes at level i ensure the ciphertexts at level $i+1$ decrypt to the correct keys, while still ensuring privacy. We formalize this in the following theorem.

Theorem 9. There exists a secure Forward Secret Memory Checker with $O(\log n)$ overhead, $O(n)$ public storage and $O(1)$ secret storage.

Proof. It is trivial to see the efficiency of the construction: namely, for operations on data cell i, the client only reads and writes the cells of the $O(\log n)$ nodes, and their siblings, on the root-to-leaf path of leaf i. Moreover, in Sec only the root of the tree is stored, and the $O(n)$ other nodes of the tree are stored in Pub.

For an attacker \mathcal{A} to win the security game with non-negligible probability, they must either

- Make some oracle query $\operatorname{read}(\mathrm{C}, i)$, $\operatorname{write}(\mathrm{C}, d, i)$, or $\operatorname{chall}\left(\mathrm{C}, d_{0}, d_{1}, i\right)$ with malicious cells $C \neq$ Pub $_{\text {index }(i)}$ that with non-negligible probability does not result in the challenger outputting bug (thus either causing the game to output win after some read() query, or enabling \mathcal{A} to guess the bit b correctly at the end of the game with non-negligible probability), or
- Not do as above (but still guess bit b correctly with non-negligible probability).

In the first case, we will use \mathcal{A} to break security of the UOWHF family (authenticity) and in the second case, we will use \mathcal{A} to break security of the encryption scheme (forward secrecy).

In the first case, we know that \mathcal{A} must have altered the contents of at least one node on the root-toleaf path of leaf i. Let v be the node whose contents were altered that is closest to the root (excluding the root since it is stored in Sec and thus cannot be altered, even after a corrupt() query). This means that the hash function h_{p} and hash value $x_{p}=h_{p}\left(y_{p}\right)$ at the parent p of v is unchanged. Since the hash input y_{p} is determined by the contents of v and its sibling (with the contents of p 's left child always coming first in y_{p}) before h_{p} is sampled, h_{p} is only used once by our FS MC to calculate x_{p}, and our FS MC verifies x_{p}^{\prime} (the value received from the server) during read() by recomputing x_{p}, the adversary \mathcal{A} is able to alter the contents of v such that $x_{p}^{\prime}=x_{p}$ even with $y_{p}^{\prime} \neq y_{p}$, due to the new adversarial contents of v. Thus \mathcal{A} can be used to break the security of the UOWHF.

In the second case, with all but negligible probability, all oracle queries (that do not result in the challenger outputting bug) are made with correct cells $C=\operatorname{Pub}_{\text {index }}(i)$, and since the construction reencrypts nodes just as in the folklore FS eRAM solution, after any corrupt() query, everything \mathcal{A} obtains is independent of the challenge data. Thus \mathcal{A} can be used to break the security of the encryption.

Therefore, \mathcal{A} has only negligible advantage in the FS MC game.
Remark 1. In practice, a single CRHF can be used in place of a UOWHF family so that there is no need to regenerate the hash functions at the nodes of the root-to-leaf path for every write(), nor include them in the hashes at each node. We use a UOWHF family since it is possible to construct one given any OWF.

Remark 2. For the same level of privacy, but weaker integrity (i.e., integrity only before any corruption of Sec), one can use only AEAD in place of both symmetric encryption and a UOWHF/CHRF. In this case also, the word size need not be polynomial. This is a generalization of a weaker MC construction from [10].

7 Forward Secret Multicast Encryption

Multicast encryption (ME) is a primitive that allows a group manager to securely and efficiently distribute secrets to an evolving group of users. After each group membership change, a new epoch is initiated, and the group manager sends ciphertexts over a broadcast channel which allow only the current group members to derive the next group secret. ME has been widely studied in the literature $[51|52| 27|28| 13|36| 47]$. Indeed, these works can be unified into a folklore construction based on binary trees which tightly achieves optimal $O(\log n)$ communication and computational complexity per epoch with respect to the lower bound of [35]. All of these works considered a security model in which an adversary with read-access to the broadcast channel could not break security of a given epoch without the secret state of any of the group members or group manager. However, in recent years, more robust security properties have been demanded of cryptographic primitives. Importantly, the group maintained by a ME protocol could exist for a long time (even several years). Therefore, we ideally desire to protect against a catastrophic event in which the secret state of the group manager is corrupted by an adversary, as such events are not uncommon across long periods of time.

The security property which we focus on in this section is forward secrecy of the protocol with respect to compromise of the group manager's secret state. We view it as the property to which ideas from FS eRAM can contribute the most. For this property, we desire that the group secrets of all prior group membership epochs stay hidden from the adversary even after the catastrophic event. Note: one could also consider forward secrecy with respect to corruption of user secret states, as well as a related notion called Post-Compromise Security (PCS) [18], which requires the protocol to be able to recover after such a corruption, such that group secrets of future epochs are secure.

Additionally, the group manager of an ME scheme must store $\Omega(n)$ information at all times, where n is the number of group members, in order to be able to securely communicate with these users. In this section, we show that adapting the folklore ME scheme and applying ideas from the folklore FS eRAM construction can provide FS for the group manager while storing $O(1)$ information in its secret state and retaining optimal communication and computational complexity of $O(\log n)$.

Comparison with Continuous Group Key Agreement. Continuous Group Key Agreement (CGKA) protocols [2|13|4|17] recently developed in the context of the IETF Message Layer Security initiative for group messaging [8] attempt to remove the ME group manager while preserving the same basic security and functionality of ME, as well as providing FS and PCS for users. However, removing the group manager in these protocols results in an exponential loss to $\Omega(n)$ in communication and computation complexity in the worst case (even without FS). Thus we focus on providing the group manager in ME with FS, without the efficiency loss of CGKA.

7.1 Forward Secret Multicast Encryption Definition

First, we provide a definition for ME modeling our desired security properties. For simplicity, we consider groups which always have a constant number, n, of users. Each group membership operation replaces one
user in the group with a new one. However, we note that our construction works for dynamically-sized groups as well.

Definition 19 (Multicast Encryption (ME)). An ME scheme $M=$ (Minit, Uinit, create, replace, proc) consists of the following algorithms:

- Group Manager Initialization: Minit takes in security parameter λ and the number of users in the group at any moment, n, and outputs an initial state $\Gamma=\left(\Gamma_{\text {Sec }}, \Gamma_{\mathrm{Pub}}\right)$.
- User Initialization: Uinit takes in security parameter λ, an ID ID $\in \mathbb{N}$ and outputs an initial state γ.
- Group Creation: create takes a state Γ and a set of users $G=\left\{\mathrm{ID}_{1}, \ldots, \mathrm{ID}_{n}\right\}$, for some $n \in \mathbb{N}$, each $\mathrm{ID}_{i} \in \mathbb{N}$, and outputs a new state Γ^{\prime} and control message T.
- Replace: replace takes a state Γ and $I D s \operatorname{ID}, \mathrm{ID}^{\prime} \in \mathbb{N}$ and outputs a new state Γ^{\prime} and a control message T.
- Process: proc takes a state γ and a control message T sent over the broadcast channel and outputs a new state γ^{\prime} and a group secret S.

Correctness and Security. We encapsulate correctness and security into the following game-based definition. We emphasize that the adversary \mathcal{A} always has read-access to $\Gamma_{\text {Pub }}$, which represents the storage that the group manager may outsource to some remote server. In addition, \mathcal{A} has read-access to the broadcast channel throughout the game.

The game proceeds in epochs determined by group membership, beginning at epoch $t=0$. The challenger initially runs $\gamma_{\mathrm{ID}} \leftarrow \operatorname{Uinit}\left(1^{\lambda}, \mathrm{ID}\right), \forall \mathrm{ID} \sqrt{13}$ and $\Gamma \leftarrow \operatorname{Minit}\left(1^{\lambda}, n\right)$ (where $n=\operatorname{poly}(\lambda)$ is determined by \mathcal{A}). Then, for some initial set of n users, $\mathrm{G}=\left\{\mathrm{ID}_{1}, \ldots, \mathrm{ID}_{n}\right\}$ chosen by \mathcal{A}, the challenger executes $\left(\Gamma^{\prime}, T\right) \leftarrow$ create (Γ, G). After initialization, the adversary has access to the replace(ID, ID') oracle, which first checks that ID and ID^{\prime} are currently in, and not in, respectively, the group at the current epoch t. Then, it executes $\left(\Gamma^{\prime}, T\right) \leftarrow \operatorname{replace}\left(\Gamma, \mathrm{ID}, \mathrm{ID}^{\prime}\right)$ followed by $\left(\gamma_{\mathrm{ID}}^{\prime}, S_{t}^{\mathrm{ID}}\right) \leftarrow \operatorname{proc}\left(\gamma_{\mathrm{ID}}, T\right)$ for every member ID of the group, and finally increments the epoch: $t \leftarrow t+1$. If $\exists \mathrm{ID}_{1}, \mathrm{ID}_{2}$ in the group such that $S_{t}^{\mathrm{ID}_{1}} \neq S_{t}^{\mathrm{ID}_{2}}$, then the challenger outputs win and ends the game.

At the end of the game, the challenger sends $\Gamma_{\text {Sec }}$ to \mathcal{A}, and outputs win if and only if it receives from \mathcal{A} the group secret of a previous epoch.

Definition 20 (Multicast Encryption Security). A Multicast Encryption scheme M is secure if for every PPT adversary \mathcal{A}

$$
\mid \operatorname{Pr}[\mathcal{A} \text { wins }] \mid \leq \operatorname{negl}(\lambda) .
$$

7.2 Forward Secrecy with Small Group Manager Secret State

In this section, we modify the folklore construction to both be secure with respect to Definition 20 and have group manager secret state of $O(1)$ size, thus allowing the group manager to outsource the required $\Omega(n)$ storage to $\Gamma_{\text {Pub }}$, while still retaining optimal efficiency of replace() operations.

The folklore construction is based off of a complete binary tree τ with n leaves, where each member of the group in a certain epoch is assigned to a unique leaf. The group manager stores τ in $\Gamma_{\text {Sec }}$ and each group member stores their corresponding path P_{ID} from their leaf to the root in γ_{ID}. For simplicity, we will assume n is a power of two. Each node in the tree has an associated symmetric key that may change at each epoch. More specifically, after a replace ($\left.\Gamma, \mathrm{ID}^{\mathrm{D}}, \mathrm{ID}^{\prime}\right)$ operation, the keys on the path from the leaf corresponding to ID^{\prime} (which takes the leaf of ID) to the root are all (from the leaf, up) refreshed and encrypted to the keys of their children. The symmetric key at the root serves as the group secret for each epoch, which each user in the group can clearly derive given the above ciphertexts, but not user ID, nor any other users that are not in the group.

Here, we make two alterations to the folklore construction to achieve our goals stated above. In order to achieve forward secrecy with respect to corruptions of Γ_{Sec}, we replace the standard symmetric encryption in the construction with forward secret symmetric encryption. One way to achieve this is by using stream ciphers in the following way: The key of each node v in τ is replaced with a seed s_{v} for a PRG G and a one-time pad key k_{v}. Now, after the group manager encrypts to the key of some node v, it computes $\mathbf{G}\left(s_{v}\right)=\left(s_{v}^{\prime}, k_{v}^{\prime}\right)$ and reassigns to v this new seed, key pair. After a group member ID

[^7]decrypts a ciphertext using k_{v}, they do the same for v in $\gamma_{\text {ID }}$. Now, when $\Gamma_{\text {Sec }}$ is corrupted by \mathcal{A}, she only sees the seeds and keys at each node that have never been encrypted to and are pseudorandom and independent of all seeds and keys that were previously stored at the nodes. Also, all efficiency measures of this modified scheme are the same as the folklore construction. Namely, $\Gamma_{\text {Sec }}$ is still $O(n)$ size.

As in the (weak) FS ORAM construction of Section 5.3, to reduce the size of Γ_{Sec}, one could naively use the folklore FS eRAM construction to forward secretly outsource storage of an encrypted version of the tree. Thus, $\Gamma_{\text {Sec }}$ would only contain the root key of the FS eRAM construction and $\Gamma_{\text {Pub }}$ would correspond to the public portion of the tree in the FS eRAM construction. Security of the ME construction would then follow from the forward secrecy argument of our first alteration above, combined with the forward secrecy of the FS eRAM. However, for each execution of the replace() operation, the manager needs to read and write $O(\log n)$ items in the FS eRAM, leading to $O\left(\log ^{2} n\right)$ total computation.

Instead, we can embed the ideas of the folklore FS eRAM construction directly into the create() and replace() algorithms of the folklore ME construction. Each node v in τ now not only has an associated PRG seed s_{v} and one-time pad key k_{v}, but also an additional $R A M$ key $r k_{v}$. The group manager stores the RAM key $r k_{r}$ of the root r of τ in $\Gamma_{\text {Sec }}$. In $\Gamma_{\text {Pub }}$, it stores the other nodes of τ in the following manner: at each node v in τ we store $\mathbf{E}_{r k_{p}}\left(s_{v}, k_{v}, r k_{v}\right)$, where $r k_{p}$ is the RAM key of the parent of v.

We now provide an overview of the protocol operations. First, we describe a useful subroutine called $\operatorname{refresh}(V)$. This subroutine takes in a set of nodes V and for each interior node $v \in V$, samples a random PRG seed s_{v}, one-time pad k_{v}, and RAM key $r k_{v}$. Next, for each interior node $v \in V$, it computes $\mathbf{E}_{k_{c_{i}}}\left(\left(s_{v}, k_{v}\right)\right)$ followed by $\mathbf{G}\left(s_{c_{i}}\right) \rightarrow\left(s_{c_{i}}^{\prime}, k_{c_{i}}^{\prime}\right)$, for $i \in[2]$, where $\left(s_{v}, k_{v}\right)$ is the seed, key pair at v, and $\left(s_{c_{i}}, k_{c_{i}}\right)$ are the seed, key pairs of the children of v. Then, it aggregates these encryptions, labeled with the identifiers of the two nodes whose symmetric keys are being encrypted and encrypted to, respectively, into control message T. Next, it labels each node v (except for the root) in V^{14} (in $\Gamma_{\text {Pub }}$) with $\mathbf{E}_{r k_{p}}\left(s_{v}, k_{v}, r k_{v}\right)$, where $r k_{p}, r k_{v}$ are the RAM keys of the parent p of v and v itself, respectively, and s_{v}, k_{v} correspond to the most recent seed, key pair of v. Finally, it stores the RAM key of the root $r k_{r}$ in $\Gamma_{\text {Sec }}$ and broadcasts control message T.

- $\operatorname{Minit}(n)$ simply initializes a complete binary tree with n leaves, τ in $\Gamma_{\text {Pub }}$.
- Uinit(ID) samples a random PRG seed $s_{\text {ID }}$ and one-time pad k_{ID} for ID and sets $P_{\mathrm{ID}}\left[v_{\mathrm{ID}}\right] \leftarrow\left(s_{\mathrm{ID}}, k_{\mathrm{ID}}\right)$, $\gamma_{\mathrm{ID}} \leftarrow\left(\mathrm{ID}, P_{\mathrm{ID}}\right)$. We will assume that the group manager can gain access to ($s_{\mathrm{ID}}, k_{\mathrm{ID}}$) at any moment (through some out-of-band channel).
$-\operatorname{create}\left(\Gamma, \mathrm{G}=\left\{\mathrm{ID}_{1}, \ldots \mathrm{I} \mathrm{D}_{n}\right\}\right)$ first assigns each of the leaves in τ uniquely to the IDs in G along with their corresponding seed, key pairs $\left(s_{\mathrm{ID}}, k_{\mathrm{ID}}\right)$ (retrieved via an out-of-band channel). It then computes $T \leftarrow \operatorname{refresh}(\tau)$.
- replace $\left(\Gamma, \mathrm{ID}, \mathrm{ID}^{\prime}\right)$ first assigns the leaf of ID in τ to ID^{\prime} along with $\left(s_{\mathrm{ID}^{\prime}}, k_{\mathrm{ID}^{\prime}}\right)$ (retrieved via an out-of-band channel). Next, it uses the RAM key $r k_{r}$ of the root r stored in $\Gamma_{\text {Sec }}$ to iteratively decrypt the seed, key pairs (and RAM keys) of every node on the path to $v_{\mathrm{ID}^{\prime}}, P_{\mathrm{ID}^{\prime}}$, as well as their children which are not on the path. It then computes $T \leftarrow \operatorname{refresh}\left(P_{\mathrm{ID}^{\prime}}\right)$.
$-\operatorname{proc}\left(\gamma=\left(\mathrm{ID}, P_{\mathrm{ID}}\right), T\right)$ first finds in T the ciphertext that is labeled with the identifier of the node $v_{i, j}$ on the path from v_{ID} to the root, which is closest to v_{ID}. Then using $\left(s_{v_{i, j_{i}}}, k_{v_{i, j_{i}}}\right) \leftarrow P_{\mathrm{ID}}\left[v_{i, j_{i}}\right]$ it decrypts this ciphertext, computes $\mathbf{G}\left(s_{v_{i, j_{i}}}\right) \rightarrow\left(s_{v_{i, j_{i}}}^{\prime}, k_{v_{i, j_{i}}}^{\prime}\right)$ and changes the seed, key pair of $P_{\mathrm{ID}}\left[v_{i, j_{i}}\right]$ and $P_{\mathrm{ID}}\left[v_{i+1, j_{i+1}}\right]$ correspondingly. Then, it repeats this for all nodes $v_{i+1, j_{i+1}}, \ldots, v_{\log n, 1}$ on the path from $v_{i, j}$ to the root, and outputs the group secret for the epoch at the root.

We note that the number of ciphertexts broadcast in refresh() can be reduced by a factor of two by using a PRG to compute the seed, key pair at a given node from a seed at one of its children as in [13].
Theorem 10. There exists a Multicast Encryption scheme that is secure with respect to Definition 20 and has $O(1)$ group manager secret storage, $O(n)$ group manager public storage, $O(\log n)$ user storage, $O(n)$ computational and communication complexity of create ()$, O(\log n)$ computational and communication complexity of replace () , and $O(\log n)$ computational complexity of $\operatorname{proc}()$.

Proof. It is trivial to see the efficiency of the construction: namely, for replace(), only ciphertexts for the nodes of a given path and their children are decrypted and encrypted.

For security, all broadcast ciphertexts are encrypted to keys which have been pseudorandomly generated, starting from some randomly sampled seed. When $\Gamma_{\text {Sec }}$ is corrupted, due to the incorporated

[^8]strategy of the FS eRAM construction of Figure 1 an adversary \mathcal{A} can only recover seeds and keys from the current state of τ, and no seeds or keys that were stored in τ in previous epochs, but are no longer present. Since the seeds and keys currently in τ have never before been used and are pseudorandom and independent of the seeds and keys that used to be in τ and were used to create the ciphertexts of the previous epochs, \mathcal{A} cannot obtain any information about the previous group secrets from them. Thus, \mathcal{A} has only negligible advantage in the ME game.

References

1. Alwen, J., Capretto, M., Cueto, M., Kamath, C., Klein, K., Markov, I., Pascual-Perez, G., Pietrzak, K., Walter, M., Yeo, M.: Keep the dirt: Tainted treekem, adaptively and actively secure continuous group key agreement. In: 2021 IEEE Symposium on Security and Privacy (SP). IEEE (2021)
2. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improvements for the IETF MLS standard for group messaging. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 248-277. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 17-21, 2020)
3. Alwen, J., Coretti, S., Jost, D., Mularczyk, M.: Continuous group key agreement with active security. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 261-290. Springer, Heidelberg, Germany, Durham, NC, USA (Nov 16-19, 2020)
4. Alwen, J., Jost, D., Mularczyk, M.: On the insider security of MLS. Cryptology ePrint Archive, Report 2020/1327 (2020), https://eprint.iacr.org/2020/1327
5. Asharov, G., Komargodski, I., Lin, W.K., Nayak, K., Peserico, E., Shi, E.: Optorama: Optimal oblivious ram. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. pp. 403-432. Springer (2020)
6. Aviram, N., Gellert, K., Jager, T.: Session resumption protocols and efficient forward security for TLS 1.3 0-RTT. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp. 117-150. Springer, Heidelberg, Germany, Darmstadt, Germany (May 19-23, 2019)
7. Bajaj, S., Sion, R.: Ficklebase: Looking into the future to erase the past. In: 2013 IEEE 29th International Conference on Data Engineering (ICDE). pp. 86-97. IEEE (2013)
8. Barnes, R., Beurdouche, B., Millican, J., Omara, E., Cohn-Gordon, K., Robert, R.: The Messaging Layer Security (MLS) Protocol. Internet-Draft draft-ietf-mls-protocol-11, Internet Engineering Task Force (Dec 2020), https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-11, work in Progress
9. Bienstock, A., Dodis, Y., Rösler, P.: On the price of concurrency in group ratcheting protocols. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 198-228. Springer, Heidelberg, Germany, Durham, NC, USA (Nov 16-19, 2020)
10. Blum, M., Evans, W.S., Gemmell, P., Kannan, S., Naor, M.: Checking the correctness of memories. In: 32nd FOCS. pp. 90-99. IEEE Computer Society Press, San Juan, Puerto Rico (Oct 1-4, 1991)
11. Boneh, D., Lipton, R.J.: A revocable backup system. In: USENIX Security Symposium. pp. 91-96 (1996)
12. Boyle, E., Naor, M.: Is there an oblivious ram lower bound? In: Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science. pp. 357-368 (2016)
13. Canetti, R., Garay, J., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast security: a taxonomy and some efficient constructions. In: IEEE INFOCOM '99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No.99CH36320). vol. 2, pp. 708-716 vol. 2 (1999)
14. Canetti, R., Raghuraman, S., Richelson, S., Vaikuntanathan, V.: Chosen-ciphertext secure fully homomorphic encryption. In: Fehr, S. (ed.) PKC 2017, Part II. LNCS, vol. 10175, pp. 213-240. Springer, Heidelberg, Germany, Amsterdam, The Netherlands (Mar 28-31, 2017)
15. Clarke, D.E., Suh, G.E., Gassend, B., Sudan, A., van Dijk, M., Devadas, S.: Towards constant bandwidth overhead integrity checking of untrusted data. In: 2005 IEEE Symposium on Security and Privacy. pp. 139153. IEEE Computer Society Press, Oakland, CA, USA (May 8-11, 2005)
16. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Watermarking cryptographic capabilities. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC. pp. 1115-1127. ACM Press, Cambridge, MA, USA (Jun 18-21, 2016)
17. Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J., Milner, K.: On ends-to-ends encryption: Asynchronous group messaging with strong security guarantees. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 1802-1819. ACM Press, Toronto, ON, Canada (Oct 15-19, 2018)
18. Cohn-Gordon, K., Cremers, C.J.F., Garratt, L.: On post-compromise security. In: Hicks, M., Köpf, B. (eds.) CSF 2016Computer Security Foundations Symposium. pp. 164-178. IEEE Computer Society Press, Lisbon, Portugal (jun 27-1 2016)
19. Derler, D., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and applications to efficient forwardsecret 0-RTT key exchange. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 425-455. Springer, Heidelberg, Germany, Tel Aviv, Israel (Apr 29 - May 3, 2018)
20. Di Crescenzo, G., Ferguson, N., Impagliazzo, R., Jakobsson, M.: How to forget a secret. In: Proceedings of the 16th Annual Conference on Theoretical Aspects of Computer Science. p. 500-509. STACS'99, SpringerVerlag, Berlin, Heidelberg (1999)
21. Dwork, C., Naor, M., Rothblum, G.N., Vaikuntanathan, V.: How efficient can memory checking be? In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 503-520. Springer, Heidelberg, Germany (Mar 15-17, 2009)
22. Geambasu, R., Kohno, T., Levy, A.A., Levy, H.M.: Vanish: Increasing data privacy with self-destructing data. In: USENIX Security Symposium. vol. 316 (2009)
23. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams. Journal of the ACM (JACM) 43(3), 431-473 (1996)
24. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data via oblivious ram simulation. In: International Colloquium on Automata, Languages, and Programming. pp. 576-587. Springer (2011)
25. Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable encryption. In: 2015 IEEE Symposium on Security and Privacy. pp. 305-320. IEEE Computer Society Press, San Jose, CA, USA (May 17-21, 2015)
26. Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full forward secrecy. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III. LNCS, vol. 10212, pp. 519-548. Springer, Heidelberg, Germany, Paris, France (Apr 30 - May 4, 2017)
27. Harney, H., Muckenhirn, C.: Rfc2093: Group key management protocol (gkmp) specification (1997)
28. Harney, H., Muckenhirn, C.: Rfc2094: Group key management protocol (gkmp) architecture (1997)
29. Hubáček, P., Kouckỳ, M., Král, K., Slívová, V.: Stronger lower bounds for online oram. In: Theory of Cryptography Conference. pp. 264-284. Springer (2019)
30. Jacob, R., Larsen, K.G., Nielsen, J.B.: Lower bounds for oblivious data structures. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 2439-2447. SIAM (2019)
31. Kobeissi, N., Nicolas, G., Bhargavan, K.: Noise explorer: Fully automated modeling and verification for arbitrary noise protocols. In: 2019 IEEE European Symposium on Security and Privacy (EuroS P). pp. 356-370 (2019)
32. Larsen, K.G., Nielsen, J.B.: Yes, there is an oblivious ram lower bound! In: Annual International Cryptology Conference. pp. 523-542. Springer (2018)
33. Larsen, K.G., Simkin, M., Yeo, K.: Lower bounds for multi-server oblivious rams. Theory of Cryptography Conference (to appear) (2020)
34. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO'89. LNCS, vol. 435, pp. 218-238. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 20-24, 1990)
35. Micciancio, D., Panjwani, S.: Optimal communication complexity of generic multicast key distribution. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 153-170. Springer, Heidelberg, Germany, Interlaken, Switzerland (May 2-6, 2004)
36. Mittra, S.: Iolus: A framework for scalable secure multicasting. In: Proceedings of the ACM SIGCOMM ' 97 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication. p. 277-288. SIGCOMM '97, Association for Computing Machinery, New York, NY, USA (1997), https: //doi.org/10.1145/263105.263179
37. Oprea, A., Reiter, M.K.: Integrity checking in cryptographic file systems with constant trusted storage. In: Provos, N. (ed.) USENIX Security 2007. USENIX Association, Boston, MA, USA (Aug 6-10, 2007)
38. Patel, S., Persiano, G., Raykova, M., Yeo, K.: Panorama: Oblivious ram with logarithmic overhead. In: 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS). pp. 871-882. IEEE (2018)
39. Patel, S., Persiano, G., Yeo, K.: Lower bounds for encrypted multi-maps and searchable encryption in the leakage cell probe model. In: Annual International Cryptology Conference. pp. 433-463. Springer (2020)
40. Persiano, G., Yeo, K.: Lower bounds for differentially private rams. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. pp. 404-434. Springer (2019)
41. Peterson, Z.N., Burns, R.C., Herring, J., Stubblefield, A., Rubin, A.D.: Secure deletion for a versioning file system. In: FAST. vol. 5 (2005)
42. Pinkas, B., Reinman, T.: Oblivious ram revisited. In: Annual cryptology conference. pp. 502-519. Springer (2010)
43. Reardon, J., Basin, D., Capkun, S.: Sok: Secure data deletion. In: 2013 IEEE symposium on security and privacy. pp. 301-315. IEEE (2013)
44. Reardon, J., Ritzdorf, H., Basin, D., Capkun, S.: Secure data deletion from persistent media. In: Proceedings of the 2013 ACM SIGSAC conference on Computer \& communications security. pp. 271-284 (2013)
45. Roche, D.S., Aviv, A., Choi, S.G.: A practical oblivious map data structure with secure deletion and history independence. In: 2016 IEEE Symposium on Security and Privacy (SP). pp. 178-197. IEEE (2016)
46. Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: 22nd ACM STOC. pp. 387-394. ACM Press, Baltimore, MD, USA (May 14-16, 1990)
47. Sherman, A.T., McGrew, D.A.: Key establishment in large dynamic groups using one-way function trees. IEEE Transactions on Software Engineering 29(5), 444-458 (2003)
48. Stefanov, E., Van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.: Path oram: an extremely simple oblivious ram protocol. In: Proceedings of the 2013 ACM SIGSAC conference on Computer \& communications security. pp. 299-310 (2013)
49. Sun, S., Sakzad, A., Steinfeld, R., Liu, J.K., Gu, D.: Public-key puncturable encryption: Modular and compact constructions. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110, pp. 309-338. Springer, Heidelberg, Germany, Edinburgh, UK (May 4-7, 2020)
50. Susilo, W., Duong, D.H., Le, H.Q., Pieprzyk, J.: Puncturable encryption: A generic construction from delegatable fully key-homomorphic encryption. In: Chen, L., Li, N., Liang, K., Schneider, S.A. (eds.) ESORICS 2020, Part II. LNCS, vol. 12309, pp. 107-127. Springer, Heidelberg, Germany, Guildford, UK (Sep 14-18, 2020)
51. Wallner, D., Harder, E., Agee, R.: Rfc2627: Key management for multicast: Issues and architectures (1999)
52. Wong, C.K., Gouda, M., Lam, S.S.: Secure group communications using key graphs. In: Proceedings of the ACM SIGCOMM '98 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication. p. 68-79. SIGCOMM '98, Association for Computing Machinery, New York, NY, USA (1998), https://doi.org/10.1145/285237.285260
53. Yao, A.C.C.: Should tables be sorted? Journal of the ACM (JACM) 28(3), 615-628 (1981)

A Proof of Lemma 4

Proof. First, consider the sum

$$
S^{\prime}=\frac{1}{d} \sum_{i=1}^{d} \log \left(x_{i}\right) \cdot x_{i}
$$

Since $f(x)=\log (x) \cdot x$ is convex, we have by Jensen's inequality that

$$
S^{\prime} \geq \log \left(\frac{\sum_{i=1}^{d} x_{i}}{d}\right) \cdot \frac{\sum_{i=1}^{d} x_{i}}{d}=\log (m / d) \cdot m / d
$$

Thus,

$$
S=\frac{d}{m} \cdot S^{\prime}=\frac{1}{m} \cdot \sum_{i=1}^{d} \log \left(x_{i}\right) \cdot x_{i} \geq \log (m / d)
$$

[^0]: ${ }^{1}$ In both cases, for online MCs that access the remote storage in a deterministic and non-adaptive manner. Online MCs report any inauthentic retrieval from the server immediately, as opposed to after a long sequence of retrievals. Recall that the folklore FS eRAM construction also makes deterministic, non-adaptive accesses.
 ${ }^{2}$ In Section 7 we briefly compare ME with a harder setting called Continuous Group Key Agreement.

[^1]: ${ }^{3}$ The model is also related to that of automated protocol verification (see e.g., 31).

[^2]: ${ }^{4}$ Every cell of Sec and Pub initially contains the special empty symbol \perp.

[^3]: ${ }^{5}$ All set operations specified in the definitions of $\operatorname{Pub}\left(\widetilde{D}_{t}\right), \operatorname{Sec}\left(\widetilde{D}_{t}\right), \operatorname{Prev}\left(\mathrm{D}_{t}\right)$, and the remainder of the proof are taken with respect to the sets containing the unique elements of the corresponding operands, ignoring cells with \perp. We may in fact directly refer to these defined arrays as sets in the remainder. While such definitions will not consider duplicate cells, our lower bound proof will not have to take into account the number of duplicates.
 ${ }^{6}$ Condition $\mathrm{D}_{t}[i] \in \operatorname{Rec}\left(\operatorname{Sec}_{t} \cup \operatorname{Pub}_{t}\right)$ forces Π to be a proper symbolic construction.

[^4]: ${ }^{8}$ This is the case in which c^{\prime} is recovered through secret share reconstruction (using $C^{\prime \prime} \cup C^{\prime \prime \prime}$), decryption (using keys of C_{e} and possibly some that can be recovered using only $\operatorname{Pub}\left(\widetilde{D}_{t}\right)$, along with $\left.C^{\prime \prime} \cup \mathrm{C}^{\prime \prime \prime}\right)$, or possibly a combination of both.

[^5]: ${ }^{9}$ To be fair, we note that these works appeared before recent developments leading to $O(\log n)$ overhead ORAMs 3815

[^6]: ${ }^{10}$ Although the solution of [44] informally provides the same guarantees with a similar construction, we provide a complete formal model and construction.
 ${ }^{11}$ For online MCs that access server memory deterministically and non-adaptively.
 ${ }^{12}$ While our definition is not fully general, i.e., does not allow for arbitrary interaction between the FS MC and server, it suffices for our optimal construction.

[^7]: ${ }^{13}$ We assume the ID space is polynomially large.

[^8]: ${ }^{14}$ Also, their children, in the case of replace().

