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Abstract

We initiate a study of randomness condensers for sources that are efficiently samplable but may
depend on the seed of the condenser. That is, we seek functions Cond : {0, 1}n × {0, 1}d → {0, 1}m
such that if we choose a random seed S ← {0, 1}d, and a source X = A(S) is generated by a
randomized circuit A of size t such that X has min-entropy at least k given S, then Cond(X;S)
should have min-entropy at least some k′ given S. The distinction from the standard notion of
randomness condensers is that the source X may be correlated with the seed S (but is restricted
to be efficiently samplable). Randomness extractors of this type (corresponding to the special case
where k′ = m) have been implicitly studied in the past (by Trevisan and Vadhan, FOCS ‘00).

We show that:

• Unlike extractors, we can have randomness condensers for samplable, seed-dependent sources
whose computational complexity is smaller than the size t of the adversarial sampling algorithm
A. Indeed, we show that sufficiently strong collision-resistant hash functions are seed-dependent
condensers that produce outputs with min-entropy k′ = m − O(log t), i.e. logarithmic entropy
deficiency.

• Randomness condensers suffice for key derivation in many cryptographic applications: when
an adversary has negligible success probability (or negligible “squared advantage” [3]) for a
uniformly random key, we can use instead a key generated by a condenser whose output has
logarithmic entropy deficiency.

• Randomness condensers for seed-dependent samplable sources that are robust to side informa-
tion generated by the sampling algorithm imply soundness of the Fiat-Shamir Heuristic when
applied to any constant-round, public-coin interactive proof system(and thus imply that such
proof systems cannot be zero knowledge). In fact, this only requires condensers for “leaky
sources” — ones that are uniform prior to conditioning on the adversary’s side information —
and we show that such condensers are also necessary for soundness of the Fiat–Shamir Heuristic.
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1 Introduction

Randomness extractors — functions that convert sources of biased and/or correlated bits into almost
uniformly distributed bits — have a wide variety of applications in cryptography and other parts of
theoretical computer science. However, to extract randomness from rich models of sources, e.g. sources
for which we only have a lower bound on their min-entropy (or even sources where each bit is mildly
unpredictable given the previous ones), deterministic functions cannot be randomness extractors [33].
Thus the general definition of randomness extractor by Nisan and Zuckerman [30] allows the extractor
to be probabilistic — the extractor is given a uniformly random seed that it can use as a catalyst for
extraction.

The need for a seed, however, is a problem in some applications of randomness extractors. First,
if the reason for extraction is lack of access to high-quality random bits, then we may not have any
way to generate the seed.1 (In algorithmic applications of randomness extractors, it is often possible
to try all possible seeds, and combine the results obtained for each extractor output. But this does
not work in most cryptographic applications. Even one bad seed can compromise one’s secrets, and
thus eliminate security.) Second, even if we can generate a uniformly random seed, it is crucial that
the weak random source from which we extract is independent from the seed. This means that it is
problematic to generate the seed once and for all (perhaps using an expensive source of randomness) in
hope that it can be used for all future randomness extractions. If there is any chance that the future
weak sources can be influenced by the seed, then the extractor guarantees will be lost. For example,
if the seed is stored in some hardware random number generator (RNG) that extracts from physical
sources of randomness within the computer (e.g. timing of various events), these sources may be affected
by the internal computations of the RNG itself and thus we have correlations between the seed and the
sources.

Such considerations and others have motivated a revival in the study of deterministic extractors over
the past decade, i.e. extractors that do not require a seed. Since deterministic extraction is impossible
for general weak sources of randomness, this body of work has sought to identify the richest classes of
sources for which deterministic extraction is possible, and construct explicit extractors for those sources.
Most of the studied models of such “extractable sources” (e.g. bit-fixing sources [10], discrete control
sources [29] or multiple independent sources [9]) implicitly or explicitly require independence between
different portions of the source. To avoid this, Trevisan and Vadhan [37] suggested studying the class of
samplable sources, sources generated by efficient algorithms, e.g. polynomial-sized circuits. They showed
that for every t, there exist (non-explicit) deterministic extractors for sources generated by circuits of size
t, provided that the min-entropy of the source is ω(log t). Moreover, this result is based on a probabilistic
argument, and can be viewed as giving an explicit seeded extractor that works for seed-dependent sources
in the following sense. We generate once and for all a random seed S for the extractor, then an adversary
A of size t generates a source X = A(S) (using additional randomness) with the property that X has
enough min-entropy given S, and our extractor Ext(X;S) produces an output that is statistically close to
uniform given S. (We remark that [37] also gave an explicit and seedless extractor for samplable sources
having min-entropy rate close to 1 based on some strong complexity assumptions, and subsequent works
have given explicit and seedless extractors for sources sampled by weaker models of computation, such
as small-space algorithms [27, 28, 26] and constant-depth circuits [38].)

A deficiency of the above extractors is that their computational complexity is poly(t) — larger than
the complexity of the adversary generating the source. As observed in [37], this is inherent. If the
adversary has more resources than the extractor, then it can randomly generate inputs on which the
first few bits of the extractor’s output is constant (and this will be a high min-entropy source). More
precisely, if the adversary’s running time is larger than the extractor’s by a factor of t, it can fix roughly

1Actually, using 2-source extractors [9, 13], the seed can also be weakly random, but it still needs to be independent
from the source.
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log t bits of the output (and generate a source on n bits of min-entropy approximately n− log t).
The starting point for our paper is the observation that the above attack is not so bad. If the

adversary can only reduce the min-entropy of the extractor’s output by a logarithmic number of bits,
we have still achieved something very nontrivial and useful. Indeed, we will have what is called a
randomness condenser [31, 32] — which takes an n-bit source with at least some k bits of min-entropy
and outputs an m-bit source with at least some k′ bits of min-entropy. Randomness condensers are
nontrivial when the output entropy deficiency m− k′ is smaller than the input entropy deficiency n− k
(otherwise we could condense just by truncating the source). They have been extensively studied in
the literature as a building block towards constructing randomness extractors (starting with [32], and
continuing in some of the latest extractors [23]), as well as bipartite expander graphs [36, 8].

Here we note that condensers are useful in their own right. If the entropy deficiency of the output
is at most β, then any event that occurs with probability p under a uniformly random string can occur
under the condenser’s output with probability at most p′ = 2β · p. For example, if p is negligible and β
is logarithmic, then p′ is also negligible.

Motivated by the above, we initiate a study of condensers for samplable sources.

Defining seed-dependent randomness condensers. We define a condenser for seed-dependent
samplable sources to be a function Cond : {0, 1}n × {0, 1}d → {0, 1}m with the following property. If
S ← Ud, and X = A(S) is a source with (min-)entropy at least k given S, generated by a randomized
circuit A of size at most t, then we require that Cond(X;S) should be (close to) a source with min-
entropy at least k′ given S. We provide a number of variants of this definition, using different measures
of conditional entropy, and also consider the case that A generates side information along with X (to
be discussed more below).

Condensers from CR hashing. We show that sufficiently strong collision-resistant hash functions
provide good seed-dependent condensers for samplable sources. Here the seed is simply a description
of a hash function h from the family, and Cond(x;h) = h(x). We show that if efficient algorithms can
find collisions in the hash functions with probability at most 2β/2m, then the condenser output will
have min-entropy k′ ≈ m − β given the seed (for sources of min-entropy larger than m). Note that a
birthday attack will find collisions with probability O(t2/2m) in time t. If time t algorithms cannot do
much better, e.g. the probability of finding collisions is at most poly(t)/2m, then we can achieve entropy
deficiency β = O(log t), within a constant factor of the lower bound mentioned above.

Condensers and key derivation. We formalize the applicability of seed-dependent condensers to
key derivation. Specifically, we consider using the output of a condenser as a key in a cryptographic
application, and show that for “unpredictability” applications (where an adversary can win in a security
game with at most negligible probability), security is preserved if the output entropy deficiency β is small
enough (e.g. logarithmic). For indistinguishability applications, we follow [3] and show that security is
preserved if the “squared advantage” is negligible, which can be achieved for a number of applications.
These results provide the first formal evidence that when seed-dependent sources arise in practice [24]
security is not immediately compromised.

Condensers and Fiat–Shamir. We investigate seed-dependent condensers for adversaries A(S) that
generate some side information Z in addition to X (with the requirement that X has min-entropy at
least k given S and Z), analogously to the notion of average-case extractors introduced by [14]. We
observe that the most natural generalization of our condenser definition to this setting, namely requiring
that Cond(X;S) has min-entropy at least k′ given S and Z, is impossible to achieve: the adversary
A(S) can simply compute Z = Cond(X;S) as its side information. However, it seems plausible to
have good condensers if we provide the side information also as input to the condenser. While this
may not be feasible in some applications (because we do not know the side information), we show that
condensers satisfying this definition can be used to obtain a sound implementation of the Fiat–Shamir
Heuristic for all constant-round, public-coin interactive proof systems (ones with statistical soundness),
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and hence show that such protocols cannot be zero knowledge (by connections established by Dwork
et al. [17]). This novel connection between the Fiat–Shamir Heuristic and randomness condensing
is obtained by observing a close relation between seed-dependent condensers for samplable sources
tolerating side information and some conjectures of Barak, Lindell, and Vadhan [4] (made in the study
of zero knowledge and Fiat–Shamir). In fact, this connection only requires condensers for “leaky sources”
— ones that are uniform prior to conditioning on the adversary’s side information — and we show that
such condensers are also necessary for soundness of the Fiat–Shamir Heuristic. It remains an intriguing
open problem to give a construction of condensers for leaky sources based on some more well-studied
complexity assumptions.

2 Definitions and Preliminaries

Notation. In a slight abuse of notation, we use upper-case letters such as X,Y to denote both
variables taking on values in some set and random variables that define the distribution from which
the individual values are sampled. We likewise overload the ← operator, so that for variables X,Y
the notation X ← Y denotes assigning X the value of a variable Y and that X is a random variable
with distribution equal to that of Y . For variable X and set S (e.g., {0, 1}m for some number m), the
notation X ← S denotes both assigning X a value uniformly chosen from S and letting X be a uniform
random variable over S. We denote by Um the uniform distribution over m bits, i.e. Um ← {0, 1}m.
A randomized circuit A implicitly takes an additional input, called the randomness, that is a variable
R← {0, 1}r for some appropriate number r. For variables X,Y and algorithm A, we write X ← A(Y )
to denote running A (with fresh randomness) on input Y and assigning the result to X. Likewise, X is
the random variable describing the distribution of A(Y ).

Entropy and Statistical Distance. We start by defining the relevant notions of entropy that we
use, which are min-entropy, collision (also known as Renyi) entropy and Shannon entropy. The Shannon

entropy and min-entropy of a random variable X are defined as H1(X)
def
= Ex←X [− log Pr[X = x]] and

H∞(X)
def
= − log(maxx Pr[X = x]). We also define average (aka conditional) Shannon entropy and

average min-entropy of a random variable X conditioned on another random variable Z by

H1(X|Z)
def
= E(x,z)←(X,Z) [− log Pr[X = x|Z = z]]

H∞(X|Z)
def
= − log

(
Ez←Z

[
max
x

Pr[X = x|Z = z]
])

respectively, where Ez←Z denotes the expected value over z ← Z.
The collision probability of a random variable X is defined as Col(X)

def
=
∑

x Pr[X = x]2, and the
collision entropy of X is H2(X) = log(1/Col(X)). It is easy to see that for any X, H∞(X) ≤ H2(X) ≤
H1(X) and H2(X) ≤ 2H∞(X). We can also define average collision probability and collision entropy of
a random variable X conditioned on another random variable Z by Col(X|Z) = Ez←Z [Col(X|Z = z)]
and H2(X|Z) = log(1/Col(X|Z)). Once again, H∞(X|Z) ≤ H2(X|Z) ≤ H1(X|Z) and H2(X|Z) ≤
2H∞(X|Z).

We denote with distD(X,Y ) the advantage of a function D in distinguishing the random variables

X,Y : distD(X,Y )
def
= | Pr[D(X) = 1] − Pr[D(Y ) = 1] |. The statistical distance between two random

variables X,Y is defined by

SD(X,Y )
def
=

1

2

∑
x

|Pr[X = x]− Pr[Y = x]| = max
D

distD(X,Y )

We say that X and Y are ε-close if SD(X,Y ) ≤ ε. We also note that any tuple (X,Z) is ε-close
to (X ′, Z) such that H∞(X ′|Z) ≥ H2(X|Z) − log (1/ε), which is often much better than bounding
H∞(X|Z) ≥ 1

2 ·H2(X|Z).
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Extractors and Condensers. Recall, a randomness extractor [30] (from now on simply extractor)
takes a source X of high entropy and outputs an almost uniform random string. To achieve such an
ambitious task, an extractor requires an additional random seed S. Below we further generalize the
notion of extractor to two notions of entropy we defined (min- and collision),2 as well as to the setting
when the source X is efficiently samplable by some circuit A of some bounded size t. For our purposes it
is useful to think of A as a probabilistic adversary trying to produce the “worst” possible (high-entropy)
source X to “fool” our extractor.

Definition 2.1 (Extractor) Let c ∈ {2,∞}. An efficient function Ext : {0, 1}n × {0, 1}d → {0, 1}m is
a ([Hc ≥ k], ε, t)-extractor if for all probabilistic adversaries A of size at most t who sample a distribution
X ← A of entropy Hc(X) ≥ k, the joint distribution (S,Ext(X;S)) is ε-close to (S,Um), where the seed
S ← {0, 1}d is chosen independently of X.

When c is clear from the context, we say Ext is a (k, ε, t)-extractor. We omit the reference to t when
t =∞.

Notice, an extractor outputs an m-bit string statistically close to uniform (even given the seed),
which is a string with “full entropy”. Condensers, defined below, relax this requirement to outputting a
(value close to a) string of “high”, but not necessarily “full”, entropy. For full generality, we allow the
notion of “output entropy” Hc′ to be different from the notion of “input entropy” Hc.

Definition 2.2 (Condenser) Let c, c′ ∈ {1, 2,∞}. An efficient function Cond : {0, 1}n × {0, 1}d →
{0, 1}m is a ([Hc ≥ k] →ε [Hc′ ≥ k′], t)-condenser if for all probabilistic adversaries A of size at most
t who sample a distribution X ← A of entropy Hc(X) ≥ k, the joint distribution (S,Cond(X;S)) is
ε-close to some (S,R), where Hc′(R|S) ≥ k′ and the seed S ← {0, 1}d is chosen independently of X.

The quantity β
def
= m−k′ is called the entropy deficit of the condenser. When c = c′ is clear from the

context, we say that Cond is a (k →ε k
′, t)-condenser. We omit the reference to ε and/or t when ε = 0

and/or t =∞, respectively.

Clearly, an extractor is a special case of a condenser whose entropy deficit is β = 0, which means that
R← {0, 1}m and m = k′.

3 Seed-Dependent Condensers

We now generalize the notion of a condenser to the seed-dependent setting, in which the adversarial
sampler A of size t can depend on the seed S. As we will see, seed-dependent condensers are useful for
important applications such as cryptographic key derivation.

Definition 3.1 (Seed-Dependent Condenser) Let c, c′ ∈ {1, 2,∞}. An efficient function Cond :
{0, 1}n × {0, 1}d → {0, 1}m is a seed-dependent ([Hc ≥ k] →ε [Hc′ ≥ k′], t)-condenser if for all prob-
abilistic adversaries A of size at most t who take a random seed S ← {0, 1}d and output (using more
coins) a sample X ← A(S) of entropy Hc(X|S) ≥ k, the joint distribution (S,Cond(X;S)) is ε-close to
some (S,R), where Hc′(R|S) ≥ k′.

The quantity β
def
= m − k′ is called the entropy deficit of the condenser. When c = c′ is clear from

the context, we say that Cond is a seed-dependent (k →ε k′, t)-condenser. We omit the reference to ε
and/or t when ε = 0 and/or t =∞, respectively.

A notion for traditional condensers arises by replacing A in the definition above with an unbounded
circuit that does not take the seed S as input. Unlike with traditional condensers, seed-dependent

2It is easy to see that no meaningful parameters can be achieved for Shannon entropy.
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condensers require that A be efficient. Otherwise, an inefficient A can, by repeatedly evaluating the
condenser using the seed S, always find a high entropy distribution of inputs that map to a low entropy
output distribution. Second, while a seed-dependent extractor can be defined as a special case of the
definition above corresponding to k′ = m, Proposition 3.1 below implies that it is impossible to build a
(non-trivial) seed-dependent extractor.

The following lemma will be useful in several of our later results.

Lemma 3.1 Let c ∈ {1, 2,∞}. Then,

• “Output (∞ → 2 → 1)”: If c′ ≥ c′′ and Cond is a seed-dependent (([Hc ≥ k] →ε [Hc′ ≥ k′]), t)-
condenser, then Cond is also a seed-dependent (([Hc ≥ k]→ε [Hc′′ ≥ k′]), t)-condenser.

• “Output (2 → ∞)”: For any γ > 0, if Cond is seed-dependent (([Hc ≥ k] →ε [H2 ≥ k′]), t)-
condenser, then Cond is also a seed-dependent (([Hc ≥ k]→ε+γ [H∞ ≥ k′ − log(1/γ)]), t)-condenser
and also a seed-dependent (([Hc ≥ k]→ε [H∞ ≥ k′/2]), t)-condenser.

• “Input (1 → 2 → ∞)”: If c′ ≤ c′′ and Cond is seed-dependent (([Hc′ ≥ k] →ε [Hc ≥ k′]), t)-
condenser, then Cond is also a seed-dependent (([Hc′′ ≥ k]→ε [Hc ≥ k′]), t)-condenser.

Proof. The first part follows from H1(R|S) ≥ H2(R|S) ≥ H∞(R|S). The second part follows
from the fact that (R,S) is γ-close to some (R′, S) where H∞(R′|S) ≥ H2(R|S) − log(1/γ) and from
H2(R|S) ≤ 2H∞(R|S). The third part follows from H1(X|S) ≥ H2(X|S) ≥ H∞(X|S) �

Thus, it is somewhat preferable (but also the hardest) to build a seed-dependent ([H2 ≥ k]→ε [H∞ ≥
k′]) condenser, since it implies ([Hc ≥ k] →ε [Hc′ ≥ k′])-condenser for any c, c′ ∈ {2,∞}. In contrast,
it is preferable to base a security of a given application on a ([H∞ ≥ k]→ε [H2 ≥ k′])-condenser, since
such condensers are likely to have slightly better parameters k and k′.

The following negative result shows that the output entropy deficiency β = m − k′ must be at
least roughly log t to work for samplers computable in time t, if the condenser is computable in time
significantly less than t. In particular, we cannot hope for a seed-dependent extractor (i.e. β = 0) that
is computable in time significantly less than t, generalizing an observation of Trevisan and Vadhan [37]
about deterministic extractors for samplable sources.

Proposition 3.1 Let Cond : {0, 1}n × {0, 1}d → {0, 1}m be computable by a circuit of size t′, and let
β ∈ [0,m], ε, δ ∈ (0, 1/2). Then for Cond to be a (([H∞ ≥ n− α] →ε [H1 ≥ m− β]), t)-condenser for
α = ⌈(β + 1)/(1− ε− δ)⌉, it must be that α ≥ log t− log t′ −O(log(1/δ)) or α ≥ m.

Note that as ε, δ → 0, the ratio between α and β approaches 1. Thus, the proposition says that if
we want to decrease the entropy deficiency by any significant factor, we must settle for output entropy
deficiency β ≈ α that is at least roughly log t.

Proof. Without loss of generality, assume that the output length of Cond is m = α. (Otherwise, we
can restrict to an α-length prefix of the output of Cond; doing so does not change the entropy deficiency
of the output of Cond.) For a source string x ∈ {0, 1}n and a seed s ∈ {0, 1}d, let p(x, s) be the fraction
of source strings x′ that produce the same condenser output as x on seed s. That is,

p(x, s) =
#{x′ : Cond(x′, s) = Cond(x, s)}

2n
.
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Note that for every seed s, we have

EX←{0,1}n

[
1

p(X, s)

]
=

∑
x∈{0,1}n

1

#{x′ : Cond(x′, s) = Cond(x, s)}

=
∑

r∈Cond({0,1}n,s)

∑
x∈{0,1}n:Cond(x,s)=r

1

#{x′ : Cond(x′, s) = r}

= |Cond({0, 1}n, s)|
≤ 2α.

Thus, by averaging, there exists an fixed x∗ ∈ {0, 1}n such that

ES←{0,1}d

[
1

p(x∗, S)

]
≤ 2α.

Now our adversarial sampler A(s) behaves as follows: it selects ℓ = ⌈2 · 2α · (1/δ) · ln(2/δ)⌉ random
inputs x1, . . . , xℓ ← {0, 1}n, and outputs the first value xi such that Cond(xi, s) = Cond(x∗, s). If no
such value occurs, then A(s) outputs a uniformly random string x← {0, 1}n.

By inspection, A is computable by a circuit of size O(ℓ · t′), which is smaller than t for α = log t−
log t′ −O(log(1/δ)).

We now analyze the min-entropy of the source generated by A. Notice that for every seed s, the
output distribution of A(s) has min-entropy at least log(p(x∗, s) · 2n). Thus,

2−H∞(A(S)|S) = Es←S

[
2−H∞(A(s))

]
≤ Es←S

[
1

p(x∗, s) · 2n

]
≤ 2α

2n
,

so we have H∞(A(S)|S) ≥ n− α, as desired.
Now we look at the output Shannon entropy of the condenser when fed this source. First, by

Markov’s inequality, we have 1/p(x∗, s) ≤ 2α/(δ/2) for all but a δ/2 fraction of seeds s. For each such
seed s, the probability that A fails to find a value xi such that Cond(xi, s) = Cond(x∗, s) is at most
(1− p(x∗, s))ℓ < δ/2. Thus, with probability greater than 1− δ, Cond(A(S), S) = Cond(x∗, S). And for
any source (R,S) that is ε-close to (Cond(A(S)), S), we have R = Cond(x∗, S) with probability greater
than 1− δ − ϵ. This implies that the entropy of R given S is less than (δ + ϵ) · α+ 1 ≤ α− β = m− β.
(The extra one bit of entropy is for the indicator of the event that R = Cond(x∗, S).) �

Handling Side Information. One can naturally generalize the notion of (regular) extractors and
condensers to handle some side information Z about the source X, yielding the notion of average-
case extractors/condensers [14]. Formally, the adversarial sampler A produces a pair (X,Z) such that
Hc(X|Z) ≥ k, and one requires that the joint distribution (Z, S,Ext(X;S)) (resp. (Z, S,Cond(X;S)))
is ε-close to (Z, S, Um) (resp. (Z, S,R) where Hc′(R|(S,Z)) ≥ k′).

However, things become a bit trickier in the seed-dependent case that we introduce in this work.
Naturally, the sampler A now takes the seed S to produce the pair (X,Z). Unfortunately, this means
that A can now run the condenser Cond(X;S) and simply record all or part of this output in the side
information Z. This still leaves the entropy of X high enough (say, if k is noticeably larger than m),
but now the output entropy k′ drops to 0. Thus, to make a meaningful but satisfiable definition in the
case of side information, we will relax the syntax of the condenser Cond to also take the side information
Z as part of its input. While less convenient for some applications, now the previous attack no longer
applies, since the sampler A(S) has to choose Z before R = Cond((X,Z);S) is derived, making it much
harder to “correlate” R and Z.

Definition 3.2 (Average-Case Seed-Dependent Condenser) Let c, c′ ∈ {1, 2,∞}. An efficient
function Cond : {0, 1}n × {0, 1}∗ × {0, 1}d → {0, 1}m is an average-case seed-dependent ([Hc ≥ k] →ε
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[Hc′ ≥ k′], t)-condenser if for all probabilistic adversaries A of size at most t who take a random seed
S ← {0, 1}d and output (using more coins) a tuple (X,Z) ← A(S) satisfying Hc(X|(S,Z)) ≥ k, the
joint distribution (Z, S,Cond((X,Z);S)) is ε-close to (Z, S,R), where Hc′(R|(S,Z)) ≥ k′.

The quantity β
def
= m − k′ is called the entropy deficit of the condenser. When c = c′ is clear from

the context, we say that Cond is an average-case seed-dependent (k →ε k′, t)-condenser. We omit the
reference to ε and/or t when ε = 0 and/or t =∞, respectively.

We notice that Lemma 3.1 clearly extends to the average-case setting. Also, when Z is empty, this
still generalizes the “worst-case” seed-dependent condenser from Definition 3.1. However, the introduc-
tion of side information makes the notion of seed-dependent condenser very non-trivial to satisfy even
when the source X is perfectly uniform, but some side information Z = f(X) is “leaked” to the at-
tacker. Indeed, we show in Section 6 that this special case of average-case condensers (see Definition 6.1)
is exactly what is needed to instantiate the Fiat-Shamir heuristic.

Finally, an equivalent way to think about average-case condensers is to interpret the output (X,Z)
of the sampler as a single (variable-length) source X ′, so that the condenser is simply applied to X ′,
but a subset of (known) physical bits Z of X ′ is leaked to the attacker/distinguisher. This setting
could be viewed as a variant of exposure-resilient cryptography [7, 16], where we do not assume that the
initial distribution X ′ of the secret is uniform (but rather is efficiently samplable and has some entropy
conditioned on the leaked bits), and where the set of bits that are leaked is known (namely it is the
suffix Z) rather than adversarial.

4 Condensers from Collision Resistance

In this section we show that a sufficiently strong collision-resistant hash function (CRHF) gives a good
seed-dependent (but not average-case) ([H2 ≥ k]→0 [H2 ≥ k′]) condenser, which also implies non-trivial
bounds for other input/output entropy settings when c, c′ ∈ {2,∞}, by Lemma 3.1.

Definition 4.1 A family of hash function H = {h : {0, 1}∗ → {0, 1}m} is (t, δ)-collision-resistant if for
any (non-uniform) attacker B of size at most t,

Pr[H(X1) = H(X2) ∧X1 ̸= X2] ≤ δ

where H ← H and (X1, X2)← B(H).

Theorem 4.1 Fix any β > 0. If H is a (2t, 2β−1/2m)-collision-resistant hash function family, then

Cond(X;H)
def
= H(x) for H ← H is a seed-dependent (([H2 ≥ m− β + 1] → [H2 ≥ m− β]), t)-

condenser with entropy deficit β and no error.
In particular, it is also a seed-dependent (([H∞ ≥ m− β + 1] → [H2 ≥ m− β]), t)-condenser and

(([H∞ ≥ m− β + 1]→ε [H∞ ≥ m− β + log ε]), t)-condenser.

Proof. Consider any (t, k)-bounded sampler A with k ≥ m−β+1. Define a collision-finding adversary
B(H) to work by running X1 ← A(H) and X2 ← A(H), and then outputting (X1, X2). Clearly, B runs
in time at most 2t. From the security of H, and letting H ← H and (X1, X2)← B(H), we have that

Pr[H(X1) = H(X2) ∧ X1 ̸= X2] ≤
2β−1

2m
(1)

Hence, combining Equation (1) with the fact that Col(X | H) ≤ 2β−1/2m for X ← A(H), we get

Col(H(X) | H) ≤ Col(X | H) + Pr[H(X1) = H(X2) ∧ X1 ̸= X2]

≤ 2β−1

2m
+

2β−1

2m
=

2β

2m
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The implications to other entropy norms are immediate from Lemma 3.1. �

Parameters. To obtain good entropy deficit β as a function on the sampler’s complexity t, we
need to understand the best possible (2t, δ)-collision-resistant security of H. Clearly, a birthday attack
(essentially) implies that δ = Ω(t2/2m), since the attacker can pick t random points, evaluate h on
them, and hope for some collision. Conversely, this bound is tight in the random oracle model, and
state-of-the-art hash functions more or less assume that the “birthday attack” is the only possible attack
on a good CRHF design. For example, birthday attacks are currently the best known attacks on many
popular hash functions, such as SHA-256, SHA-512, and the new SHA-3 functions, as well as discrete-
log based CRHFs over many elliptic curve groups (c.f., [35]). Thus, under such (strong but reasonable)
assumptions, all the above popular hash functions achieve δ = O(t2/2m), which means that we can set
2β−1 = O(t2) resulting in β = 2 log t + O(1). More generally, if the best collision-finding attack has
success probability δ = poly(t)/2m, then β = O(log t).

Corollary 4.1 Assuming the existence of (t, O(t2)
2m )-collision-resistant hash functions, there exists a seed-

dependent (([H2 ≥ m− β + 1] → [H2 ≥ m− β]), t)-condenser with entropy deficit β = 2 log t + O(1)
and no error.

In particular, it is also a seed-dependent (([H∞ ≥ m− β + 1] → [H2 ≥ m− β]), t)-condenser with
entropy deficit β = 2 log t+O(1) and no error, and (([H∞ ≥ m− β + 1]→ε [H∞ ≥ m− β − log (1/ε)]), t)-
condenser with entropy deficit β′ = (2 log t+ log (1/ε) +O(1)) and error ε.

Average-Case Setting? Unfortunately, the proof of Theorem 4.1 does not extend to average-case
seed-dependent condensers. The problem is that when estimating the value Col(H(X,Z)|(H,Z)), one
already needs to sample two sources X1 and X2 corresponding to the same side information Z, which
seems to be hard. A bit more formally, a natural attempt to define a collision-finding adversary B would
be to first let B(H) run A(H) to produce a tuple (X1, Z1), and then run A(H) several more times to
try to produce a second tuple (X2, Z2) with the hope that Z2 = Z1. But this will not be guaranteed to
be efficient unless Z is very short (e.g., just a few bits). In some sense, the difficulty of handling side
information might be expected, since we show that average-case seed-dependent condensers are enough
to instantiate the random oracle in the Fiat-Shamir heuristic (see Section 6), which is a long-standing
open problem.

5 Application to Key Derivation

Consider any cryptographic primitive P (e.g., digital signatures, encryption, etc.), which uses random-
ness R ∈ {0, 1}m to derive its secret (and, public, if needed) key(s). Without loss of generality, we
can assume that R itself is the secret key. In the “ideal” setting, R ← {0, 1}m is chosen uniformly at
random, and the attacker B against P obtains no knowledge about the choice of R, except for what is
revealed by P . In practice, however, R is not perfectly uniform. For example, it may be the output
of a system random number generator (RNG) that attempts to extract uniform bits from a source of
entropy. To guarantee security for the widest range of settings, we ask for the key-derivation to be secure
even against seed-dependent3, adversarially-manipulated sources. However, Proposition 3.1 shows that,
at least in general, no extractors exist that work for such a strong adversarial model. We therefore
turn to seed-dependent condensers, showing that these yield strong positive results about the security
of key-derivation.

Towards this, we model the “real” seed-dependent setting as follows. Let S ← {0, 1}d be a random
seed that is chosen and X ← A(S) is sampled by an adversarial sampler A. Finally, the cryptographic
primitive P uses R← Cond(X;S) as the key. While the above model is the one of greatest most direct

3For example the Linux RNG folds back into its entropy pool prior outputs [24].
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practical interest, we will actually consider the more general case of average-case condensing, in which an
attacker B against P obtains part of the input to the condenser, the side-information Z. The resulting
real/ideal settings for deriving the key for P are formalized by the procedures Real(A) and Ideal(A):

Real(A):

S ← {0, 1}d
(X,Z)← A(S)
R← Cond((X,Z);S)
Return (R,S, Z)

Ideal(A):

S ← {0, 1}d
(X,Z)← A(S)
R← {0, 1}m
Return (R,S, Z)

The two procedures are parameterized by a sampler A that on input the seed S outputs a pair (X,Z).
We assume that the sampler A has size at most t and produces a source X of (conditional) min-entropy
H∞(X|(S,Z)) ≥ k, for some parameters t and k. We call such samplers (t, k)-bounded. Sometimes, to
emphasize the dependence on the sampler complexity t and source min-entropy k, we will refer to the
above two settings as the (t, k)-real and (t, k)-ideal models, respectively.

The side information Z naturally models information about the random source X that may be leaked
to an adversary via a side channel. However, in most or all practical scenarios, our assumption that the
value of Z is known and available to the condenser is unrealistic. Thus, we will also state our results for
the analogous models without side information, meaning we omit Z in both the real and ideal models.

Defining Real/Ideal Security. We assume that the security of the cryptographic primitive P is
defined via an interactive game between a probabilistic attacker B(s, z) and a probabilistic challenger
C(r). Here one should think of s and z as particular values of the seed and the side information,
respectively, and r as a particular value used by the challenger in the key generation algorithm of P .
We note that C only uses the secret key r and does not directly depend on s and z. In particular, in
the ideal model, the values s and z are not really useful to the actual attacker B, since the key r used
by the challenger C is chosen completely independently from these values. Still, we include them for
consistency.

At the end of the game, C(r) outputs a bit b, where b = 1 indicates that the attacker “won the
game”. Since C is fixed by the definition of P (e.g., C runs the unforgeability game for signature or the
semantic security game for encryption, etc.), we denote by DB(r, s, z) the (abstract) distinguisher which
simulates the entire game between B(s, z) and C(r) and outputs the bit b. We also let

AdvB(r, s, z)
def
= Pr[DB(r, s, z) = 1]− c

be the advantage of B(s, z) to win the game against C(r), where c = 0 for unpredictability appli-
cations (one-way functions, signatures, etc.) and c = 1/2 for indistinguishability applications (en-
cryption, pseudorandom functions, etc.). Thus, AdvB(·) ∈ [0, 1] for unpredictability applications and
AdvB(·) ∈ [−1

2 ,
1
2 ] for indistinguishability applications. When B is clear from the context, we simply

write Adv(r, s, z).
In the following security definition for P , we will use the letter T to denote the maximum allowable

resources of B, which include all the efficiency measures we might care about in the corresponding
application, such as the circuit size, number of oracle queries, etc. We say that such a B is T -limited.

Definition 5.1 Given a sampler A and an attacker B, we define their ideal advantage

∆(A,B) def
= | E[AdvB(Ideal(A))] | .

We say that P is (T, δ)-secure in the (t, k)-ideal model if for any (t, k)-bounded sampler A and any
T -limited attacker B, ∆(A,B) ≤ δ. Similarly, given A and B, we define their real advantage

∆̃(A,B) def
= | E[AdvB(Real(A))] | .

We say that P is (T ′, δ′)-secure in the (t, k)-real model if for any (t, k)-bounded sampler A and any
T ′-limited attacker B, ∆̃(A,B) ≤ δ′.
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5.1 Simple Bound for Unpredictability Applications

As our first attempt, we would like to argue that if P is (T, δ)-secure in the ideal setting, then P is also
(T ′, δ′)-secure in the real setting, where T ′ is not much lower than T , and, more importantly, δ′ is not
much larger than δ. With traditional extractors, this is done by arguing that the derived real key R is
(statistically) ε-close to Um, even conditioned on S and Z. This means that δ′ ≤ δ+ε. Unfortunately, in
the seed-dependent settings it is impossible to achieve statistical extraction, as shown by Proposition 3.1.
In this section, we observe that is not strictly necessary to argue statistical extraction: if the original
ideal security δ is low enough, a good enough condenser (achievable even in the seed-dependent setting)
might result in “real” security δ′ not much larger than the “ideal” security δ. At least, we show that this
intuition is true for unpredictability applications (where, recall, Adv(·) ≥ 0) in the following lemma.

Lemma 5.1 Assume P is some unpredictability application which is (T, δ)-secure in the (t, k)-ideal
model, and Cond is an average-case seed-dependent (([H∞ ≥ k] →ε [H∞ ≥ k′]), t)-condenser with
entropy deficit β = m− k′. Then P is (T, δ′)-secure in the (t, k)-real model, where

δ′ ≤ ε+ δ · 2β. (2)

If instead Cond is an (non-average-case) seed-dependent (([H∞ ≥ k]→ε [H∞ ≥ k′]), t)-condenser, then
P is (T, δ′)-secure in the (t, k)-real model without side information.

Proof. Fix any (t, k)-bounded sampler A and any T -limited attacker B. Recall, the random variable
(Cond((X,Z);S), S, Z) is ε-close to a random variable (R,S, Z), where H∞(R|(S,Z)) ≥ k′. Thus, to
prove the bound in Equation (2), it is enough to prove that δ′ ≤ δ · 2β assuming that the value R in the
real model satisfies H∞(R|(S,Z)) ≥ k′.

For brevity, let y = (s, z), and qy denote the probability that Y = y (which is the same, for every
y = (s, z), in both the real and the ideal models). Also, for a given r ∈ {0, 1}m, let pr|y be the probability

of outputting R = r in the real model conditioned on Y = y. By definition, pr|y ≤ 2−H∞(R|Y=y) and

Ey[2
−H∞(R|Y=y)] = 2−H∞(R|Y ) ≤ 2−k

′
by the condenser property. Then, using non-negativity of AdvB,

we have

∆̃(A,B) =
∑
y,r

qy · pr|y ·AdvB(r, y) ≤
∑
y

qy · 2−H∞(R|Y=y) ·

(∑
r

AdvB(r, y)

)
≤

∑
y

qy · 2−H∞(R|Y=y) · (2m · δ) = δ · 2m−H∞(R|Y ) ≤ δ · 2m−k′

= δ · 2β

where the second inequality follows from the fact that, for any y, (
∑

r
1
2m · AdvB(r, y) ≤ δ), which,

in turn, is true since B(·, y) defines a valid T -limited ideal model attacker B′, who replaces his actual
“advice” y′ = (s′, z′) with the fixed “advice” y without affecting its success probability, since the ideal
key R← {0, 1}m is independent from y and y′. �

Parameters. In essence, Lemma 5.1 states that the security δ degrades exponentially with the
entropy deficit β of our seed-dependent condenser. Recall that β = O(log t) is the best we can hope
for (by Proposition 3.1); this would give a meaningful security guarantee δ′ ≈ δ · poly(t), as long as
δ ≪ 1/poly(t).

For example, for the non-average-case setting, we can combine the bound in Lemma 5.1 with the
construction from Corollary 4.1 to show that a O(t2)/2m-collision-resistant hash function suffices for
real model security:
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Corollary 5.1 Assuming the existence of (t, O(t2)
2m )-collision-resistant hash functions, if P is (T, δ)-

secure in the (t,m−2 log t+O(1))-ideal model with no side information, then using a collision-resistant
function as a condenser makes P to be (T, δ′)-secure in the (t,m − 2 log t + O(1))-real model with no
side information, where

δ′ ≤ O(t ·
√
δ) . (3)

Proof. For any ε > 0, Corollary 4.1 gives us a (([H∞ ≥ m− β′] →ε [H∞ ≥ m− β′ − log (1/ε)]), t)-
condenser with error ε, where β′ = 2 log t+O(1). This gives entropy deficit β = β′+log (1/ε) satisfying
2β = O(t2/ε). Using Lemma 5.1, we get δ′ ≤ ε+ O(δt2/ε). Setting, ε = t ·

√
δ gives the desired bound

δ′ ≤ O(t ·
√
δ). �

5.2 General Bound through Squared Advantage

The bound of Lemma 5.1 only holds for unpredictability applications, and also requires seed-dependent
condensers guaranteeing the min-entropy of the extracted key R. In this section we show a more general
bound which also holds for indistinguishability applications, has better dependence on the entropy deficit
of the condenser, and needs a slightly weaker type of seed-dependent condenser for collision entropy.
However, the small price we pay for such improvements is that we can no longer directly relate the real-
security δ′ of our application to its ideal security δ. Rather, we use the notion of the squared advantage
∆2(A,B), and will relate ∆̃(A,B) to ∆2(A,B), which will in turn relate δ′ to the “square-security” σ
which we define below. This notion of squared advantage/security was implicitly introduced by Barak
et al. [3] in the “seed-independent” setting (to improve the entropy loss of the Leftover Hash Lemma),
who also showed that for many important applications the value σ is not “too much worse” than δ (as
discussed more below).

Definition 5.2 Given a sampler A and an attacker B, we define their (ideal) square advantage

∆2(A,B)
def
= E[AdvB(Ideal(A))2] .

We say that P is (T, σ)-square-secure in the (t, k)-ideal model if for any (t, k)-bounded sampler A and
any T -limited attacker B, ∆2(A,B) ≤ σ.

We can now state our improved bound, and then compare it to our previous bound from Lemma 5.1.

Lemma 5.2 Assume P any application which is (T, σ)-square-secure in the (t, k)-ideal model, and Cond
is an average-case seed-dependent (([H∞ ≥ k] →ε [H2 ≥ k′]), t)-condenser with entropy deficit β =
m− k′. Then P is (T, δ′)-secure in the (t, k)-real model, where

δ′ ≤ ε+
√
σ · 2β. (4)

If instead Cond is an (non-average-case) seed-dependent (([H∞ ≥ k]→ε [H∞ ≥ k′]), t)-condenser, then
P is (T, δ′)-secure in the (t, k)-real model without side information.

Proof. Fix any (t, k)-bounded sampler A and any T -limited attacker B. Recall, the random variable
(Cond((X,Z);S), S, Z) is ε-close to a random variable (R,S, Z), where H2(R|(S,Z)) ≥ k′. Thus, to
prove the bound in Equation (2), it is enough to prove that δ′ ≤

√
σ · 2β assuming that the value R in

the real model satisfies H2(R|(S,Z)) ≥ k′.
For brevity, let y = (s, z), and qy denote the probability that Y = y (which is the same, for every

y = (s, z), in both the real and the ideal models). Also, for a given r ∈ {0, 1}m, let pr|y be the probability
of outputting R = r in the real model conditioned on Y = y. Recall the Cauchy-Schwartz inequality

|
∑

aibi| ≤
√

(
∑

a2i ) · (
∑

b2i ). We have
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∆̃(A,B) =

∣∣∣∣∣∑
y,r

qy · pr|y ·AdvB(r, y)

∣∣∣∣∣ =
∣∣∣∣∣ ∑

y,r

(√
qy
2m
·AdvB(r, y)

)
·
(√

2m · qy · pr|y
) ∣∣∣∣∣

≤

√√√√ (∑
y,r

qy
2m
·AdvB(r, y)2

)
·

(
2m
∑
y,r

qy · p2r|y

)
=

√
∆2(A,B) · 2m ·Col(R|Y ) ≤

√
σ · 2m · 2−k′

≤
√
σ · 2β

�
Using Corollary 4.1, we obtain a nearly optimal security degradation in the real model with no side

information:

Corollary 5.2 Assuming the existence of (t, O(t2)
2m )-collision-resistant hash functions, if P is (T, σ)-

square-secure in the (t,m− 2 log t+O(1))-ideal model with no side information, then using a collision-
resistant function as a condenser makes P to be (T, δ′)-secure in the (t,m − 2 log t + O(1))-real model
with no side information, where

δ′ ≤ O(t ·
√
σ) . (5)

Discussion. We start by making a few observations about square-security σ (used in Equation (4)
and Equation (5)) and its relation to the regular security δ. These observations were all implicitly made
by [3], but here we make them explicit. First, we always have σ ≥ δ2, which means that the term

√
σ in

Equation (4) is greater than or equal to the term δ is in Equation (2). Thus, we are indeed slightly worse
off in this aspect. On the other hand, in case we do have σ ≈ δ2, the bound in Equation (4) becomes
much better than the one in Equation (2) in several respects: not only is it more general and applies to
indistinguishability applications, but it has much better dependence on the entropy deficit (

√
2β vs 2β)

and uses a better “output entropy norm” (H2 rather than H∞, which is better by Lemma 3.1).
In fact, while we cannot generically prove that σ ≈ δ2, for unpredictability applications it is easy

to see that σ ≤ δ, since AdvB(·)2 ≤ AdvB(·). More surprisingly, [3] showed that for prominent
indistinguishability applications, including chosen plaintext secure encryption and weak pseudorandom
functions, one can also show that (2T, δ)-security in the ideal model implies (T, δ)-square-security. Thus,
ignoring a factor of 2 in the resources on B, we effectively again have σ ≤ δ for these indistinguishability
applications. To summarize, for a very large class of applications we still get relatively good bounds
δ′ ≤ ε +

√
δ · 2β in Equation (4) and δ′ = O(t ·

√
δ) in Equation (5) (the latter assuming a very strong

collision-resistant hash function). Notice, for unpredictability applications the later bound matches the
bound in Equation (3). However, now the same bound also holds for a large class of indistinguishability
applications, such as chosen plaintext encryption.

6 Side-Information and Fiat-Shamir

One of the earliest and most influential applications of the Random Oracle Model in cryptography
(predating its formalization by Bellare and Rogaway [5]) was to analyze the Fiat-Shamir Heuristic [18].
In the Fiat–Shamir Heuristic, a hash function is used to eliminate interaction in constant-round public-
coin protocols, replacing the verifier’s random challenges with hashes of the transcript so far. If the
hash function is modeled as a random oracle, then this heuristic is known to preserve soundness of
the underlying protocol (up to a factor polynomial in the number of queries made by the adversary to
the random oracle). However, there are no natural examples of protocols for which the Fiat–Shamir
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Heuristic has been proven sound when the hash function is implemented by an efficiently computable
family of functions.

The original motivation for the Fiat–Shamir Heuristic was as a method to convert identification
schemes into digital signature schemes, and the method gave rise to many efficient digital signature
schemes in practice [18, 34, 22] (albeit with only a proof in the Random Oracle Model). Another com-
pelling motivation for understanding the soundness of the Fiat–Shamir Heuristic is its close connection
to the zero-knowledge property of the underlying protocols, as pointed out by Dwork, Naor, Reingold,
and Stockmeyer [17]. Dwork et al. showed that the soundness of the Fiat–Shamir Heuristic on a given
protocol is essentially equivalent to that protocol not being (auxiliary-input) zero knowledge unless
the underlying language is in BPP.4 There are many constant-round public-coin protocols whose zero
knowledge status is a long-standing open problem (e.g. ones obtained by starting some underlying basic
zero-knowledge protocol and applying parallel repetition to make the soundness error negligible). While
these protocols cannot be black-box zero knowledge (for nontrivial languages) [19], they may still be
non-black-box (auxiliary-input) zero knowledge.

Indeed, Barak [2] constructed a constant-round, public-coin (non-black-box) zero-knowledge argu-
ment system for NP (assuming the existence of collision-resistant hash functions), thereby yielding a
natural protocol on which the Fiat–Shamir heuristic is unsound (for any efficiently computable fam-
ily of hash functions). Goldwasser and Kalai [20] extended Barak’s techniques to construct 3-message
public-coin identification schemes on which the Fiat–Shamir Heuristic is unsound. In both of these
counterexamples to the Fiat–Shamir Heuristic, the initial interactive protocol is only computationally
sound, and the results seem to use this in an essential way.

Thus, Barak, Lindell, and Vadhan [4] conjectured that there is a sound implementation of the Fiat–
Shamir Heuristic for any statistically sound interactive proof of language membership (and thus that
there can be no constant-round public-coin zero-knowledge proof system with negligible soundness for a
language outside BPP). Indeed, they provided a plausible property for a family of hash functions that
suffices for it to provide a sound implementation of Fiat–Shamir on proof systems. While they conjec-
tured that such hash families exist, it remains open to construct one based on a standard complexity
assumption.

The significance of statistical soundness for reducing interaction was further highlighted by the recent
work of Kalai and Raz [25], who showed that a method proposed by Aiello et al. [1] (based on Private
Information Retrieval) can be used to convert (statistically sound) interactive proofs into 2-message
argument systems. However, this construction does not subsume Fiat–Shamir, because the 2-message
argument system it produces is private coin (so the verifier’s first message cannot be published as a CRS
and shared by all verifiers, as needed for the application to digital signatures) and it does not have the
connection to zero knowledge mentioned above.

Here we show that condensers for seed-dependent samplable sources that can handle side information
(i.e. average-case condensers) imply hash functions for which the Fiat–Shamir Heuristic is sound for
proof systems. In fact, we only require condensers for the case that the initial source X is uniform and
the adversary’s side-information Z consists of a bounded-length “leakage” f(X,S) on the source and
seed, for an efficiently computable leakage function f . We also show a partial converse — some form of
such condensers are also necessary for the Fiat–Shamir heuristic to be sound for all proof systems.

Our results are inspired by a similarity between the definition of condensers for samplable sources
and the aforementioned conjectures of Barak et al. [4]. While the existence of such condensers and
hash functions remains an open problem, the connection between randomness condensing and the Fiat–
Shamir Heuristic, along with our construction of condensers without side information (Theorem 4.1),

4The forward direction is shown as follows: if there is an efficiently computable family of hash functions for which the
Fiat–Shamir heuristic is sound, then it is infeasible to simulate a verifier that has a random hash function from the family
as auxiliary input, and obtains its challenges by applying the hash function to the transcript so far. Indeed, an efficient
simulator would constitute a prover strategy that generates accepting proofs for the Fiat-Shamir-collapsed protocol, which
would only be possible for inputs in the language.
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seem to yield a clearer picture of what is needed for the Fiat–Shamir Heuristic to work. (In particular,
we find the definition of a seed-dependent average-case condenser more natural than the conjectures in
[4].)

6.1 Condensers for Leaky Sources

We begin by defining the restricted form of average-case condensers that we relate to the Fiat–Shamir
heuristic:

Definition 6.1 (Condensers for Leaky Sources) Let c′ ∈ {1, 2,∞}. An efficient function Cond :
{0, 1}n × {0, 1}α → {0, 1}m is an (ε, [Hc′ ≥ k′], t)-condenser for leaky sources if for all probabilistic
adversaries A of size at most t who take a random source X ← {0, 1}n and output a string Z := A(X)
of length α, the joint distribution (Z,Cond(X,Z)) is ε-close to (Z,R), where Hc′(R|Z) ≥ k′.

When ε = 0, we will refer to Cond as an ([Hc′ ≥ k′], t)-condenser for leaky sources. The quantity

β
def
= m− k′ is called the entropy deficit of the condenser.

Thus, instead of allowing an arbitrary efficiently samplable source X that has high entropy given
the adversary’s side information Z, we restrict to X ← {0, 1}n and Z of bounded length α. For natural
measures of conditional entropy, this implies that H(X|Z) ≥ n − α, so an average-case condenser
for entropy k = n − α according to Definition 3.2 is also condenser for leaky sources according to
Definition 6.1. Note that in the case of leaky sources, we do not provide the condenser with a seed;
that is because any seed can be viewed as part of the uniformly random source X. Indeed, average-case
condensers with seeds imply seedless condensers for leaky sources:

Proposition 6.1 If Cond : {0, 1}n × {0, 1}∗ × {0, 1}d → {0, 1}m is an average-case seed-dependent
([Hc ≥ k] →ε [Hc′ ≥ k′], t)-condenser and we define Cond′ : {0, 1}n+d × {0, 1}n−k → {0, 1}m by
Cond′((x, s), z) = Cond(x, z, s), then Cond′ is an (ε, [Hc′ ≥ k′], t−O(n))-condenser for leaky sources.

Proof. Given an adversary A′ for Cond′ running, define an adversary A for Cond as follows: on input
seed S, A generates a uniformly random X ← {0, 1}n, sets Z = A′(X,S), and outputs (x, z). If A′ runs
in time t′ = t−O(n), then A runs in time at most t. Starting with X ← {0, 1}n, we have

Hc(X|(S,Z)) ≥ Hc(X|S)− α = n− (n− k) = k ,

where the first inequality follows from the fact that conditioning on a string of length α (namely Z)
reduces entropy by at most α (for all of our measures H∞, H1, and H2).

Thus, by the condenser property of Cond, (Z, S,Cond((X,Z);S)) = (Z, S,Cond′((X,S), Z)) is ε-close
to (Z, S,R), where

Hc′(R|Z) ≥ Hc′(R|(S,Z)) ≥ k′ ,

where the first inequality holds because conditioning can only reduce entropy. (Again, this holds for
H∞, H1, and H2.) �

We can also observe the following analog of Lemma 3.1 for condensers for leaky sources, whose proof
is immediate from the relations between different entropy measures.

Lemma 6.1

• “Output (∞ → 2 → 1)”: If c′ ≥ c′′ and Cond is an (ε, [Hc′ ≥ k′], t)-condenser for leaky sources,
then Cond is also an (ε, [Hc′′ ≥ k′], t)-condenser for leaky sources.

• “Output (2→∞)”: If Cond is an (ε, [H2 ≥ k′], t)-condenser for leaky sources, then
(a) for any γ > 0, Cond is also an (ε+ γ, [H∞ ≥ k′ − log(1/γ)], t)-condenser for leaky sources;
(b) Cond is also an (ε, [H∞ ≥ k′/2], t)-condenser for leaky sources.
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6.2 Condensers and Fiat-Shamir Heuristics

Now we define the Fiat–Shamir heuristic more precisely. Let (P, V ) be a public-coin interactive protocol,
where the parties receive no inputs (except a security parameter κ), there are 2r+1 messages exchanged
starting with P . We denote the lengths of P ’s messages by ℓ = ℓ(κ) and the lengths of V ’s messages by
m = m(κ).

Definition 6.2 For a language L = L(κ) ⊆ {0, 1}ℓ, we say that (P, V ) is a (t, ε)-sound interactive
argument for L iff there is no prover strategy P ∗ of circuit size at most t that convinces V to accept on
a transcript whose first message is not in L with probability greater than ε.

We say that (P, V ) is an ε-sound interactive proof for L iff it is an (∞, ε) interactive argument for
L (i.e. it holds for computationally unbounded prover strategies P ∗).

Ordinarily, interactive proofs are formulated with the input x (whose membership in L is being
determined) being provided separately as a common input to P and V . However, incorporating x into
the first message of the protocol is notationally more convenient for us.

Fiat and Shamir [18] suggested a way to remove the interaction from protocols as above, by replacing
the verifier’s messages with hashes of the transcript:

Definition 6.3 For an interactive protocol (P, V ) as above, α = r · ℓ + (r − 1) · m, and a family of
hash functions H = H(κ) = {h : {0, 1}α → {0, 1}m}, the Fiat-Shamir collapse of (P, V ) using H is the
2-message public-coin protocol (P ′, V ′) defined as follows:

(1) V ′ sends P ′ a random hash function H ← H,
(2) P ′ sends V ′ a tuple (M1,M2, . . . ,Mr+1) ∈ ({0, 1}ℓ)r+1,

(3) V ′ accepts iff V accepts on the transcript (M1, R1,M2, R2, . . . ,Mr, Rr,Mr+1) where Ri
def
= H(M1, R1, . . . ,Mi−1, Ri−1,Mi)

for each i ∈ [r].

We say that the Fiat-Shamir heuristic using H is (t, ε′)-sound on (P, V ) iff (P ′, V ′) is a (t, ε′)-sound
interactive argument for the language L′ = {(M1, . . . ,Mr+1) : M1 ∈ L}.

Now we prove that we can use condensers for leaky sources to construct hash functions for which
the Fiat–Shamir heuristic is secure:

Theorem 6.1 Let (P, V ) be an interactive protocol as above, and let α = r · ℓ + (r − 1) · m. Given
Cond : {0, 1}n × {0, 1}α → {0, 1}m, define H = {hx : {0, 1}α → {0, 1}m}x∈{0,1}n by hx(z) = Cond(x, z).

Then if (P, V ) is an ε1-sound interactive proof for some language L and Cond is an (ε2, [H∞ ≥
m − β], t)-condenser for leaky sources, then the Fiat-Shamir heuristic is (t′, ε′)-sound on (P, V ), for
t′ = t− (r − 1) · tCond −O(n) and

ε′ = 2rβ · ε1 +
2rβ − 1

2β − 1
· ε2 ≤ 2rβ · (ε1 + ε2). (6)

For intuition about the parameters, consider the standard, polynomial-time asymptotic setting. Here
all length parameters of the proof system (ℓ, m) are some fixed polynomial in the security parameter κ,
and we are interested in protocols whose soundness error ε1 is negligible, i.e. ε1 = κ−ω(1). We focus on
constant-round proof systems, so r = O(1). We take the length n = poly(κ) of the condenser source to
be significantly larger than m+α = r · (ℓ+m). This means that the condenser should work for sources
with entropy at least k = n − α, which is significantly larger than m. By analogy with Theorem 4.1,
we can hope for the output to have min-entropy deficiency β = O(log t), which is O(log κ) for any
polynomial t = t(κ), possibly with some negligible statistical difference ε2 = κ−ω(1). Thus the new
soundness error satisfies

ε′ ≤ 2rβ · (ε1 + ε2) = 2O(log κ) · (κ−ω(1) + κ−ω(1)) = κ−ω(1),
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which is still negligible.
For intuition about the proof, consider a cheating prover strategy, that given the description X of a

random hash function from the family, tries to construct a transcript (M1, R1, . . . ,Mr, Rr,Mr+1) such
that M1 /∈ L, the original verifier accepts, and each Ri is the hash of the prefix preceding it, i.e.

Ri = hX(M1, R1, . . . ,Mi) = Cond(X, (M1, R1, . . . ,Mi)).

Viewing Zi = (M1, R1, . . . ,Mi) as the adversary’s side information (which is of length at most r · ℓ +
(r − 1) ·m), the condenser property says that Ri is ε2-close to having min-entropy deficiency at most
β given the prefix M1, R1, . . . ,Mi. Compared to Ri being uniform and independent of the prefix, this
should increase the soundness error by an additive ε2 and a multiplicative 2β. Incurring this blow up
for each of the rounds i yields the bound in the theorem. We now proceed with the formal proof.

Proof. Consider any size t′ prover strategy P ∗ that takes a description X of a hash function from H
and outputs a sequence of messages (M1, . . . ,Mr+1) ∈ {0, 1}ℓ·r. For i = 0, . . . , r, let pi be the maximum
acceptance probability over all unbounded prover strategies P ∗∗ in the following hybrid protocol:

(1) Choose X ← {0, 1}n uniformly at random.

(2) Let (M1, . . . ,Mi) be the length i prefix of P ∗(X).

(3) Inductively define R1, . . . , Ri by Rj = hX(M1, R1, . . . ,Mj−1, Rj−1,Mj).

(4) For j = i+ 1 to r + 1, set Mj = P ∗∗(M1, R1, . . . ,Mj−1, Rj−1) and choose Rj ← {0, 1}m uniformly
at random.

(5) Accept iff V (M1, R1, . . . ,Mr, Rr,Mr+1) accepts.

By soundness of (P, V ), we have p0 ≤ ε1. We will show below that for each i = 1, . . . , r, pi ≤
2β · pi−1 + ε2. This implies that

pr ≤ 2rβ · ε1 +
2rβ − 1

2β − 1
· ε2.

The proof is completed by noting that the acceptance probability of P ∗ in the Fiat-Shamir collapse of
(P, V ) is at most pr (since the unbounded P ∗∗ can only do better than P ∗ in selecting the last message).

We now proceed to show pi ≤ 2β · pi−1 + ε2. Let Ai(x) be the size t′+ r · tCond ≤ t circuit that given
X ∈ {0, 1}n, computes the length i prefix (M1, . . . ,Mi) of P ∗(X), inductively computes R1, . . . , Ri−1
by Rj ← hX(M1, R1, . . . ,Mj−1, Rj−1,Mj), and outputs Zi ← (M1, R1, . . . ,Mi−1, Ri−1,Mi).

Note Zi is of length at most r · ℓ + (r − 1) ·m. By the condenser property we have that (Zi, Ri) =
(Zi, hX(Zi)) = (Zi,Cond(X,Zi)) is ε2-close to (Zi, R

′
i), where H∞(R′i|Zi) ≥ m− β.

Note that (Zi, Ri) = (M1, R1, . . . ,Mi, Ri) are generated exactly as in the i’th hybrid protocol. Let
p(Zi, Ri) denote the maximum acceptance probability given this partial transcript. Then we have

pi = E[p(Zi, Ri)]

≤ E[p(Zi, R
′
i)] + ε2

≤ 2β · E[p(Zi, Um)] + ε2

≤ 2β · pi−1 + ε2 ,

where the second-to-last inequality uses the fact that H∞(R′i|Zi) ≥ m−β, and the last inequality comes
from noting that the only difference in the experiments defining p(Zi, Um) and pi−1 are that in the latter
P ∗∗ chooses Mi optimally (whereas in the former it is chosen by P ∗). �

Many interactive proofs of interest have only three messages (i.e. r = 1 above) and have optimal
soundness ε1 = 1/2m, meaning that for every initial prover message not in L, there is at most 1 verifier
challenge that can lead to an accepting transcript. Examples include parallel repetitions of Blum’s
Hamiltonicity protocol [6], the Goldwasser-Micali-Rackoff Quadratic Residuosity Protocol (to which
Fiat-Shamir was originally applied) [21], and any Σ protocol [12]. Setting r = 1 and ε1 = 1/2m, we see
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that the resulting soundness error is ε′ = 2β/2m + ε2, which is small even for entropy deficiency β that
is quite close to m, i.e. the output entropy of the condenser need only be k′ = m − β = log(1/ε3) to
achieve soundness error ε2 + ε3:

Corollary 6.1 Let Cond, H, and (P, V ) be as in Theorem 6.1. Suppose further that (P, V ) has 3
messages (i.e. r = 1), and has soundness ε1 = 1/2m, where m is the length of the verifier’s challenge.

Then if Cond is a (ε2, [H∞ ≥ log(1/ε3)], t)-condenser for leaky sources computable in time tCond,
then the Fiat-Shamir heuristic is (t′, ε′)-sound on (P, V ), for t′ = t−O(n) and ε′ = ε2 + ε3.

If, instead, Cond is an (ε2, [H2 ≥ log(1/ε3)], t)-condenser for leaky sources computable in time tCond,
it follows from Lemma 6.1 that the Fiat-Shamir heuristic is (t′, ε′)-sound on (P, V ), for t′ = t − O(n)
and ε′ = ε2 +

√
ε3.

Theorem 6.1 and Corollary 6.1 are stated using average min-entropy (or collision entropy) as the
entropy measure for the output of the condenser. We now discuss what happens for the more challenging
case of Shannon entropy.

6.3 Condensers for Shannon Entropy

If the condenser output is only guaranteed to have high Shannon entropy, we can only deduce that
the Fiat–Shamir Heuristic has soundness error bounded by a constant. This is still quite nontrivial,
and indeed the soundness error can be made negligible without adding interaction by repeating the
heuristic with several independent hash functions. This case (obtaining constant error using condensers
for Shannon entropy) actually follows from the results in [4] and the connection between condensers for
leaky sources and the conjectures in [4].

Let Cond : {0, 1}n × {0, 1}α → {0, 1}m and H = {hx : {0, 1}α → {0, 1}m}x∈{0,1}n correspond to each
other as in Theorem 6.1, i.e. hX(Z) = Cond(X,Z). If Cond is an (ε, [H1 ≥ k′], t)-condenser for leaky
sources, then for every size t adversary A : {0, 1}n → {0, 1}α, and X ← {0, 1}n, we have

H1(hX(A(X))|A(X)) = H1(Cond(X,A(X))|A(X)) ≥ k′ ,

where in the latter inequality we use the condenser property. Barak et al. [4] referred to hash families
H = {hx} with this property as “ensuring conditional entropy k′,” and conjectured that such hash
families exist with k′ = m− O(log κ) (where κ is the security parameter). By the above, hash families
that ensure conditional entropy k′ are equivalent to condensers for leaky sources whose output has
conditional Shannon entropy at least k′ (but we view the condenser formulation as more natural).

Barak et al. proved that such hash families with entropy deficit β = O(log κ) imply that the
Fiat–Shamir Heuristic has constant soundness when applied to constant-round public-coin interactive
proof systems with negligible soundness (and consequently no such interactive proof system can be zero
knowledge, unless the underlying language is in BPP).5

For 3-message protocols with optimal soundness, as in Corollary 6.1, they showed that we only
need output entropy 1/poly(κ) to deduce that the Fiat–Shamir Heuristic has soundness error at most
1−1/poly(κ), which again is enough to deduce that no 3-message public-coin proof system with optimal
soundness can be zero knowledge (except for languages in BPP). This result can be deduced from
Corollary 6.1, so we restate and prove it here:

Corollary 6.2 ([4]) Let Cond, H, and (P, V ) be as in Corollary 6.1. If Cond is a ([H1 ≥ H(δ)+δ·m], t)-
condenser for leaky sources, it follows that the Fiat-Shamir Heuristic is (t′, 1− δ)-sound on (P, V ), for
t′ = t−O(n).

5Actually, for r > 1, their result uses an independently generated hash function for each round of the protocol. Since
the Fiat–Shamir Heuristic was originally formulated in the r = 1 case, either extension to r > 1 is reasonable.
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In particular, if ℓ,m, n, 1/δ ≤ poly(κ), Cond and V are computable in time poly(κ), t = κω(1), and
(P, V ) has completeness error κ−ω(1), then (P, V ) cannot be zero knowledge unless L = L(κ) is in BPP
(decidable by probabilistic algorithms running in time poly(κ)).

Proof. By Corollary 6.1, it suffices to show that Cond is an (ε2, [H∞ ≥ log(1/ε3)], t)-condenser for leaky
sources with ε2 = 0 and and ε3 = 1 − δ. This follows from the fact that for any two random variables
(Y, Z) such that Y takes values in {0, 1}m and H1(Y |Z) ≥ H(δ) + δ · m, we also have H∞(Y |Z) ≥
log(1/(1− δ)). Indeed, suppose that H∞(Y |Z) < log(1/(1− δ)). This means that there is a function g
such that Pr[g(Z) = Y ] > 1− δ. Then Fano’s Inequality (see [11]) implies that H1(Y |Z) < H(δ)+ δ ·m.

The “in particular” follows from the known connections between the soundness of the Fiat–Shamir
Heuristic and impossibility of zero knowledge. See [17, 4]. �

Finally, the weakest conjecture of Barak et al. [4] only requires the hash functions to ensure nonzero
entropy. Restated in the language of condensers, it says:

Conjecture 6.1 ([4]) Let κ be a security parameter. For every α,m ≤ poly(κ) such that m = ω(log κ),
there is an n = poly(κ) and a poly(κ)-time computable Cond : {0, 1}n × {0, 1}α → {0, 1}m such that
Cond is a ([H1 > 0], kω(1))-condenser for leaky sources.

Theorem 6.2 ([4]) Assuming Conjecture 6.1, only languages in coAM can have 3-round public-coin
zero-knowledge proofs with optimal soundness and perfect completeness.

In particular, under Conjecture 6.1, the ω(log k)-fold parallel repetition of Blum’s Hamiltonicity
Protocol for NP [6] cannot be zero knowledge unless NP ⊆ coAM and the Polynomial-time Hierarchy
collapses. An interesting feature of Conjecture 6.1 is that it has an equivalent reformulation that refers
only to worst-case complexity. (See [4] for details.)

6.4 Condensers for Leaky Sources are Necessary

Now we prove a partial converse to Corollary 6.2 and Theorem 6.2, and show that condensers for leaky
sources are also necessary for the soundness of the Fiat–Shamir Heuristic.

Theorem 6.3 Let Cond : {0, 1}n × {0, 1}α → {0, 1}m and H = {hx : {0, 1}α → {0, 1}m}x∈{0,1}n
correspond to each other as in Theorem 6.1, i.e. hx(z) = Cond(x, z).

If Cond is not an ([H1 > 0], t)-condenser for leaky sources, then there is a 3-round public-coin
interactive proof (P, V ) with optimal soundness where the first prover message is of length ℓ = α, the
verifier challenge is of length m, the verifier’s acceptance predicate is computable by a circuit of size t,
and the Fiat–Shamir Heuristic is not (t, ε′)-sound on (P, V ) for any ε′ < 1.

Proof. Let A be a size t adversary such that for X ← {0, 1}n, we have H1(Cond(X,A(X))|A(X)) = 0.
That is, Cond(X,A(X)) is uniquely determined by A(X). Fixing the coins of A preserves this property,
so we may assume that A is deterministic without loss of generality.

We construct the protocol (P, V ) as follows:

(1) P sends a string Z ∈ {0, 1}α to V .

(2) V sends a uniformly random R← {0, 1}m to P .

(3) P sends a string X ∈ {0, 1}n to V .

(4) V accepts iff Z = A(X) and R = Cond(X,Z).

This protocol has optimal soundness (for the empty language) because A(X) uniquely determines
Cond(X,A(X)), so for every Z, there is a unique R such that A(X) = Z and Cond(X,A(X)) = R for
some X. However, the Fiat–Shamir collapse (P ′, V ′) of (P, V ) using H can be broken by the following
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strategy P ∗: given a description X of a hash function hX from H, P ∗ sets Z = A(X), and sends (Z,X)
to V ′. V ′ will compute the verifier’s challenge as R = hX(z) = Cond(X,Z) and thus will always accept.
�

Theorem 6.3, together with Theorem 6.1 and the results of [4], shows that the existence of condensers
for leaky sources is intimately related to the soundness of the Fiat–Shamir Heuristic for proof systems,
and thus it is of great interest to relate such condensers to more well-understood complexity assumptions.
At the same time, we note that the proof of Theorem 6.3 gives a protocol (P, V ) where the verifier’s
acceptance predicate and the length of the third message both depend on the hash family H used to
implement Fiat–Shamir. Thus, even if condensers for leaky sources do not exist, it still leaves open the
possibility that for every protocol (P, V ), there is a family of hash functions H (of complexity and/or
description length larger than (P, V )) such that the Fiat–Shamir Heuristic using H is sound on (P, V ).
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