
On the Power of Claw-Free PermutationsYevgeniy Dodis� Leonid ReyzinyAugust 2, 2002Abstra
tProbabilisti
 Signature S
heme (PSS), Full Domain Hash (FDH) and several of their variants arewidely used signature s
hemes, whi
h 
an be formally analyzed in the random ora
le model. Theses
hemes output a signature of the form 
f�1(y); pub�, where y somehow depends on the messagesigned (and pub) and f is some publi
 trapdoor permutation (typi
ally RSA). Interestingly, all thesesignature s
hemes 
an be proven asymptoti
ally se
ure for an arbitrary trapdoor permutation f ,but their exa
t se
urity seems to be signi�
antly better for spe
ial trapdoor permutations like RSA.This leads to two natural questions: (1) 
an the asymptoti
 se
urity analysis be improved withgeneral trapdoor permutations?; and, if not, (2) what general 
ryptographi
 assumption on f |enjoyed by spe
i�
 fun
tions like RSA | is \responsible" for the improved se
urity?We answer both these questions. First, we show that if f is a \bla
k-box" trapdoor permutation,then the poor exa
t se
urity is unavoidable. More spe
i�
ally, the \se
urity loss" for generaltrapdoor permutations is 
(qhash), where qhash is the number of random ora
le queries made by theadversary (whi
h 
ould be quite large). On the other hand, we show that all the se
urity bene�tsof the RSA-based variants 
ome into e�e
t on
e f 
omes from a family of 
law-free permutationpairs. Our results signi�
antly narrow the 
urrent \gap" between general trapdoor permutationsand RSA to the \gap" between trapdoor permutations and 
law-free permutations. Additionally,they 
an be viewed as the �rst se
urity/eÆ
ien
y separation between these basi
 
ryptographi
primitives. In other words, while it was already believed that 
ertain 
ryptographi
 obje
ts 
anbe build from 
law-free permutations but not from general trapdoor permutations, we show that
ertain important s
hemes (like FDH and PSS) provably work with either, but enjoy a mu
h bettertradeo� between se
urity and eÆ
ien
y when deployed with 
law-free permutations.
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1 Introdu
tionFDH-like Signature S
hemes. In 1993, Bellare and Rogaway [BR93℄ formalized the well-known\hash-and-sign" paradigm for digital signature s
hemes by using the random ora
le model. Spe
i�-
ally, they showed that if f is a trapdoor permutation and RO is a random fun
tion from f0; 1g� tothe domain of f , then signing a message m via f�1(RO(m)) is se
ure. This signature s
heme wassubsequently 
alled \Full-Domain-Hash" or FDH.In 1996, Bellare and Rogaway [BR96℄ pointed out that no tight se
urity redu
tion from breakingFDH to inverting f was known. The best known se
urity redu
tion lost a fa
tor of qhash + qsig inse
urity (qhash and qsig represent the number of queries the forger makes to RO and to the signingora
le, respe
tively). This meant that the inverter 
ould invert f with mu
h lower probability thanthe probability of forgery. This in turn required one to make a stronger assumption on f , potentiallyin
reasing key size and losing eÆ
ien
y.To over
ome this problem in 
ase the trapdoor permutation is RSA (or Rabin), [BR96℄ proposedto hash the message with a random seed and format the result in a parti
ular way (to �t it into thedomain) before putting it through the permutation. The resulting s
heme was thus probabilisti
 evenwhen RO was �xed; it was termed PSS for \Probabilisti
 Signature S
heme." The se
urity redu
tionfor PSS (analyzed with RSA) is essentially lossless.A natural question thus arose: was PSS ne
essary? In other words, 
ould it be that a lossless se
urityredu
tion for RSA-FDH was simply overlooked? In 2000, Coron [Cor00℄ found a better redu
tionfor RSA-FDH that lost a fa
tor of qsig (instead of (qhash + qsig)), suggesting that perhaps furtherimprovements were possible. However, in 2002 Coron [Cor02℄ answered the question by showing thatany bla
k-box redu
tion for RSA-FDH had to lose a fa
tor of at least qsig, thus justifying the ne
essityof PSS. In the same paper, he also introdu
ed a s
heme 
alled PFDH (for \Probabilisti
 Full-DomainHash"), whi
h signsm by 
omputing 
RSA�1(RO(mkr)); r� for a random r. This s
heme is essentiallyPSS without the 
ompli
ated formatting (and hen
e with slightly longer outputs), but with the sametight se
urity.From Generi
 Assumption to RSA. While in 1993 [BR93℄ FDH was introdu
ed to work withany trapdoor permutation, in 1996 [BR96℄ PSS, and in 2002 [Cor02℄ PFDH were 
onsidered only forRSA. Moreover, in 2002 [Cor00℄ the improved se
urity redu
tion for FDH was only shown with RSA aswell. This shift from generi
 assumptions to spe
i�
 ones, while motivated by pra
ti
al appli
ationsof the 
onstru
tions, obs
ured what it was exa
tly about RSA that made PSS and PFDH redu
tionsnearly tight, and a

ounted for the better se
urity redu
tion for FDH. It is bene�
ial to 
onsiderwhi
h properties of RSA are 
ru
ial here, and whi
h are merely in
idental. Among other potentialinsights to be gained from su
h a 
onsideration, is the possibility of using FDH, PSS or PFDH withother permutations. To emphasize this point and to avoid further 
onfusion, we will denote by FDH,PFDH and PSS the signature s
hemes above 
onsidered with general trapdoor permutation f , and byRSA-FDH, RSA-PFDH, RSA-PSS the spe
i�
 variants with f being RSA.Our Contribution. We 
onsider the question of identifying the general 
ryptographi
 assumptionsthat make the aforementioned eÆ
ient se
urity redu
tions possible. Be
ause all these s
hemes 
an beeasily proven asymptoti
ally se
ure with any trapdoor permutation f , it is natural to 
onsider whethertrapdoorness of f is the only se
urity assumption ne
essary for a tight se
urity redu
tion. The answeris \no": we show that a tight se
urity redu
tion is impossible for FDH, PFDH, PSS, and in fa
t anys
heme that 
onsists of applying f�1 to the result of applying the random ora
le to the message(possibly formatted with some randomness), if the s
heme is to be analyzed with a general \bla
k-box" trapdoor permutation f . Moreover, any bla
k-box se
urity redu
tion for su
h s
hemes has to losea fa
tor of qhash with a generi
 bla
k-box trapdoor permutation f : thus, the 
urrent se
urity analysis1



for generi
 FDH, PFDH and PSS 
annot be improved.We also show that the general 
ryptographi
 assumption that makes the se
urity proof for PSS/PFDHtight, and the improved se
urity proof for FDH [Cor00℄ work, is the assumption of 
law-free permuta-tions. In other words, while all three s
hemes are asymptoti
ally se
ure with any trapdoor permutationf , the exa
t se
urity is dramati
ally improved on
e f 
omes from a family of 
law-free permutations(and the bounds are exa
tly the same as one gets with RSA)! We remark that from a te
hni
al point,the proof of se
urity with general 
law-free permutations is going to be almost 
ompletely identi
al tothe 
orresponding proof with RSA. Indeed, we are not 
laiming that we found a new proof. Instead, ourgoal is to �nd an elegant general assumption on f so that essentially the same (in fa
t, 
on
eptuallysimpler!) proof works.1Claw-Free vs. Trapdoor. Our results also shed new light on the relationship between 
law-freeand trapdoor permutations. So far, it was already believed that the existen
e of 
law-free permuta-tions is a stri
tly stronger 
omplexity assumption than the existen
e of trapdoor permutations. Forexample, it is known how to 
onstru
t 
ollision-resistant hash fun
tions (CRHF) [Dam87℄ and (non-intera
tive) trapdoor 
ommitments [KR00℄ based on 
law-free permutations, but no su
h 
onstru
tionsfrom trapdoor permutations seem likely. In fa
t, Simon [Sim98℄ showed a bla
k-box separation be-tween the existen
e of one-way permutations and the existen
e of CRHF's, and his result seems toextend to trapdoor permutations. Coupled with the above-mentioned 
onstru
tion of CRHF from
law-free permutations, we get a plausible separation between the existen
e of 
law-free permutationsand trapdoor permutations.Our results provide another, quite di�erent way to separate 
law-free permutations from trapdoorones. Namely, instead of showing that something 
onstru
tible with 
law-free permutations (e.g.,CRHF) is not 
onstru
tible with trapdoor ones, we show that 
law-free permutations 
an be provablymore eÆ
ient (or, equivalently, more se
ure) for some 
onstru
tions (e.g., those of FDH-like signatures
hemes) than trapdoor ones. In other words, a stronger assumption provides better exa
t se
u-rity/eÆ
ien
y than a weaker one, even though both of them work asymptoti
ally. To the best of ourknowledge, this is the �rst separation of the above form, where a stronger primitive is provably shownto improve se
urity of a s
heme already working with a slightly weaker primitive.A Word on Bla
k-Box Lower Bounds. We brie
y put our bla
k-box separation in relationto existing bla
k-box lower bounds. Originating with the work of Impagliazzo and Rudi
h [IR89℄,several works (e.g., [Sim98, GMR01℄) showed impossibility of 
onstru
ting one primitive from another.In 
ontrast, several other works (e.g. [KST99, GT00, GGK02℄) showed the eÆ
ien
y limitationsof 
onstru
ting one 
ryptographi
 primitive from another. On the other hand, the re
ent work ofCoron [Cor02℄ showed that the existing se
urity analysis of a 
ertain useful s
heme 
annot be improved,if the redu
tion a

esses the adversary in a bla
k-box way. In our work, we show that the existingse
urity analysis 
annot be improved when based on a general 
omplexity assumption, even though it
an be improved in (quite general, but still) spe
ial 
ases.Organization. In Se
tion 2 we give the ne
essary ba
kground about trapdoor and 
law-free permu-tation families, and the \FDH-like" signature s
hemes we 
onsider. In Se
tion 3 we show that 
law-freepermutations give all the advantages of RSA in terms of exa
t se
urity and eÆ
ien
y. In Se
tion 4 weexplain the \bla
k-box model" and show that poor exa
t se
urity of FDH-like signatures is inevitable1A good analogy 
ould be to look at the famous Cau
hy-S
hwartz inequality in mathemati
s stating kak � kbk � ha; bi.This inequality was originally proved for the 
ase of real ve
tors under eu
lidean norm. However, on
e one generalizesthis proof to arbitrary Hilbert spa
es, the proof a
tually be
omes more transparent, sin
e one does not get distra
ted bythe spe
i�
s of real numbers, 
on
entrating only on the essential properties of inner produ
t spa
es.2



when the se
urity redu
tion treats the trapdoor permutation f and the adversary in a bla
k-box man-ner. In Se
tion 5 we show several 
onstru
tions of 
law-free permutation families based on strongerkinds of trapdoor permutations, further 
losing the \gap" between general 
law-free permutations andthe spe
i�
 ones like RSA.2 De�nitionsWe let PPT stand for probabilisti
 polynomial time, and negl(k) refer to some negligible fun
tion inthe se
urity parameter k. The random ora
le model assumes the existen
e of a publi
ly a

essibletruly random fun
tion RO : f0; 1g� ! f0; 1g. Using trivial en
oding tri
ks, however, we 
an alwaysassume that RO(�) will return as many truly random bits as we need in a given appli
ation.2.1 Trapdoor and Claw-free PermutationsDe�nition 1 A 
olle
tion of permutations F = ffi : Di ! Di j i 2 Ig over some index set I � f0; 1g�is said to be a family of trapdoor permutations if:� There is an eÆ
ient sampling algorithm TD-Gen(1k) whi
h outputs a random index i 2 f0; 1gk\Iand a trapdoor information TK.� There is an eÆ
ient sampling algorithm whi
h, on input i, outputs a random x 2 Di. We writex Di as a shorthand for running this algorithm.� Ea
h fi is eÆ
iently 
omputable given index i and input x 2 Di.� Ea
h fi is eÆ
iently invertible given the trapdoor information TK and output y 2 Di. Namely,using TK one 
an eÆ
iently 
ompute (unique) x = f�1i (y).� For any probabilisti
 algorithm A, de�ne the advantage of A asAdvFA(k) = Pr[x0 = x j (i;TK) TD-Gen(1k); x Di; y = fi(x); x0  A(i; y)℄ (1)A is said to (t(k); "(k))-break F , if A runs in time at most t(k) and AdvFA(k) � "(k). F is saidto be (t(k); "(k))-se
ure if no adversary A 
an (t(k); "(k))-break it. In the asymptoti
 setting, werequire that the the advantage of any PPT A is negligible in k. Put di�erently, fi is hard toinvert without the trapdoor TK.A 
lassi
al example of a trapdoor permutation family is RSA, where TD-Gen(1k) pi
ks two randomk=4-bit primes p and q, sets n = pq, '(n) = (p � 1)(q � 1), pi
ks random e 2 Z�'(n), sets d =e�1 mod '(n) and outputs i = (n; e), TK = d. Here Di = Z�n, fi(x) = xe mod n, f�1i (y) = yd mod n.The RSA assumption states that this F is indeed a trapdoor permutation family.Remark 1 When things are 
lear from the 
ontext, we will abuse the notation (in order to \simplify"it) and write: f for fi, D or Df for Di, A(f; : : :) for A(i; : : :); f  F for (i  I \ f0; 1gk ; f = fi),and (f; f�1) TD-Gen(1k) for (i;TK) TD-Gen(1k). Also, we will sometimes say that f by itself isa \trapdoor permutation".De�nition 2 A 
olle
tion of pairs of fun
tions C = f(fi : Di ! Di; gi : Ei ! Di) j i 2 Ig over someindex set I � f0; 1g� is said to be a family of 
law-free permutations if:� There is an eÆ
ient sampling algorithm CF-Gen(1k) whi
h outputs a random index i 2 f0; 1gk\Iand a trapdoor information TK.� There are eÆ
ient sampling algorithms whi
h, on input i, output a random x 2 Di and a randomz 2 Ei. We write x Di, z  Ei as a shorthand.3



� Ea
h fi (resp. gi) is eÆ
iently 
omputable given index i and input x 2 Di (resp. z 2 Ei).� Ea
h fi is a permutation whi
h is eÆ
iently invertible given the trapdoor information TK andoutput y 2 Di. Namely, using TK one 
an eÆ
iently 
ompute (unique) x = f�1i (y).� Ea
h gi indu
es a uniform distribution over Di when z  Ei and y = gi(z) is 
omputed.� For any probabilisti
 algorithm B, de�ne the advantage of B asAdvCB(k) = Pr[fi(x) = gi(z) j (i;TK) CF-Gen(1k); (x; z) B(i)℄ (2)B is said to (t(k); "(k))-break C, if B runs in time at most t(k) and AdvCB(k) � "(k). C is saidto be (t(k); "(k))-se
ure if no adversary B 
an (t(k); "(k))-break it. In the asymptoti
 setting, werequire that the the advantage of any PPT B is negligible in k. Put di�erently, it is hard to �nda \
law" (x; z) (meaning fi(x) = gi(z)) without the trapdoor TK.We remark that the usual de�nition in fa
t assumes that Ei = Di, ea
h gi is also a permutation, andthe generation algorithm also outputs a trapdoor TK0 for gi. We do not need this extra fun
tionalityfor our appli
ation, whi
h is why we use our slightly more general de�nition.We also remark that a 
law-free permutation family C = f(fi; gi)g immediately implies that the
orresponding family F def= ffig is a trapdoor permutation family. Indeed, an inverter A for Fimmediately implies a 
law-�nder B for C who feeds A a random 
hallenge y = gi(z), where z  Ei:�nding x = f�1i (y) then implies that fi(x) = gi(z). Moreover, the redu
tion is tight: AdvCB = AdvFA .We will say that the resulting trapdoor permutation family F = F(C) is indu
ed by C.Several examples of 
law-free permutations will be given in Se
tion 5. We brie
y mention just oneexample based on RSA. CF-Gen(1k) runs TD-Gen(1k) to get (n; e; d), also pi
ks a random y 2 Z�n,sets i = (n; e; y), TK = d and fi(x) = xe mod n, gi(z) = yze mod n. Finding a 
law (x; z) impliesy = (x=z)e mod n, whi
h implies inverting RSA on a random input y. Thus, this family is 
law-freeunder the RSA assumption. Noti
e, the indu
ed trapdoor permutation family is exa
tly the regularRSA family.Remark 2 When things are 
lear from the 
ontext, we will abuse the notation (in order to \simplify"it) and write: f=g for fi=gi, D=E or Df=Eg for Di=Ei, A(f; g; : : :) for A(i; : : :); (f; g)  C for(i  I \ f0; 1gk ; f = fi; g = gi), and (f; f�1; g)  CF-Gen(1k) for (i;TK)  CF-Gen(1k). Also, wewill sometimes say that f by itself is a \
law-free permutation", and (f; g) is a \
law-free pair".2.2 Full Domain Hash and Related Signature S
hemesWe �rst de�ne the notion of a signature s
heme and its se
urity, and then des
ribe the spe
i�
 s
hemes
onsidered in this paper.Syntax. A signature s
heme 
onsists of three eÆ
ient algorithms: S = (Sig-Gen;Sig;Ver). Sig-Gen(1k),where k is the se
urity parameter, outputs a pair of keys (SK;VK). SK is the signing key, whi
h iskept se
ret, and VK is the veri�
ation key whi
h is made publi
. The randomized signing algorithmSig takes as input a key SK and a message m from the asso
iated message spa
e M, internally 
ipssome 
oins and outputs a signature �; we write �  SigSK(m). We will usually omit SK and write�  Sig(m). The deterministi
 veri�
ation algorithm Ver takes as input the message m, the signature�, the publi
 key VK, and outputs the answer a whi
h is either su

eed (signature is valid) or fail(signature is invalid). We require that Ver(m;Sig(m)) = su

eed, for any m 2M.In 
ase a signature s
heme (like most of the s
hemes 
onsidered in this paper) is build in the randomora
le model, we allows both Sig and Ver to use the random ora
le RO.4



Se
urity of Signatures. The se
urity of signatures addresses two issues: what we want to a
hieve(se
urity goal) and what are the 
apabilities of the adversary (atta
k model). In this paper we will talkabout the the most 
ommon se
urity goal: existential unforgeability [GMR88℄, denoted by UF. Thismeans that any PPT adversary C should have a negligible probability of generating a valid signatureof a \new" message. To 
larify the meaning of \new", we will 
onsider the following two atta
k models.In the no message atta
k (NMA), C gets no help besides VK. In the 
hosen message atta
k (CMA), inaddition to VK, the adversary C gets full a

ess to the signing ora
le Sig, i.e. C is allowed to querythe signing ora
le to obtain valid signatures �1; : : : ; �n of arbitrary messages m1; : : : ;mn adaptively
hosen by A (noti
e, NMA 
orresponds to n = 0). C is 
onsidered su

essful only if it forges a validsignature � of a message m not queried to signing ora
le: m 62 fm1 : : : mng. We denote the resultingasymptoti
 se
urity notions by UF-NMA and UF-CMA, respe
tively. Quantitively, we de�neAdvSC(k) = Pr[VerVK(m;�) = su

eed j (SK;VK) Sig-Gen(1k); (m;�) CSigSK(�)(VK)℄ (3)(where m should not be queried to the signing ora
le Sig(�)). Of 
ourse, in the random ora
le modelthe adversary is also given a

ess to the random ora
le RO.De�nition 3 The adversary C is said (t(k); qhash(k); qsig(k); "(k))-break S, if C runs is time at mostt(k), makes at most qhash(k) hash queries to RO, qsig(k) signing queries to Sig(�), and AdvSC(k) � "(k).S is said to be (t(k); qhash(k); qsig(k); "(k))-se
ure, if no adversary C 
an (t(k); qhash(k); qsig(k); "(k))-break it. In asymptoti
 terms, S is UF-CMA-se
ure if AdvSC(k) = negl(k) for any PPT C, andUF-NMA-se
ure if AdvSC(k) = negl(k) for any PPT C whi
h does not make any signing queries.FDH-like S
hemes. The random ora
le based signatures we will 
onsider all have the followingsimple form. The veri�
ation key will be the des
ription of some trapdoor permutation f , the se
retkey is the 
orresponding inverse f�1. To sign a message m, the signer �rst transforms m into a pair(y; pub) T (m) (where pub 
ould be empty). This transformation T only utilizes the random ora
le(and possibly some fresh randomness), but not anything related to f or f�1. It also has the propertythat one 
an easily verify the validity of the triple (m; y; pub). Then the signer 
omputes x = f�1(y)and returns � = (x; pub). On the verifying side, one �rst 
omputes y = f(x) and then veri�es thevalidity of the triple (m; y; pub). Of 
ourse, for the resulting signature to be se
ure, the transformationT should satisfy some additional properties. Intuitively, the value y should be random (sin
e f is hardto invert on random inputs) for every m, and also \independent" for di�erent m's (more or less, thisway the inverse of y(m) should not give any information about the inverse of y(m0)). TransformationsT satisfying the above informally stated properties do not seem to exist in the standard model, butare very easy to 
ome up with in the random ora
le model.Below we des
ribe three very popular signature s
hemes of the above form: Full Domain Hash (FDH[BR93℄), Probabilisti
 Full Domain Hash (PFDH [Cor02℄), and Probabilisti
 Signature S
heme (PSS[BR96℄). We remark that another family of similar s
hemes is des
ribed in [MR02℄. These signaturesutilize the \swap" method, and are designed for the purpose of improving the exa
t se
urity of severalFiat-Shamir based signature s
hemes [FS86, GQ88, OS90, Mi
94℄. However, one 
an observe that theresulting signature s
hemes 
an be all viewed as less eÆ
ient and more 
ompli
ated variants of thePFDH s
heme, so we do not des
ribe them. In the following, f is a trapdoor permutation with domainD, publi
 key is f and se
ret key is f�1.FDH: Sig(m) returns � = f�1(RO(m)), and Ver(m;�) 
he
ks if f(�) = RO(m) (we assume that ROreturns a random element of D, by impli
itly running the 
orresponding sampling algorithmwith the randomness returned by RO). 5



PFDH: This signature is parameterized by the length parameter k0. Sig(m) pi
ks a random r 2 f0; 1gk0and returns � = 
f�1(RO(mkr)); r�, and Ver(m;�) 
he
ks if f(�) = RO(mkr) (again, weassume that RO returns a random element of D). Noti
e that FDH is a spe
ial 
ase withjrj = k0 = 0. In general, we will see that the length of \salt" r plays a 
ru
ial role in the exa
tse
urity of PFDH.PSS: This signature is parameterized by two length parameters k0 and k1. For 
onvenien
e, we willassume that it takes between n� 1 and n bits to en
ode an element of D, so that every (n� 1)-bit number is a valid element of D (this is not 
ru
ial, but makes the des
ription simpler).We also synta
ti
ally split the random ora
le RO into three independent random ora
les H :f0; 1g� ! f0; 1gk1 , G1 : f0; 1gk1 ! f0; 1gk0 and G2 : f0; 1gk1 ! f0; 1gn�k0�k1�1. Then, Sig(m)pi
ks a random salt r 2 f0; 1gk0 , 
omputes w = H(mkr), r� = G1(w) � r and returns � =f�1(0kwkr�kG2(w)). The veri�
ation Ver(m;�) 
omputes y = f(�) 2 D, splits y = bkwkr�k
,re
overs r = G1(w)� r�, and a

epts if H(mkr) = w, G2(w) = 
 and b = 0.We remark that all these s
hemes makes sense for arbitrary trapdoor permutation families. Toemphasize a spe
i�
 family F , we sometimes write F -FDH, F -PFDH, F -PSS. In parti
ular, whenF = RSA, we get 3 spe
i�
 s
hemes RSA-FDH, RSA-PFDH, RSA-PSS.Se
urity of FDH-like Signatures. All the FDH-like signatures above 
an be shown asymptoti-
ally UF-CMA-se
ure for arbitrary trapdoor permutation family F . Unfortunately, in terms of exa
tse
urity, the situation is not entirely satisfa
tory. Spe
i�
ally, if F is (t0; "0)-se
ure, then one 
an show(t; qhash; qsig; ")-se
urity of any of the above signature s
hemes where roughly t � t0 and " � "0qhash.Put di�erently, in all three s
hemes above, the \generi
" analysis loses a very large fa
tor qhash in termsof exa
t se
urity. Intuitively, the se
urity redu
tion has to \guess" whi
h of the qhash random ora
lequeries made by the hypotheti
al signature breaker is \relevant" for the �nal forgery, and respondto this query in a manner that will help inverting the trapdoor permutation f on a 
hallenge y. In
ase this guess is unsu

essful, the forgery of the breaker is useless. Unfortunately, we will show inSe
tion 4 that this large se
urity loss is inevitable when dealing with arbitrary trapdoor permutations.On the other hand, the situation is mu
h better for the RSA-based examples of the above threes
hemes. Spe
i�
ally, for RSA-FDH we one 
an get t � t0 and " = O("0qsig) [Cor00℄ (and [Cor02℄showed that this analysis 
annot be improved for RSA). Namely, even though the redu
tion is still nottight (i.e., "� "0), the se
urity loss is only a fa
tor qsig � qhash. On the other hand, RSA-PFDH andRSA-PSS are tight, i.e. t � t0 and " � "0 (provided the salt length is somewhat larger than the verymoderate quantity log qsig [Cor02℄), whi
h dramati
ally improves on the the generi
 se
urity loss ofqhash.To summarize, generi
 bounds for FDH, PFDH and PSS are mu
h worse than the spe
i�
 boundswhen F = RSA. One of the main obje
tives of this paper was to try �nding a general reason for thisgap. Namely, to �nd a very general 
ondition of F , so that all the bene�ts of RSA 
ome into e�e
twith any F satisfying this 
ondition. As we show next in Se
tion 3, the needed 
ondition is that Fis indu
ed by some family C of 
law-free permutations. Indeed, we saw in Se
tion 2.1 that RSA 
ouldbe viewed as being indu
ed by the some natural 
law-free family, whi
h explains mu
h tighter exa
tse
urity.3 Claw-Free Permutations Yield Improved Se
urityWhy 
law-free permutations seem useful. The pre
ise reason why 
law-free permutationsare very useful for FDH-like s
hemes will be obvious from the proof we present later. Here, however,6



we give some preliminary observations why 
law-freeness seems to be relevant. First, assume we arenot working in the random ora
le model. The most basi
 signature s
heme that 
omes to mind is� = f�1(m), where f is a trapdoor permutation. Unfortunately, it is trivially forgeable sin
e every� is a valid signature of m = f(�). The next �x would be to utilize some fun
tion g and to output� = f�1(g(m)). Noti
e, �nding a forgery (m;�) for this signature is equivalent to �ndingm and � su
hthat f(�) = g(m), whi
h exa
tly amounts to �nding a 
law (�;m) for the fun
tion pair (f; g). Thus,the above signature s
heme is UF-NMA-se
ure i� (f; g) 
omes from a pair of 
law-free permutations!In fa
t, the �rst UF-CMA signature s
heme [GMR88℄ was based on 
law-free permutations (and a verynon-trivial extension of the simple observation above), before more general UF-CMA 
onstru
tionswere obtained [BM88, NY89, Rom90℄.Alternatively, let us return to the random ora
le model and 
onsider the FDH s
heme (in fa
t,even more general PFDH s
heme). The adversary C su

essfully forges a signature of some messageif it 
an 
ome up with � and � = mkr, su
h that f(�) = RO(�). In other words, C has to �nda 
law (�; �) for the fun
tion pair (f;RO)! Of 
ourse, the family f(f;RO)g is not a regular familyof 
law-free permutations, sin
e the random ora
le is not a regular fun
tion.2 In the se
urity proof,however, we may (and will in a se
ond) simulate the random ora
le by pi
king a random z and settingRO(�) = g(z). In this 
ase, any forgery �; � by C will result in a 
law (�; z) for a \regular" 
law-freepair (f; g).Our Result. We show that all the se
urity (and eÆ
ien
y) bene�ts of RSA-FDH, RSA-PFDH andRSA-PSS over using general trapdoor permutation family F 
ome into e�e
t on
e F is indu
ed by afamily C of 
law-free permutations. In parti
ular, the se
urity loss for FDH be
omes only O(qsig), whilethe redu
tions for PFDH and PSS are essentially tight (on
e the salt length is at least log qsig). For
on
reteness of the dis
ussion, we 
on
entrate on a representative 
ase of PFDH. Very similar dis
ussionholds for FDH and PSS. The theorem below 
ontrasts our proof with 
law-free permutations with amu
h looser (yet inevitably so) proof with general trapdoor permutations.Theorem 1 (Se
urity of PFDH)(a) Assume C is a 
law-free permutation whi
h is (t0; "0)-se
ure, and let F = F(C) be the indu
edtrapdoor permutation family. Then F-PFDH with salt length3 k0 � log qsig is (t; qhash; qsig; ")-se
ure, where4 t = t0 � (qhash + qsig + 1) � poly(k) and " = "0=(1 � qsig2�k0), so that " � "0 (upto a small 
onstant fa
tor) when k0 > log qsig.(b) In 
ontrast, if F is a general (t0; "0)-se
ure family of trapdoor permutations, then for any saltlength k0, F-PFDH is only (t; qhash; qsig; ")-se
ure, where t = t0�(qhash+qsig+1)�poly(k) and " ="0(qhash + 1).Proof: We start with more interesting part (a). Let C be the forger for F -PFDH whi
h (t; qhash; qsig; ")-breaks it. We 
onstru
t a 
law-�nder B for C. B gets the fun
tion pair (f; g) as an input. It makes fthe publi
 key for PFDH and gives it to C, keeping g for itself. It also prepares qsig random elementsr1 : : : rqsig 2 f0; 1gk0 | these will be the salts of the messages it will sign for C. We 
all this initial listL (this list will shrink as we move along).2We 
ould extend the notion of 
law-free permutations to the random ora
le model, where we allow the fun
tion g(as well as the adversary) to depend on the random ora
le. In this setting, for any trapdoor permutation f , the se
urityof PFDH indeed implies that the pair (f;RO) results in a family of su
h \ora
le 
law-free permutations" (again, with alarge \se
urity loss" qhash). This is to be 
ontrasted with the regular model, where the existen
e of trapdoor permutationsis unlikely to imply the existen
e of 
law-free permutations.3As shown in [Cor02℄, the analysis 
an be extended even to k0 < log qsig , but the redu
tion stops being tight.4Here poly(k) is a �xed polynomial depending on the time it takes to evaluate f and g in C.7



To respond to a hash query m0kr0, we distinguish three 
ases. First, if the value is already de�ned,we return it. Else, if r0 2 L, B pi
ks and remembers a random x0, and returns RO(m0kr0) = f(x0) toC. Finally, if r0 62 L, B pi
ks and remembers a random z0, and returns RO(m0kr0) = g(z0) to C.If the forger makes a signature query mi, we pi
k the next element ri from the 
urrent list, and seeif RO(mikri) is de�ned. If so, it is equal to f(xi) for some xi, so we return hxi; rii as the signature ofmi. Else, we pi
k a random xi, de�ne RO(mikxi) = f(xi) and return hxi; rii to C. In either 
ase, weremove ri from the list L.Eventually, (with probability ") C will output a forgery hx; ri of some message m. Without loss ofgenerality we assume that C asked the hash query mkr before (if not, B 
an do it for C; this in
reasesthe number of hash queries by one). If the answer was g(z), we get that f(x) = g(z), so B outputsthe 
law (x; z). Otherwise (the answer was f(x)), we did not learn anything, so B fails.We see that the probability "0 that B �nds a 
law is "Pr(E), where E is the event that theforgery 
orresponded to g(z) rather than to f(x), so that B does not fail. It remains to show thatPr(E) � 1 � qsig2�k0 . We noti
e, however, that the only way that B will fail is if the value r wasstill in the list L at the time the hash query mkr was asked. But at this point C has no informationabout at most qsig totally random elements in L (remember, an element is dis
arded from L after ea
hsigning query). So the probability that r 2 L is at most qsig2�k0 , 
ompleting the proof.Finally, we very brie
y sket
h the proof of (b). This proof is essentially from [BR93℄, and is givenmainly for the purposes of 
ontrasting it with the proof of (a) above. From the signature forger C,we need to 
onstru
t an inverter A for F . A pi
ks a random index ` 2 f1 : : : qhash + 1g, hoping thatthe `-th hash query will be on a new value (not de�ned in a previous hash query or signature query),and that C will forge a signature based on it (note that if C is su

essful, su
h ` has to exist). Forall hash queries j ex
ept for the `-th one, A responds by pi
king a random x0 and returning f(x0)(unless the value is already de�ned, in whi
h 
ase this value is returned). For the `-th one, A respondswith its 
hallenge y (unless the hash value is already de�ned through a previous hash or signingquery, in whi
h 
ase A fails). To answer a signing query mi, A pi
ks a random ri and xi and de�nesRO(mikri) = f(xi) (unless it was already de�ned, in whi
h 
ase it uses the 
orresponding answer).It then returns hxi; rii as the signature of mi. Finally, C returns a forgery hx; ri for some messagem with probability ". If the `-th hash query happens to be exa
tly mkr, x is the 
orre
t preimageof the 
hallenge y. Otherwise, A fails. It is easy to see that A's simulation of the random ora
le isperfe
t and reveals no information about `. Thus, A 
orre
tly guesses ` with probability 1=(qhash+1),obtaining a total probability of "=(qhash + 1) of inverting y.Noti
e, the proof of part (a) is indeed identi
al to the the 
orresponding proof for RSA [Cor02℄, ex
eptwe abstra
t away all the spe
i�
s about RSA. As before, the fa
t that k0 > log qhash ensures that we 
antell apart the hash queries related to qsig signing queries from those maybe related to the forgery. Butwe see the 
ru
ial way the proof uses the 
law-freeness of C: the \signing-related" queries get answeredwith f(x), while the \forging-related" queries get answered with g(z) (where x and z are random toensure a random answer). In parti
ular, there is no need to guess in advan
e a single \forging-related"query whi
h a
tually happens to be the one we need: no matter whi
h of these queries will resultin the forgery x, one still gets a 
law (x; z) su
h that f(x) = g(z). This should be 
ontrasted withthe standard proof of part (b), where we have to guess this query in advan
e in order to embed our
hallenge y in the answer. As we show in the next se
tion, the se
urity loss of qhash is optimal forgeneral trapdoor permutations, so the above \guessing" argument 
annot be improved.
8



4 Trapdoor Permutations Cannot Yield Better Se
urityIn this se
tion we explain our \bla
k-box" model and the limitations of proving tighter se
urity resultsfor FDH-like s
hemes based on general trapdoor permutations. Spe
i�
ally, our argument will showthat the se
urity loss of 
(qhash) is inevitable for FDH, PFDH, PSS, showing the tightness of thekind of analysis we used in part (b) of Theorem 1. In order to unify our argument, we 
onsider anysignature s
heme of the form 
f�1(y); pub�, where (y; pub)  T (m) is obtained from the message musing a 
onstant (in our s
hemes, one or two) number of random ora
le 
alls, possibly some additionalrandomness, but without utilizing f or f�1. The only thing we require from T in our proof is thatfor any distin
t messages m1 : : : mq, setting hyj ; pubji  T (mj) will result in all distin
t yj's with allbut negligible probability (over the 
hoi
es of the random ora
le, for any q polynomial in the se
urityparameter). In the following, we will 
all any signature s
heme S (of the above form) utilizing su
h\
ollision-resistant" mapping T legal. Certainly, FDH, PFDH and PSS are all legal.Assume now that one 
laims to have proven a statement of the form: \if F is (t0; "0)-se
ure, thensome parti
ular legal S is (t; qhash; qsig; ")-se
ure, for any trapdoor permutation family F ." We remarkthat our lower bound will apply even for proving mu
h weaker UF-NMA se
urity (i.e., disallowing theadversary to make any signing queries), so will assume throughout that qsig = 0 and denote q = qhash.A natural proof for su
h a statement will give a redu
tion R from any adversary C whi
h (t; q; 0; ")-breaks the unforgeability of S in the random ora
le model, to a forger A whi
h (t0; "0)-breaks theone-wayness of f in the standard model. Intuitively, this redu
tion R (whi
h we sometimes identifywith A sin
e the goal of R is to 
onstru
t A) is bla
k-box if it only utilizes the fa
ts that: (1) f is atrapdoor permutation, but the details of f 's implementation are unimportant; (2) C (t; q; 0; ")-breaksS whenever it is given ora
le a

ess to a true random ora
le (whi
h has to be \simulated" by R), butthe details how C does it are unimportant. In other words, there are two obje
ts that a \natural"redu
tion R (or inverter A) utilizes in a \bla
k-box" manner: the trapdoor permutation f and theforger C. We explain our modeling of ea
h separately.4.1 Modeling Bla
k-Box Trapdoor Permutation Family FFollowing previous work [GT00, GGK02℄, we model bla
k-box a

ess to a trapdoor permutation F bythree ora
les (G;F; F�1), available to all the parti
ipants of the system. For simpli
ity, we will assumethat the domain of all our fun
tions is D = f0; 1gk, both the index i and the trapdoor TK also rangeover f0; 1gk , and are in one-to-one 
orresponden
e with ea
h other. F is the forward evaluation ora
le,whi
h takes the index i of our trapdoor permutation fi and the input x, and simply returns the valueof fi(x). G takes the trapdoor value TK and returns the index i of the fun
tion fi whose trapdoor isTK (informally, knowing the trapdoor one also knows the fun
tion, but not vi
e versa). Finally, F�1takes the trapdoor TK and the value y and returns f�1i (y), where i = G(TK). Intuitively, any 
hoi
eof the ora
les G;F; F�1 will yield a trapdoor permutation as long as:(a) G(�) is a permutation over f0; 1gk .(b) F (i; �) is a permutation over f0; 1gk for every index i.(
) F�1(TK; �) is a permutation over f0; 1gk for every trapdoor TK.(d) F�1(TK; F (G(TK); x)) = x, for any x;TK 2 f0; 1gk .(e) For any A, letAdvFA(k) = Pr[x0 = x j x;TK f0; 1gk ; i = G(TK); y = F (i; x); x0  AG;F;F�1(i; y)℄ (4)9



Then we want to require that for any A making polynomial in k number of queries to G;F; F�1,we have AdvFA(k) = negl(k). For exa
t se
urity, we say that F is (qG; qF ; qF�1 ; ")-se
ure, ifAdvFA � ", for any A making at most qG queries to G, qF queries to F and qF�1 queries to F�1.5Put di�erently, we simply rewrote De�nition 1, ex
ept the eÆ
ient 
omputation of fi and f�1i (thelatter with the trapdoor) are repla
ed by ora
le a

ess to the 
orresponding ora
les, and the notion of\polynomial time" be
ame \polynomial query 
omplexity".6 In parti
ular, any 
hoi
e of (G;F; F�1)satisfying 
onditions (a)-(e) above forms a valid \bla
k-box" trapdoor permutation family. And,therefore, our bla
k-box redu
tion from forger C to inverter A for F should work with any su
h bla
k-box trapdoor permutation. We 
hoose a spe
i�
 very natural bla
k-box trapdoor permutation forthis purpose. G is simply a random permutation, and so is F (i; �) (for any i, and independently fordi�erent i's). Finally, F�1(TK; y) is de�ned in an obvious way so as to satisfy (d) (in parti
ular, it isalso a random permutation for any value of TK).With respe
t to this family, we 
an 
ompute the expe
ted advantage of any inverter A (taken overthe random 
hoi
e of G;F; F�1). For that, assume that A(i; y) makes qG queries to G, qF queries toF and qF�1 to F�1. In fa
t, for future use7 we will also allow A to make q ~F�1 queries to the newora
le ~F�1(i0; y0) def= F�1(G�1(i0); y0), with the obvious restri
tion that this ora
le 
annot be 
alled oninput (i; y). Without loss of generality, let us assume that A never makes a 
all to F�1(TK0; �) before�rst inquiring about G(TK0). In this 
ase, sin
e F�1(TK0; �) is totally random for every TK0, there isno need for A to ever 
all the inverse ora
le F�1(TK0; y0) more than on
e: unless G(TK0) = i, su
h
all is useless for inverting y, and if the equality holds, 
alling F�1(TK0; y) immediately inverts y. Sowe may assume that qF�1 = 0, and A wins if it ever makes a 
all G(�) with the \
orre
t" trapdoorTK = G�1(i), and addition to when it 
orre
tly inverts y. Then, naturally extending the de�nition ofAdvFA in Equation (4) to also a

ount for querying ~F�1 on inputs di�erent from (i; y), we showLemma 1 E[AdvFA(k)℄ � qG2k + qF2k�q ~F�1 .In parti
ular, with all but 2�
(k) probability, AdvFA(k) = 2�
(k), for any PPQ adversary A.Proof: The �rst term qG=2k is the probability that A 
alls G on TK = G�1(i). Assuming that thisdid not happen, the best strategy of A is to perform q ~F�1 arbitrary queries to ~F�1(i; �) (with no se
ondinput equal to y). This will eliminate q ~F�1 values of x as possible preimages of y, so that there is noneed to query F (i; x) for these values of x. Finally, the probability that qF queries to F will hit oneof (2k � q ~F�1) equally likely possibilities for the needed F�1(TK; y) is at most the se
ond term.Intuitively, the above result says that a truly random family of permutations forms a family of trapdoorpermutations with very high probability, sin
e there is no way to invert a random permutation otherthan by sheer lu
k.4.2 Modeling Bla
k-Box Forger CLet us now turn our attention to the bla
k-box way the redu
tion R 
an utilize some signature forgerC when 
onstru
ting the inverter A. (From now on, we identify R and A.) Re
all, R is given an index5In the bla
k-box model, the notion of \time" is somewhat less important, sin
e the eÆ
ien
y 
onditions for 
ertainfun
tionalities are repla
ed by having ora
le a

ess to these fun
tionalities. So query 
omplexity is a more natural
omplexity measure in this setting.6For this se
tion, we let PPQ stand for \probabilisti
 polynomial query 
omplexity".7Intuitively, this ora
le will 
orrespond to the forgeries returned to A by C.10



i for F and a random element y to invert. It is natural to assume that is sets the same publi
 key ifor C, and then simply runs C(i) one or more times (possibly o

asionally \rewinding" the state of C,but always leaving i as the publi
 key for S). Of 
ourse, R has to simulate for C the q = qhash randomora
le queries, sin
e there is no random ora
le in the \world of A".8 Finally, somewhere in the lattersimulation, A will utilize the 
hallenge y, so that the forgery returned by C will help A to invert y.We see that the only thing about C that this kind of redu
tion is 
on
erned about is the upperbound q on the number of hash queries made by C, and the forged signature returned by C. Inother words, from R's perspe
tive, there are q + 1 rounds of intera
tion between between R and C:q responses to C's hash queries, followed by a forgery (m;�; pub) returned by C. Hen
e, it is verynatural to measure the 
omplexity of the redu
tion (or the inverter A) as the number of rounds ofintera
tion it makes with C.9 We will 
all this 
omplexity qR.On the other hand, R should su

eed in inverting y with the 
laimed probability "0 for any (q; ")-valid forger C. This means that C is guaranteed to output a forgery to S with probability " bymaking at most q hash queries to R, provided R answers them in a manner \indistinguishable" for atrue random ora
le. On the other hand, it is not important (and the su

ess of R should depend onit) how C managed to obtain the forgery, why it asks some parti
ular hash query, how long it takesC to de
ide whi
h next hash query to ask, et
. Therefore, in parti
ular, R should su

eed even whenwe give (as we will do in our proof below) to C ora
le a

ess to the ~F�1 ora
le, whi
h 
an invert any~y that C wishes (this allows C to trivially forge any signature it wants).Also, we will assume that C 
an 
hoose randomness in a manner not 
ontrollable by R (wlog, C
hooses all the randomness it needs at the very beginning of its run). This requires a bit of justi�
ation.Indeed, it seems natural to give our redu
tion the ability to run C with di�erent random tapes. But
onsider a deterministi
 C with some parti
ular �xed random tape. In this 
ase, R should not be ableto \know" this �xed tape given only ora
le a

ess to C, but should still work with this C. But nowtaking an average over all su
h C's with a �xed tape, we e�e
tively get that R should work with aforger who 
hooses its random tape at the beginning, without R \knowing" this 
hoi
e.Summary. We are almost done with our modeling, whi
h we now summarize. C is allowed to:(1) 
hoose some arbitrarily large random tape at the beginning (possibly of exponential size sin
eR should work even with 
omputationally unbounded C); (2) have ora
le a

ess to ~F�1, allowing itto forge arbitrary signatures; (3) make at most q hash queries to R. On the other hand, providedR answers these queries in a manner indistinguishable from the random ora
le, C has to output aforgery (m;x; pub) (i.e., (m;F (i; x); pub) should pass the veri�
ation test) with probability at least ".Similarly, R 
an: (1) intera
t with C for at most qR rounds; (2) 
all F at most qF times; (3) 
all Gat most qG times; (4) rewind C to any prior point in C's run; (5) start a new 
opy of C where C will
hoose fresh randomness. Finally, R has to: (1) \properly" answer hash queries of C; (2) invert the
hallenge y with probability at least "0. Our obje
tive is to prove an upper bound on "0 as a fun
tionof qR; qF ; qG; q; " in the bla
k-box model outlined above. We do it in the next se
tion.4.3 Our BoundTheorem 2 For any legal signature s
heme S analyzed in the bla
k-box model with general trapdoorpermutations, we have "0 � �qG2k + qF2k � (2qR=q)�+ 4 � qRq � "q (5)8Re
all, to get a stronger result we assume that C makes no signing queries.9Of 
ourse, we should also remember the quantities qG and qF , having to do with the bla
k-box a

ess to a trapdoorpermutation. We will return to those later. 11



In parti
ular, for any PPQ redu
tion R running C at most a 
onstant number of times (i.e., qR =O(q)), we have "0 = O("=q), so the redu
tion loses at least a fa
tor 
(qhash) in se
urity.Proof: We des
ribe a parti
ular (q; ")-legal forger C for S. Re
all, to sign m, our signature �rstgets (y; pub)  T (m), and then returns (x; pub), where x = ~F�1(i; y). We also assumed that thetransformation T is su
h that: (1) it 
alls the random ora
le at most a 
onstant number of times (inthe proof, we assume this number is 1; the large number will only a�e
t 
onstant 4 in Equation (5));and (2) when invoked with distin
t mj 's, with all but negligible probability all the yj's are distin
t.First, C 
hooses a truly random fun
tionH from q=2-tuples of elements of f0; 1gk to a random index` 2 f1 : : : q=2g. This fun
tion will 
ontrol the index of a forgery that C will 
ompute later. Next, Cuses q hash query 
alls to obtain (yj ; pubj)  T (mj) (if needed, using some additional randomnessprepared separately from the fun
tion H) for q arbitrary, but distin
t and �xed messages m1 : : : mq.If any of the answers yj are the same, C reje
ts, sin
e we assumed that with a true random ora
lesu
h 
ollision does not happen with all but negligible probability (i.e., that S is legal). Otherwise, ifall of them are distin
t, C 
omputes ` = H(y1 : : : yq=2), and then, with probability ", outputs a forgedsignature D ~F�1(i; y`); pub`E of m`.Clearly, this C is (q; ")-legal, so our redu
tion R should be able to invert y with this C, withprobability at least "0. Before arguing that this "0 must satisfy Equation (5), we observe the following.The number of times R has to intera
t with C between any two su

essive distin
t forgeries is at leastq=2. Indeed, unless any of the values y1 : : : yq=2 
hange, C will return exa
tly the same forgery toR, sin
e the fun
tion H is �xed by now. So R has to either start a new 
opy of C and wait for qsteps, or rewind one of the 
urrent 
opies of C to at least some query j � q=2, somehow 
hange thevalue yj by returning a di�erent random ora
le answer, and then run C for another q� j � q=2 steps.In parti
ular, R never sees more than N def= 2qR=q di�erent forgeries (in fa
t, the a
tual number isroughly "N , but this is not important).Let us now estimate the su

ess probability of R. Let E denote the event that C ever returnsthe inverse of y to R, i.e. it happens that y` = y for one of the forgeries returned by C. Clearly,Pr(R su

eeds) � Pr(E) + Pr(R su

eeds j E) def= p1 + p2. We start with estimating p2. Noti
e,sin
e E did not happen, we get that C never 
alled ~F�1(i; y). Thus, 
ombining R and C into one\super-inverter" A0, we get that A0 made qG 
alls to G, qF 
alls to F and at most N 
alls to ~F�1 oninputs di�erent from (i; y). By Lemma 1, we get that p2 � qG2k + qF2k�N .As for p1, re
all that the number of di�erent forgeries that C 
an return is at most the numberof times it evaluates H on a di�erent q=2-tuple of values, whi
h in turn is at most N , as we justargued. Indeed, the input to H predetermines the forgery that C 
an return, so these inputs shouldbe di�erent for di�erent forgeries, and it takes R at least q=2 steps to \
hange" the input to H. Takeany one of these (at most) N times with the input to H being y1 : : : yq=2. Sin
e C will never pro
eedwith a forgery if at least two of the yj's are the same, at most one of the �rst q=2 values of yj 
an beequal to y. Sin
e H is truly random fun
tion, the probability that it will return ` su
h that y` = yis at most 2=q. Moreover, even if this event happened, the probability it inverts this y is ", giving anoverall probability of at most 2"=q of inverting y, ea
h time C might output a new forgery. By theunion bound, the overall probability of the event E is p1 � N � 2"=q. Combining the bounds we gotfor p1 and p2, we get Equation (5).Intuitively, the argument above said that the redu
tion must guess the \relevant" hash query whereit 
an give the answer dependent on the 
hallenge y. And it 
an do it for only one query sin
ethe signature S is legal and there is no \stru
ture" to a random trapdoor permutation whi
h would12



allow to use random but \related" values of y for the other hash queries. So this guess is 
orre
twith probability only 1=q. Finally, we remark that the term qR=q in Equation (5) 
an be roughlyinterpreted as the number of times our redu
tion ran C. Not surprisingly, running C from s
rat
hqR=q times will improve the 
han
es of su

ess by a fa
tor proportional to qR=q, whi
h is indeed thebehavior we see in Equation (5). For qR=q = O(1), however, we see that we lose the fa
tor 
(q).5 Some Constru
tions of Claw-free PermutationsSin
e we know so few number-theoreti
 
onstru
tions of trapdoor permutations (essentially RSA, Rabinand Paillier [Pai99℄), we know very few 
onstru
tions of 
law-free permutations as well. Lu
kily, every
urrent trapdoor permutation we know in fa
t yields some natural 
law-free permutation. On the otherhand, we mentioned that this impli
ation from trapdoor to 
law-free permutations is very unlikely tohold in general. Therefore, in this se
tion we give several general 
onditions on trapdoor permutations(enjoyed by 
urrently known trapdoor permutations), whi
h suÆ
e to imply the existen
e of 
law-freepermutations (in fa
t, via very eÆ
ient 
onstru
tions). These 
onditions 
an be viewed as narrowingthe gap between the general 
law-free permutations and the very spe
i�
 ones based on trapdoorpermutations like RSA. We also point out at the end of this se
tion that that not all known 
law-freepermutations a
tually follow the general 
onstru
tions we present below.Claw-Free Permutations from Homomorphi
 Trapdoor Permutations. This is the mostnatural generalization of the RSA-based 
onstru
tion presented in Se
tion 2.1. Assume we have a familyF of trapdoor permutations with two group operations + and � so that ea
h f 2 F is homomorphi
with respe
t to these operations: f(a + b) = f(a) � f(b). We 
an 
onstru
t the following 
law-freepermutation family C out of F . CF-Gen(1k) runs (f; f�1) TC-Gen(1k), also pi
ks a random y 2 D,sets gy(b) = y � f(b), and outputs (f; f�1; gy). Now �nding a 
law (a; b) implies that f(a) = y � f(b)whi
h means that f(a� b) = y, whi
h means that a� b = f�1(y), so we manage to invert a trapdoorpermutation f on a random point y.Claw-Free Permutations from Random-Self-Redu
ible Trapdoor Permutations. Thisis a further generalization of the previous 
onstru
tion. Assume, there are eÆ
ient fun
tions I and Owhi
h satisfy the following 
onditions. For any output value y 2 D, pi
king a random b and applyingO(y; b) results in a random point z 2 D (noti
e, O(y; �) does not have to be a permutation or tobe invertible). Then, if one �nds out the value a = f�1(z), applying I(y; a; b) will result in �ndingthe 
orre
t value x = f�1(y). So one e�e
tively redu
es the worst-
ase task of inverting y to anaverage-
ase task of inverting a random z. We say that su
h f is random-self-redu
ible (RSR) if O andI satisfying the above 
onditions exist. Noti
e, homomorphi
 f is RSR via z = O(y; b) def= y � f(b)(whi
h is a
tually f(x+ b)). Then a = f�1(z) = x+ b, so we 
an de�ne I(y; a; b) def= a� b.We 
an 
onstru
t the following 
law-free permutation family C out of any RSR trapdoor permutationfamily F . CF-Gen(1k) runs (f; f�1)  TC-Gen(1k), also pi
ks a random y 2 D, sets gy(b) = O(y; b),and outputs (f; f�1; gy). Now, �nding a 
law (a; b) implies that f(a) = O(y; b) whi
h means thatI(y; a; b) = f�1(y) = x. Thus, we inverted a trapdoor permutation f on a random point y.An ad ho
 
law-free permutation. Any of the above 
onstru
tions 
an be applied to trapdoorpermutations like RSA, Rabin and Paillier. However, we know of some ad ho
 
onstru
tions of 
law-free permutations whi
h do not follow the above methodology. One su
h example (based on fa
toringBlum-Willams integers) is the original 
law-free permutation family of [GMR88℄. Here n = pq, wherep � 3 mod 4, q � 7 mod 8, and QR(n) stands for the group of quadrati
 residues modulo n. Then we13



set our domain D = QR(n), and f(a) = a2 mod n, g(b) = 4b2 mod n. If f(a) = g(b) for a; b 2 QR(n),then (a� 2b) is divisible by p or q, but not n, whi
h allows one to fa
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