
On the Worst-Case Inefficiency of CGKA

Alexander Bienstock∗ Yevgeniy Dodis† Sanjam Garg‡ Garrison Grogan§

Mohammad Hajiabadi¶ Paul Rösler‖

September 18, 2022

Abstract

Continuous Group Key Agreement (CGKA) is the basis of modern Secure Group Messaging
(SGM) protocols. At a high level, a CGKA protocol enables a group of users to continuously
compute a shared (evolving) secret while members of the group add new members, remove other
existing members, and perform state updates. The state updates allow CGKA to offer desirable
security features such as forward secrecy and post-compromise security.

CGKA is regarded as a practical primitive in the real-world. Indeed, there is an IETF
Messaging Layer Security (MLS) working group devoted to developing a standard for SGM
protocols, including the CGKA protocol at their core. Though known CGKA protocols seem
to perform relatively well when considering natural sequences of performed group operations,
there are no formal guarantees on their efficiency, other than the O(n) bound which can be
achieved by trivial protocols, where n is the number of group numbers. In this context, we ask
the following questions and provide negative answers.

1. Can we have CGKA protocols that are efficient in the worst case? We start by answering
this basic question in the negative. First, we show that a natural primitive that we
call Compact Key Exchange (CKE) is at the core of CGKA, and thus tightly captures
CGKA’s worst-case communication cost. Intuitively, CKE requires that: first, n users
non-interactively generate key pairs and broadcast their public keys, then, some other
special user securely communicates to these n users a shared key. Next, we show that
CKE with communication cost o(n) by the special user cannot be realized in a black-box
manner from public-key encryption, thus implying the same for CGKA, where n is the
corresponding number of group members.

An extended abstract [10] of this article appears in the proceedings of TCC 2022.
∗New York University, abienstock@cs.nyu.edu
†New York University, dodis@cs.nyu.edu. Partially supported by gifts from VMware Labs and Algorand Foun-

dation, and NSF grants 1815546 and 2055578.
‡UC Berkeley and NTT Research, sanjamg@berkeley.edu. This research is supported in part by DARPA under

Agreement No. HR00112020026, AFOSR Award FA9550-19-1-0200, NSF CNS Award 1936826, and research grants
by the Sloan Foundation, and Visa Inc. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the United States Government or
DARPA.

§garrisonwgrogan@gmail.com
¶University of Waterloo, mdhajiabadi@uwaterloo.ca. Work supported by an NSERC Discovery Grant

RGPIN/03270-2022.
‖New York University, paul.roesler@cs.nyu.edu

1

https://tcc.iacr.org/2022/

2. Can we realize one CGKA protocol that works as well as possible in all cases? Here again,
we present negative evidence showing that no such protocol based on black-box use of
public-key encryption exists. Specifically, we show two distributions over sequences of
group operations such that no CGKA protocol obtains optimal communication costs on
both sequences.

1 Introduction
Secure Group Messaging (SGM) platforms such as Signal Messenger, Facebook Messenger, What-
sApp, etc., are used by billions of people worldwide. SGM has received lots of attention recently,
including from the IETF Messaging Layer Security (MLS) working group [8], which is creating
an eponymous standard for SGM protocols. While these protocols’ security properties are well
documented, understanding their efficiency properties remains a central research question.

Continuous Group Key Agreement (CGKA) is at the core of SGM protocols. First formalized
in [3], CGKA allows a group of users to continuously compute a shared (evolving) symmetric key.
This shared group key is re-computed as users asynchronously add (resp. remove) others to (resp.
from) the group, as well as execute periodic state refreshes. CGKA provides very robust security
guarantees: it not only requires privacy of group keys from non-members, including the facilitating
delivery server (which users send CGKA ciphertexts to, in case other group members are offline),
but much more. Even in the event of a state compromise in which a user’s secret state is leaked
to an adversary, group keys should shortly become private again through ordinary protocol state
refreshes. Furthermore, in face of such a state compromise, past group keys should remain secure.
The former security requirement is referred to as post-compromise security (PCS), while the latter
is referred to as forward secrecy (FS).

Ideally, for use in practice, CGKA protocols should use simple, well-established, and efficient
cryptographic primitives and have O(logn) communication per operation (or at most sub-linear),
where n is the number of group members. Indeed, many CGKA protocols in the literature described
below claim to have “fair-weather”O(logn) communication, meaning that when conditions are good,
communication cost per operation is O(logn). Such informal claims have pleased practitioners and
supported their beliefs that CGKA can be used in the real-world. However, no such formal efficiency
guarantees, nor any non-trivial definitions of such good conditions have ever been established.
Indeed, as elaborated upon below, there are no formal analyses showing that a CGKA protocol can
do any better than the trivial O(n) communication cost per operation, on any non-trivial sequence
of operations.

CGKA protocols in the literature. Many CGKA protocols have been introduced in the
literature to provide the above security properties. The largest portion of these are based on a
basic tree structure, as in the Asynchronous Ratchet Tree (ART) protocol [22] and the TreeKEM
family of protocols [3, 9, 6, 5, 4, 11, 1], the simplest of which is currently used in MLS [8]. Most of
these tree-based protocols are of the same approximate form (although they have slightly different
efficiency profiles; see [6] for a comparison based on simulations): each node contains a Public Key
Encryption (PKE) key pair, users are assigned to the leaves and only store the secret keys on the
path from their leaf to the root, and the root is the group secret. When a user executes an operation,
they refresh the secret keys along the path(s) of one (or more) leaves to the root, encrypting these
secrets to the siblings along the path(s). Thus, in very specific good conditions, communication can

2

easily be seen to be O(logn). However, due to PCS requirements (elaborated on below), the trees
in all of these protocols may periodically degrade, resulting in Ω(n) communication complexity in
the worst case, even amortized over many operations.

Instead of using a tree structure, Weidner et al. suggest using pairwise channels of the Con-
tinuous Key Agreement scheme derived from the famous two-party Signal Secure Messaging pro-
tocol [36, 30, 2, 21, 32, 14, 18]. However, this trivial construction of course requires Ω(n) commu-
nication per operation.

In summary, all known CGKA protocols (based on public-key encryption) achieve the same
worst-case efficiency as the trivial protocol.

1.1 Our Results

In this paper, we work towards understanding the possible efficiency guarantees that any CGKA
protocol can achieve in the worst-case, i.e., in cases when the conditions are not good. We start by
asking the following question:

Can we construct a CGKA protocol that does better than the trivial CGKA protocol in the
worst-case?

We provide a negative answer to the above question. In particular, we show that every CGKA
(from PKE) has large Ω(n) worst-case communication cost. Although one can hope that this
worst-case will not occur often in practice, until there are better, well-defined assumptions on the
structure of operation sequences under which practitioners hope that good efficiency bounds can
be proven, there is always a danger of bad efficiency in some cases. As the first step of this lower
bound, we show that a natural primitive which we call Compact Key Exchange (CKE) is at the core
of CGKA, and in fact tightly captures the worst-case communication cost of CGKA. The heart of
our negative result is then a black-box separation showing that PKE are insufficient for efficiently
realizing CKE. Finally, using the above equivalence, we translate this result into the aforementioned
lower bound on CGKA.

Given that no CGKA protocol can be efficient in the worst case, we ask:

Can we realize one CGKA protocol that works as well as possible in all cases?

Here again, we present negative evidence showing that no such protocol based on black-box use
of PKE exists. Specifically, we show two distributions over sequences of group operations such that
no single CGKA protocol making only black-box use of PKE obtains optimal communication costs
on both sequences. That is, any CGKA protocol which acts well on one distribution of operations
must have much worse Ω(n) communication cost on the other distribution; otherwise, it violates
our CKE lower bound.

1.2 Compact Key Exchange

To prove our CGKA lower bound, we first isolate and define Compact Key Exchange (CKE), a
novel primitive that captures one type of scenario that results in large CGKA communication.
CKE is related to Multi-Receiver Key Encapsulation Mechanisms [34]. It involves n users who
each non-interactively broadcasts a public key, and another special user who sends those n users
an encryption of a symmetric key, which only the n users can decrypt. As explained below, we will
show that CKE is equivalent to CGKA, in terms of worst-case communication complexity.

3

1.3 Standard Security of Continuous Group Key Agreement

Our CGKA lower bound focuses on the efficiency ramifications of post-compromise security (PCS).
The standard form of PCS required for CGKA in the literature [3, 6, 22, 1] is in fact quite strong.
Informally, it requires the following two properties:

1. Double-join prevention. A malicious user may memorize randomness used in operations they
execute. If they are removed from the group at a later time, they must be prevented from
using this memorized randomness to re-join the group without invitation.

2. Resilience to randomness leakage. An honest user’s malfunctioning device may continuously
leak randomness which the user samples for CGKA operations (e.g., due to implementation
flaws or an installed virus). Once the leakage is stopped (due to updating the implementation
or removing the virus) and the user performs a state update, the adversary must be prevented
from using the previously leaked randomness to obtain future group secrets.

Thus, once a user is removed, all group secrets should be independent of any randomness sampled
by them. Similarly, if a user executes a state refresh, all new group secrets should be independent
of any randomness previously sampled by them.

We emphasize that while the two properties above are rather strong, weakening PCS to exclude
them (i.e., where we assume randomness is never leaked and securely deleted after each operation)
yields many trivial CGKA protocols (from any PKE) with O(logn) worst-case communication. For
example, one can simply use Tainted TreeKEM (TTKEM) [6] without taints.1 In all these protocols
honest parties need to sample secrets for other parties, and are then trusted to delete them once
communicated (encrypted) to these other parties. Clearly, most real-world implementations should
not be comfortable with this level of trust, and should especially strive for property 1 above instead.
Indeed, from very early on in the MLS standardization initiative, requiring property 1 was deemed
important2 and ultimately prioritized over efficiency3 in the version of TreeKEM used by MLS [8,
§13.1]. This protocol, as well as other existing protocols, such as TTKEM, explicitly prevent
double-joins (e.g., by sometimes blanking or tainting nodes that are not on the path to the root
from the leaf of a user that is executing an operation) at great efficiency cost; Ω(n) in the worst-
case. Moreover, even though property 2 may seem especially strong, all CGKA definitions in the
literature require both properties [3, 6, 22, 1], and our lower bound holds for both (in isolation).
Nevertheless, we leave it as an interesting topic for future work to study what kind of efficiency
guarantees can be obtained in a more restricted setting, where property 2 is not required.

1.4 Equivalence of CKE and CGKA Worst-Case Communication Complexity

The first step in proving our Ω(n) CGKA lower bound (from PKE) is showing that CKE and
CGKA with the standard PCS notion detailed above are equivalent, both in terms of implication
and worst-case communication complexity. It is important to note that in all our definitions of CKE
and CGKA, we specify the weakest correctness and security requirements under which our lower

1We give a more detailed summary of TTKEM in Appendix F.
2First proposal of the TreeKEM design with a discussion about the double-join problem: https://mailarchive.

ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8/
3Proposal to prevent double-joins in TreeKEM, resulting in linear complexity in the worst-case: https:

//mailarchive.ietf.org/arch/msg/mls/Zzw2tqZC1FCbVZA9LKERsMIQXik/

4

https://mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8/
https://mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8/
https://mailarchive.ietf.org/arch/msg/mls/Zzw2tqZC1FCbVZA9LKERsMIQXik/
https://mailarchive.ietf.org/arch/msg/mls/Zzw2tqZC1FCbVZA9LKERsMIQXik/

bounds hold. This only strengthens our lower bound. For example, we only consider non-adaptive,
passive adversaries.

CKE is at the Core of CGKA. In Section 3, we show that CGKA implies CKE and furthermore
that the worst-case communication complexity of CKE from black-box PKE lower bounds that of
CGKA from the same primitives. The intuition is as follows. Consider a CGKA group with n
members at a certain time during its lifetime. To ensure that our lower bound is meaningful, we
allow for any sequence of operations to be executed up until this point. Now, consider the situation
in which user A adds k new users. If the CGKA protocol only uses PKE, then each added user
only stores secrets (besides their own) that were generated by user A.4 If user B removes user A
as the next operation, then due to PCS, every secret which the k added users shared with any of
the current group members cannot be re-used; user A must have generated all of them and thus
could potentially (maliciously) re-join the group without being added if one of the secrets is reused.
Thus, as part of the remove operation, user B must communicate the new group key to each of the
other k added users, with only the knowledge of their (independent) public keys. This is exactly
the setting of CKE. Indeed if k = Ω(n), and additionally we can show that the ciphertext size for
CKE must be Ω(n), then we can show the same for when user B removes user A in CGKA above.
Furthermore, if user C then removes user B, we are in the same situation again, and thus this
ciphertext must also be Ω(n). We can repeat this scenario ad infinitum, where after a user executes
a remove in the sequence, they add a new user, such that even amortized over a long sequence of
operations, the communication cost is Ω(n). We in fact further generalize this result in Section 3
to intuitively show that if α users add the k new users then execute ` rounds of sequential state
refreshes, the combined communication cost of each round is Ω(k).

A bit more formally, we show how to construct CKE for k users from CGKA in a manner such
that if the CGKA ciphertext is small for the above operation and the CGKA protocol only uses
PKE in a black-box manner, then the corresponding CKE ciphertext is small, contradicting our
lower bound for CKE, discussed below.

Difference from lower bound of [11]. It is important to mention that our CGKA communica-
tion complexity lower bound already holds for fully synchronous, non-concurrent CGKA executions.
Hence, the lower bound by Bienstock et al. [11] that uses symbolic proof techniques to show a com-
munication lower bound for concurrently initiated operations in CGKA executions (with required
fast PCS recovery5) is entirely independent with respect to our employed methods and resulting
statement.

CKE tightly implies CGKA. For completeness, in Appendix E we also show that one can
use CKE to construct a CGKA protocol where the worst-case communication complexity of the
CGKA protocol is proportional to that of the used CKE protocol. The CGKA protocol simply lets
the user, executing a given CGKA operation, run the CKE algorithm of the special CKE user to
communicate a fresh group key to the public keys of all current CGKA group members. Therefore,

4Note: for any CGKA protocol, it could be that each of the added k users may share secrets with all of the current
group members, derived from non-interactive key exchange using key-bundles stored on a server. However, these
shared secrets are only between pairs of users, and thus do not seem useful for establishing the group secret (since
secure communication between pairs of users can already be achieved via PKE).

5Unlike in [1] who circumvent the [11] lower bound by allowing for slower PCS recovery.

5

CGKA and CKE are surprisingly equivalent in terms of both cryptographic strength and worst-
case (communication) complexity; f one could construct CKE efficiently, they could also construct
CGKA efficiently, and vice versa.

1.5 Black-Box Compact Key Exchange Lower Bound

In order to prove the CGKA lower bounds discussed above, we need a lower bound on the underlying
CKE primitive. Therefore, in Section 4, we prove a black-box separation showing that all CKE
protocols that make black-box use of public-key encryption (PKE) require the ciphertext sent from
the special user to the n users to have size Ω(n), irrespective of the sizes of the public keys that
the n users have sent to the special user. Our impossibility holds even if the scheme comes with
a CRS, of arbitrary size. Ruling out schemes that allow for a CRS will help us with our CGKA
lower bounds.

Intuitively, since the n public keys are generated independently from each other, our result
implies that there is no non-trivial “compression” operation that the special user can do to save over
the trivial protocol: choosing a key and separately encrypting the key to each user independently.

Relations to broadcast encryption. We note that the notion of CKE is incomparable to
that of broadcast encryption, at least in an ostensible sense. Recall that a broadcast encryption
scheme is a type of attribute-based encryption that allows for broadcasting a message to a subset of
users, in a way that the resulting ciphertext is compact. One crucial difference between broadcast
encryption and CKE is that under CKE, users have independent secret keys, while under broadcast
encryption, user secret keys are correlated, all obtained via a master secret key.

Relations to other black-box impossibility results. The work of Boneh et al. [15] shows
that identity-based encryption (IBE) is black-box impossible from trapdoor permutations (TDPs).
A striking similarity between IBE and CKE is that both deal with some form of compactness: that
of public parameters (PP) for IBE and of ciphertexts in CKE. The techniques of [15] crucially rely
on the number of identities being much larger than the number of queries required to generate a
public parameter. In our setting, this is no longer the case: the number of queries made by the
encryption algorithm to generate a compact ciphertext may be much larger than n, and hence the
techniques of [15] do not work in our setting. In addition, we allow the CRS to grow with the
number of identities.

Extensions and limitations of our impossibility results. We believe that out impossibility
should extend quite naturally to separate CKE from trapdoor permutations (TDPs), though we
have not worked out the details. Our impossibility results have no bearing on the base primitive
being used in a non-black-box way, and indeed by using strong tools such as indistinguishability
obfuscation (which inherently results in non-black-box constructions), one might be able to build
compact CKE.

Overview. Our impossibility result is proved relative to a random PKE oracle O := (g, e,d).
We give an attack against any CKE protocol (CRSGen, Init, Comm, Derive) (Definition 4.2)
instantiated with O. To give some intuition about the attack, suppose e is an encryption oracle,
whose output length (i.e., the ciphertext length) is sufficiently larger than its input length (i.e.,

6

the length of (pk,m, r)). This in particular implies that in order to get a valid (pk, c)—one under
which there exists some m and r such that e(pk,m, r) = c—one has to call the e oracle first.
Now if a CKE ciphertext for n users has length o(n), this means that one can “embed” at most
o(n) valid e-ciphertexts into C. Say the ciphertexts are c1, . . . , ct with corresponding public keys
pk1, . . . , pkt, where t ∈ o(n). This means that we need at most t effective trapdoors (with respect to
O) to decrypt C, namely the trapdoors that correspond to (pk1, . . . , pkt). Also, since C should be
decryptable by each user, the set of “effective” trapdoors for each user (those required to decrypt C)
should be a subset of all these t trapdoors. Now since t = o(n), there exists a user whose effective
trapdoors are a subset of all other users. But since the CKE secret keys for all users are generated
independently and with no correlations, if we run the CKE key generation algorithm many times,
we should be able to recover all the required trapdoors, for at least one user. This is the main idea
of the proof.

The above overview is overly simplistic, omitting many subtleties. For example, an e-ciphertext
that is decrypted may come from one of the public keys PK1, . . . ,PKn (which can be arbitrarily
large), and not from C itself. Second, the notion of “embedded ciphertexts” in C is not clear. We
will formalize all these subtleties in Section 4 and will give a more detailed overview there, after
establishing some notation.

New techniques. Our proofs introduce some techniques that may be of independent interest.
Firstly, our proofs involve oracle sampling steps (a technique also used in many other papers), but
one novel thing in our proofs is that we need to make sure that the sampled oracles do not contain
a certain set of query/response pairs. In comparison, prior oracle sampling techniques involve
choosing oracles that agree with a set of query/answer pairs. This technique of making certain
query/response pairs off-limits, and the implications proved, might find applications in proving
other impossibility results. Moreover, our proofs use theorems about non-uniform attacks against
random oracles [23, 20] to argue that an o(n) CKE ciphertext cannot embed n ciphertexts; we find
this connection novel.

In Section 4, we will give an overview (and the proof) for the restricted construction setting in
which oracle access is of the form (CRSGeng, Initg, Comme, Derived). This will capture most of
the ideas that go into the full proof. We will then give a proof for the general construction case in
Section C.

1.6 No Single Optimal CGKA Protocol Exists

In Section 5, we present another negative result for CGKA protocols that make black-box use of
PKE. Naturally, CGKA protocols proceed in an online manner such that users do not know which
operations will be executed next. Therefore, users have to make choices when executing operations
that may result in unnecessary communication. We leverage this situation to show that there
does not exist any single CGKA protocol that makes black-box use of PKE and that has optimal
communication costs for every sequence that may be executed. More specifically, for every CGKA
protocol Π, there exists some distribution of CGKA operations Seq and some other CGKA protocol
Π′ such that Π has much higher communication costs than Π′ when executing Seq.

Our driving example is as follows: suppose again that starting with a CGKA group in arbitrary
state, k users are added by user A and remain offline. Next, α users (including user A) execute
state refreshes. In this case, some protocols might use a strategy which, through these state
refreshes, create and communicate extra redundant secrets for the k added users, while others

7

may use a strategy which simply relies on those secrets communicated by user A. For the former
strategy, if the k added users afterwards come online and execute their own state refreshes, then
the communication of these extra secrets will have been unnecessary, and a protocol which follows
the latter strategy will have much lower communication cost. However, for the latter strategy,
if one of the α − 1 users, user j, who only communicated a small amount (o(k)) in their state
refresh thereafter remains offline while the other α − 1 users execute rounds of sequential state
refreshes, then we know from what we prove in Section 3 that each of the rounds will have Ω(k)
communication cost. This is intuitively because the k added users mostly share secrets with the
α − 1 users excluding user j, and thus when these α − 1 users perform state refreshes, they must
re-communicate secrets to the k added users. On the other hand, a protocol that follows the former
strategy can have much lower communication cost if the state refresh ciphertext of user j alone was
large (Ω(k)). This is intuitively because the k added users still share enough secrets with user j,
so that when the other α− 1 users execute their state refreshes, they do not need to communicate
much new to the added users.

1.7 Lessons Learned for Practice

Our results show that the execution of a CGKA protocol causes impractical communication over-
head amongst the group members if (1) the CGKA protocol is built from PKE only, (2) the CGKA
protocol achieves the weakest accepted notion of security, and (3) group members of the protocol
execution initiate certain non-trivial operation sequences. We note that, on an intuitive level, PKE
are essentially the only building blocks of all practical CGKA constructions. Furthermore, all of the
non-trivial operation sequences employed for our lower bounds are legitimate, and could happen
in practice. Consequently, impractical worst-case communication overheads seem to be inevitable.
However, in order to avoid such impractical communication overheads, one could (a) try to find
suitable practical building blocks other than PKE to circumvent the lower bound, (b) lower the
security requirements for CGKA (which we strongly advise against!), or (c) identify all problematic
operation sequences and then forbid their execution. We believe that (a) finding better construc-
tions and (c) identifying all such problematic operation sequences are interesting questions that
we leave open for future work. However, for (a), we emphasize that one would ultimately need to
circumvent our CKE lower bound. Although one may be able to do so using strong primitives such
as indistinguishability obfuscation (as in the multi-party non-interactive key exchange of [16]), we
view it as a challenging problem to do so from practical tools other than PKE.

We provide some further consequences of our lower bound in practice below.

CGKA with two administrators. Many real-world SGM systems in production may impose
membership policies on users. That is, it could be that there are only a few “administrators” that
are allowed to add and remove others from the group, while everyone else can only update their state
and send messages. As shown by [12], for the setting in which there is only ever one administrator,
CGKA boils down to the classical setting of Multicast Encryption [35, 37, 28, 17, 29, 33, 13].
Since there is only one administrator in Multicast, O(logn) communication complexity is easily
achieved even with security property 1 above [12] (however, security property 2 already results
in Ω(n) complexity for the administrator in Multicast). This is due to the fact that the sole
administrator is never removed and executes all operations; thus she can use a tree as in some of
the aforementioned CGKA protocols, and never allow it to degrade.

8

Therefore, a natural question is: In the setting of two administrators that can replace one
another with new administrators, and where only property 1, but not property 2, is required for
the administrators; can we retain O(logn) communication?6 One can observe that our above lower
bound answers this question in the negative. Indeed, there only ever need to be two administrators
in the group. If so, then as above, one administrator can add k users, then the second administrator
can replace the first with a new third administrator, then the third administrator can replace the
second administrator, and so on. Thus, the jump from one to two administrators in the worst case
requires communication to increase from O(logn) to Ω(n) per operation, if security property 1 (and
not 2) is required.

MLS propose-and-commit framework. The latest MLS protocol draft (version 14) [8], uses
the “propose-and-commit” framework for CGKA. In this framework, users can publish many mes-
sages that propose different group operations (adding/removing others or updating their state), and
a new group key is not established until some user subsequently publishes a commit message. The
motivation behind this design is to allow for greater concurrency of CGKA operations: In prior
drafts of MLS, users would attempt to establish a new group key with each operation. If many users
desired to execute an operation at the same time and published corresponding CGKA ciphertexts,
the delivery server would have to choose one such ciphertext to deliver to all group members (and
thus only one of the group operations would be executed). With propose-and-commit, the delivery
server still has to choose between commit messages, but many proposed group operations can be
combined inside a single commit.

We however observe that we can still apply our above CGKA lower bound to this framework.
Indeed, consider the scenario wherein one user (resp. administrator) A proposes to add k users,
then publishes a commit for these additions. Thereafter, some other user (resp. administrator) B
can replace A in a new proposal, then publish a commit for this replacement. Again, replacements
can be repeated ad infinitum, and it can easily be seen that each such commit will still cost
Ω(n) communication. Hence, our result of Section 3 naturally holds in the propose-and-commit
framework.

2 Definitions
In this section, we define syntax and non-adaptive, one-way notions of security for Continuous
Group Key Agreement and Compact Key Exchange. First, we introduce some notation.

Notation. For algorithm A, y ← A(x; r) means that A on input x with randomness r outputs y.
If r is not made explicit, it is assumed to be sampled uniformly at random, and we use notation
y ←$ A(x). We will also use the notation x ←$ X to denote uniformly random sampling from set
X. We will use dictionaries for our CGKA security game. The value stored with key x in dictionary
D is denoted by D[x]. The statement D[∗]← v initializes a dictionary D in which the default value
for each key is v.

6If neither administrator is removed, of course O(logn) communication can be retained if they share a multicast
tree.

9

2.1 Continuous Group Key Agreement

In the simple, restricted form that we consider here, Continuous Group Key Agreement (CGKA)
allows a dynamic set of users to continuously establish symmetric group keys. For participating
in a group, a user first generates a public key and a secret state via algorithm Gen. With the
secret state, a user can add or remove users to or from a group via algorithms Add and Rem.
Furthermore, each user can update the secrets in their state from time to time to recover from
adversarial state corruptions via algorithm Up. We call the latter three actions group operations.
After all users process a group operation via algorithm Proc, they share the same group key. In
order to analyze the most efficient form of CGKA, we assume a central bulletin board B to which
public information on the current group structure is posted (initially empty). Thus, newly added
users can obtain the relevant information about the group (which intuitively may be of size Ω(n)
anyway, where n is the current number of group members) from B, instead of receiving it explicitly
from the adding user. Note: the MLS protocol specification indeed suggests the added user can
obtain the group tree of the protocol (size Ω(n)) from a bulletin board (the delivery server) in this
manner [8].

In the following, the added user simply downloads the entire board. Of course, in practice, this
would be very inefficient, but this only strengthens our lower bound on the amount of communica-
tion sent between current group members (as opposed to the amount of information retrieved from
the bulletin board by added users).
Definition 2.1. A Continuous Group Key Agreement scheme CGKA = (Gen, Add, Rem, Up,
Proc) consists of the following algorithms:7

• Gen is a PPT algorithm that outputs (ST,PK).

• Add is a PPT algorithm that takes in (ST,PK), where ST is the secret state of the user
invoking the algorithm and PK is the public key of the added user, and outputs (ST′,K,C),
where ST′ is the updated secret state of the invoking user, K is the new shared group key, and
C is the ciphertext that is sent to (and then processed by) the group members. For efficiency
purposes, C = (CG, CB) consists of a share CG that is sent to all group members directly and
a share CB that is posted to the central bulletin board B.

• Rem is a PPT algorithm that takes in (ST,PK), where ST is the secret state of the user
invoking the algorithm and PK is the public key of the removed user, and outputs (ST′,K,C)
as above.

• Up is a PPT algorithm that takes in secret state ST of the user invoking the algorithm and
outputs (ST′,K,C) as above.

• Proc is a deterministic, polynomial time algorithm that takes in (ST, CG), where ST is the
secret state of the user invoking the algorithm and CG is the ciphertext directly received for an
operation, and outputs updated state and group key (ST′,K). For users that were just added
to the group, Proc additionally takes in bulletin board B. If the operation communicated via
C removes the processing user from the group, K is set to a special symbol ⊥.

7For the sake of comprehensible communication analysis, we do not provide an explicit Create(ST,PK1, . . . ,PKn)
algorithm (for which in practice, Ω(n) ciphertext size could be tolerated). Instead, we require the group creator to
one-by-one add PK1, . . .PKn, which allows us to prove a more meaningful lower bound on just Add, Rem, and Up
operations.

10

Initialization: Set (i) t = 0; (ii) WeakEpochs,WeakUsers = ∅; and (iii) G[∗],Rand[∗],ST[∗],K[∗]← ⊥.
• Gen() executes (ST,PK)←$ Gen(), sets ST[PK]← ST, and returns PK.
• Add(PK,PK∗) first aborts if (i) PK = PK∗; (ii) t 6= 0 and PK /∈ G[t]; or (iii) PK∗ ∈ G[t]. Otherwise it:

1. For randomly sampled r, sets Rand[PK, t+1]← r and executes (ST[PK],K[t+1,PK], (CG, CB))←
Add(ST[PK],PK∗; r).

2. Sets G[t+ 1]← G[t] ∪ {PK,PK∗}.
3. For every PK′ ∈ G[t]\{PK}, executes (ST[PK′],K[t+1,PK′])← Proc(ST[PK′], CG). Also executes

(ST[PK∗],K[t+ 1,PK∗])← Proc(ST[PK∗], CG,B).
4. If (WeakUsers ∩G[t+ 1]) 6= ∅, sets WeakEpochs←WeakEpochs ∪ {t+ 1}.
5. Increments t← t+ 1 and returns (CG, CB).

• Rem(PK,PK∗) first aborts if (i) t = 0; (ii) PK = PK∗; (iii) PK /∈ G[t]; or (iv) PK∗ /∈ G[t]. Otherwise, it:

1. For randomly sampled r, sets Rand[PK, t+1]← r and executes (ST[PK],K[t+1,PK], (CG, CB))←
Rem(ST[PK],PK∗; r).

2. Sets G[t+ 1]← G[t] \ {PK∗}.
3. For every PK′ ∈ G[t] \ {PK}, executes (ST[PK′],K[t+ 1,PK′])← Proc(ST[PK′], CG).
4. If (WeakUsers ∩G[t+ 1]) 6= ∅, sets WeakEpochs←WeakEpochs ∪ {t+ 1}.
5. Increments t← t+ 1 and returns (CG, CB).

• Up(PK) first aborts if (i) t = 0; or (ii) PK /∈ G[t]. Otherwise, it:

1. For randomly sampled r, sets Rand[PK, t+1]← r and executes (ST[PK],K[t+1,PK], (CG, CB))←
Up(ST[PK]; r).

2. Sets G[t+ 1]← G[t] and WeakUsers←WeakUsers \ {PK}.
3. For every PK′ ∈ G[t+ 1] \ {PK}, executes (ST[PK′],K[t+ 1,PK′])← Proc(ST[PK′], CG).
4. If (WeakUsers ∩G[t+ 1]) 6= ∅, sets WeakEpochs←WeakEpochs ∪ {t+ 1}.
5. Increments t← t+ 1 and returns (CG, CB).

• Corr(PK) first sets WeakUsers←WeakUsers∪{PK} and WeakEpochs←WeakEpochs∪{t′ ≤ t :
PK ∈ G[t′]}. Then it returns ST[PK] and Rand[PK, t′], for every t′ ≤ t.

Figure 1: The CGKA correctness and security games.

Correctness and Security. We define correctness and security of CGKA via games that are
played by an adversary A, in which A controls an execution of the CGKA protocol. For simplicity
and clarity, we only consider a non-adaptive protocol execution in a single group. The games are
specified in Figure 1.

Before either game starts, the adversary specifies the sequence of queries to the oracles Gen(),
Add(), Rem(), Up(), and Corr() that will be executed. Gen() allows the adversary to initialize
a new user, from which it receives the corresponding public key PK. The other oracles allow
the adversary to execute group operations, i.e., to add, remove, and update users, respectively.
Additionally, for the security game, the adversary beforehand specifies the epoch t which it will
attack, i.e., for which it will guess the group key. The game starts in epoch t = 0, then increments t
each time a group operation oracle is queried. The game forces the adversary to first query Add()
to initialize the group. It keeps track of group members for each epoch using dictionary G. For

11

simplicity, in each group operation query, the game immediately uses each current group member’s
state to process the resulting ciphertext directly sent to them, CG, along with the current bulletin
board B, in the case of an added user. Dictionary K keeps track of the group key that each user
computes for each epoch. Each group operation oracle returns C = (CG, CB) to the adversary.

Definition 2.2. A CGKA scheme CGKA is correct if for every adversary A against the correctness
game defined by Figure 1, and for all t and PK,PK′ ∈ G[t]: Pr

[
K[t,PK] = K[t,PK′]

]
= 1.

Our notion of security is slightly weakened compared to the standard definition in the CGKA
literature, which only strengthens our lower bound. That is, the corruption of a user may affect
the security of those keys that were established in the past while this user was a group member.
Thus, forward secrecy is not captured. Also, we do not consider authenticity.8 However, our
notion still captures basic security requirements plus standard PCS requirement (mentioned in the
introduction), as explained below.

We first explain the importance of dictionary Rand, in addition to sets WeakEpochs and
WeakUsers, which allow the game to capture this security. Rand keeps track of the random-
ness the users sample to execute the operations of each epoch. Intuitively, WeakEpochs and
WeakUsers keep track of those epochs and users that are insecure, respectively. When the adver-
sary queries oracle Corr(PK), the game returns the corresponding user’s secret state, as well as the
randomness which she used to execute all of her past group operations. Thus, the game adds PK
to WeakUsers and since we do not require forward secrecy, it also adds to WeakEpochs every
past epoch in which the corresponding user was in the group. Now, for every Up(PK) query, the
game removes PK from WeakUsers. This in part captures PCS: in every group operation query,
if there are still weak users in the group (i.e., (WeakUsers ∩ G[t + 1]) 6= ∅), then the game adds
the new epoch t + 1 to WeakEpochs. So, if there is a member of the group that was corrupted
and did not since update their state, the epoch is deemed weak. Conversely, as soon as every group
member updates their state or is removed after a corruption, epochs are no longer deemed weak.

After receiving all return values of the pre-specified sequence’s queries to these oracles, the
adversary outputs a key K. This key K is a guess for the actual group key established in epoch t,
where t is the pre-specified attack epoch. Note that this recoverability definition is weaker than
standard indistinguishability definitions, which strengthens our lower bound.

Definition 2.3. A CGKA scheme CGKA is secure if for every PPT adversary A = (A1,A2)
against the security game defined by Figure 1:

Pr [K ←$ A2(ω,Trans) : K = K[t,PK∗]; t /∈WeakEpochs;
PK∗ ∈ G[t]; (ω,Seq, t)←$ A1(1λ)] ≤ negl(λ),

where A1 non-adaptively specifies the sequence of oracle queries Seq and the attacked epoch t, and
A2 guesses the attacked key when obtaining the transcript of oracle return values Trans.

2.2 Compact Key Exchange

We can now define Compact Key Exchange with access to a common reference string (CRS). Such
protocols allow some users 1, . . . , n to sample independent (across users) key pairs (SK1,PK1), . . . ,

8Analyzing the effect of required authenticity under weak randomness [7] on (communication) complexity in the
group setting [31], as well as of extended security goals such as anonymity [25] remains an interesting open question.

12

(SKn,PKn), then publicly broadcast PK1, . . . ,PKn. Upon reception of these public keys, special
user 0 generates a key K and message C, and broadcasts C. Finally, upon reception of C, every
user i ∈ [n] uses SKi, the set of public keys {PKj}j∈[n], and C to derive K.

Definition 2.4. A Compact Key Exchange scheme CKE = (CRSGen, Init, Comm, Derive) in the
standard model with common reference string CRS ∈ CRS consists of the following algorithms:

• Init is a PPT algorithm that takes in CRS←$ CRSGen(1λ) and outputs (SK,PK).

• Comm is a PPT algorithm that takes in CRS and set {PKi}i∈[n] and outputs (K,C).

• Derive is a deterministic, polynomial time algorithm that takes in CRS, SKi, where i ∈ [n],
set {PKj}j∈[n], and C, and outputs K.

For correctness, we require that for any n, and for every i ∈ [n]:

Pr
[
K ← Derive

(
CRS,SKi, {PKj}j∈[n], C

)
: (K,C)←$ Comm

(
CRS, {PKj}j∈[n]

)
;

∀j ∈ [n], (SKj ,PKj)←$ Init(CRS);

CRS←$ CRSGen(1λ)
]

= 1.

For security, we require that for every PPT adversary A that specifies n = poly(λ):

Pr
[
K ←$ A

(
CRS, {PKi}i∈[n], C

)
: (K,C)←$ Comm

(
CRS, {PKi}i∈[n]

)
;

∀i ∈ [n], (SKi,PKi)←$ Init(CRS);

CRS←$ CRSGen(1λ)
]
≤ negl(λ).

Ideally, |C| should be a small function (perhaps independent) of n.

Remark 2.5. Of course, there is a simple CKE protocol (without CRS) from PKE scheme PKE =
(Gen,Enc,Dec), where |C| = O(λ · n): Init() simply samples sk ←$ {0, 1}λ, then computes
pk ← Gen(sk) and outputs (sk, pk). Comm({pki}i∈[n]) samples K ←$ {0, 1}λ, and for each
i ∈ [n] computes ci ←$ Enc(pki,K). It then outputs (K,C), where C = (c1, . . . , cn). Finally,
Derive(ski, {pkj}j∈[n], C) computes K ← Dec(ski, ci) and outputs K. Correctness and security fol-
low trivially.

3 From CGKA to CKE Tightly
In this section, we show that CKE is at the core of CGKA, both in terms of cryptographic strength
and worst-case communication complexity, by providing a tight construction of the former from
the latter. The simpler counter direction—building CGKA from CKE, tightly—is provided in
Appendix E. From these two reductions, we show that the worst-case communication complexity
of CGKA operations is asymptotically equivalent to the size of CKE ciphertexts. That is, we
show that the best possible size of a CKE ciphertext implies 1. a lower bound on the worst-case
communication complexity of CGKA operations; and 2. an upper bound for the same. With this
result, we additionally prove that the communication overhead in a CGKA group is necessarily
increased if group members remain offline after they were added to the group. Indeed, based

13

on our Ω(n) lower bound on CKE ciphertext size for protocols that make black-box use of PKE
from Section 4, we show that worst-case communication overhead for CGKA protocols that make
black-box use of PKE is Ω(k), where k is the number of added users who remain inactive after
being added to the group. Furthermore, we show that this holds even for (unboundedly) many
consecutive operations.

To illustrate our proof idea, consider the following execution of a CGKA protocol: Let users
A and B be members of an existing CGKA group. User A adds k new users to this group before
user B removes A from the group and B finally conducts a state update. After A is removed
and B updates his state, the group must share a key that is secure even if A is corrupted after
he is removed or B was corrupted before his update, and there were no other corruptions. (Note
that these corruptions of A and B must be harmless w.r.t. security because A was removed and
B updated his state to recover according to PCS.) We observe that the only information received
by the k new users so far were A’s add-ciphertexts and B’s remove- and update-ciphertexts. Since
A may have been corrupted (which reveals the randomness she used for adding the k users), the
add-ciphertexts may contain no confidential payload. Similarly, B might have been corrupted until
he updated his state. Hence, B’s ciphertext that updates his state is the only input from which
the k users can derive a secure group key. This update ciphertext intuitively corresponds to a
CKE ciphertext that establishes a key with the k newly added users. In our proof, we generalize
this intuition to show that, as long as k new group members remain passive, a recurring linear
communication overhead in Ω(k) cannot be avoided when active group members repeatedly update
the group’s key material.

3.1 Embedding CGKA Ciphertexts in CKE Ciphertexts

With our proof that CGKA implies CKE, we directly lift the communication-cost lower bound
for CKE from Section 4 to certain bad sequences in a CGKA execution. That means, our proof
implies that such bad sequences in a CGKA execution lead to a linear communication overhead in
the number of affected users. For this, we build a CKE construction that embeds specific CGKA
ciphertexts in its CKE ciphertexts. Thus, a CGKA scheme that achieves sub-linear communication
costs in the number of affected group members for these embedded ciphertexts results in a CKE
with compact ciphertexts, which contradicts our lower bound from Section 4.

Components of Bad Sequences. Intuitively, a bad CGKA sequence is an operation sequence
in a CGKA session during which k passive users are added to the group that stay offline while (few)
other members actively conduct CGKA operations continuously. A CGKA session that contains
such a sequence can be split into (1) a pre-add phase that ends when the first of these k passive
users is added and (2) the subsequent bad sequence itself. The bad sequence contains (2.a) the
add operations due to which the passive users become group members as well as (2.c) multiple,
potentially overlapping, iterations of collective update assistances. With these collective update
assistances, the active users update key material for the newly added passive users, which causes
the communication overhead in Ω(k). From the perspective of each collective update assistance,
the remaining operations in a bad sequence can be categorized into (2.b) ineffective pre-assistance
operations and (2.d) an irrelevant end. (The numbering in the above enumeration reflects the
order of these components within the bad sequence; We illustrate an exemplary bad sequence in
Figure 2.)

14

A

B

C

D

E

F

Up

Up

Up

1 Pre-Add
Phase

2.a Add
Operations

t2
*t1

* t3
*

2.b Ineffective
Pre-Assistance

2.c Effective
Operations

Up Up

Up

Passive
Users

Active
Users

Add(E)

Add(F) Rem(D)

Rem(C)

Figure 2: Bad CGKA sequence with active users A, B and passive users E, F . A and B perform
three collective update assistances that end with operations t∗1, t∗2, and t∗3, respectively. The effective
operations of each assistance are marked with colored frames. Operations between the last add
operation and a frame are part of the respective ineffective pre-assistance.

Let sequence Seq = (Op1, . . . ,Opn) be the execution schedule of a CGKA session, where each
Opt is a tuple that refers to an executed group operation with the following format: Opt =
(Up,PK,⊥) means that PK updates their state; Opt = (Add,PK,PK∗) means that PK adds PK∗;
Opt = (Rem,PK,PK∗) means that PK removes PK∗; see Section 2.1 for more details. Further, let
PU , |PU | = k, be the public key set of the k passive users, such that for every PK∗ ∈ PU there
exists an operation (Add, ·,PK∗) but neither an operation (Rem, ·,PK∗) nor an operation (·,PK∗, ·)
in sequence Seq.

(1) The pre-add phase starts at the beginning of the entire sequence and ends with the tA1 −1 th
operation, where OptA1 = (Add, ·,PK∗) is the first operation that adds a user PK∗ ∈ PU to the
group. (2.a) The add operations, starting with operation OptA1 , end with the last operation OptA

k
=

(Add, ·,PK∗) that adds a user PK∗ ∈ PU to the group. (Also operations other than adding passive
users can be contained in this phase.)

(2.c) The first collective update assistance ends when all active users conducted their first update
after the add operations. During such a collective update assistance, the active users both propagate
new own key material but also collectively establish and communicate new key material for the
passive users. We define AU t∗ as the public key set of users who are active between the tA1 th and
t∗ th operation. That means PK∗ ∈ AU t∗ iff there exists at least one operation Opt = (·,PK∗, ·)
but no operation Opt = (Rem, ·,PK∗) for tA1 ≤ t ≤ t∗ in sequence Seq. Every collective update
assistance by active users in set AU t∗ is determined by its final operation Opt∗ , t∗ > tAk , for which it
must hold that all users PK∗ ∈ AU t∗ conducted an update operation between the tAk +1 th and t∗ th
operation. Such a collective update assistance consists of a set of effective operations EOt∗ from
sequence Seq. These effective operations establish key material with the passive users and, in total,
have a communication overhead of Ω(k) as we will prove. (2.b) Operations executed prior to the
t∗ th operation that are not in set EOt∗ are called ineffective pre-assistance operations. (2.d) The
remaining sequence after the t∗ th operation is the irrelevant end. In summary, a bad sequence
from the perspective of one (out of potentially many) collective update assistances is structured as
follows: (2.a) add operations between the tA1 th and tAk th operation, (2.b) ineffective pre-assistance

15

operations between the tAk + 1 th and t∗ − 1 th operation, (2.c) effective operations between the
tAk + 1 th and t∗ th operation that constitute this collective update assistance, and (2.d) irrelevant
end after the t∗ th operation.

The effective operations consist of all active users’ operations since their respective most recent
update operation. That means, for each active user public key PK ∈ AU t∗ , the set of effective
operations EOt∗ in a collective update assistance contains all operations Opt′ = (·,PK, ·) that were
initiated since the most recent update operation OptPK = (Up,PK, ·) by user PK, where tPK ≤ t′ ≤ t∗
with maximal tPK, respectively.

Intuition for a Bad Sequence. Active users establish secret key material for passive users
in collective update assistances. The communication overhead in Ω(k) that is induced by such a
collective update assistance can be distributed among all corresponding effective operations. That
means, active users can trade the work of establishing key material and the corresponding necessary
communication overhead within each collective update assistance. However, it is important to
emphasize that operations only establish key material to passive users effectively if the involved
active users are not corrupted at that point. Hence, from the perspective of a CGKA group
key computed with the t∗ th operation, prior operations only contribute effectively to its secure
computation if the involved users were able to recover from a potential earlier corruption. Such a
recovery from a corruption is achieved via an update operation. This is the reason why the effective
operations are defined as each active user’s last operations since their most recent state update.
During and after these state updates, the active users collectively assist the passive users in securely
deriving the same CGKA group key in the t∗ th operation.

Based on the above terminology, we formulate our communication overhead lower bound in the
following theorem:

Theorem 3.1 (CGKA Lower Bound). Let Seq be an execution schedule of a CGKA session during
which k passive users are added to the group until the tAk th operation. Let t∗ determine the last
operation of any subsequent collective update assistance such that all active users in set AU t∗

conduct an update between the tAk +1 th and t∗ th operation. Finally, let EOt∗ be the corresponding set
of effective operations that consist of all active users’ most recent update and subsequent operations
until the t∗ th operation. The total size of ciphertexts sent by operations in set EOt∗ is Ω(k) for
every CGKA construction that makes black-box use of PKE.

We want to note that our lower bound could be extended to more bad sequences with equally
damaging effect on the communication overhead. For clarity and compactness, we focus on the
chosen specification.

Proof Sketch. The proof of Theorem 3.1 is provided in Appendix D. In summary, this proof
proceeds as follows: We build a CKE construction that internally uses a CGKA scheme to execute
a CGKA execution schedule Seq. For establishing a CKE key to k public keys, this sequence Seq
contains at least one collective update assistance for k passive users. The core idea of the CKE
construction is that precisely the effective operations’ CGKA ciphertexts of this collective update
assistance in the CGKA sequence are embedded in the committed CKE ciphertext. Hence, the
total ciphertext size of these effective CGKA operations equals the size of the CKE ciphertext. All
remaining operations in the CGKA sequence (i.e., pre-add phase, add operations, and ineffective pre-
assistance operations) are, in different shapes, encoded in the CKE common reference string CRS.

16

The complex but interesting idea of this construction, and hence of this proof, is the isolation
of the effective operations from the remaining operations in the entire sequence as well as their
encoding in the CKE ciphertext such that CKE functionality and security are reached. As part of
the proof, we reduce the security of this CKE construction to the security of the underlying CGKA
scheme. Finally, we show that a CGKA scheme that executes schedule Seq without inducing
a communication overhead of Ω(k) for the effective operations implies a CKE construction with
compact ciphertexts.

In Corollary 3.2 we formulate a simpler, more specific variant of bad sequences that is directly
implied by Theorem 3.1. Consider a sequence Seq in which the active users, after adding the passive
users, only conduct state update operations. Then, the effective operations of each collective update
assistance in sequence Seq are simply the most recent state updates by each active user.

Corollary 3.2 (Effective Update Operations). Let Seq be an execution schedule of a CGKA session
during which k passive users are added to the group until the tAk th operation. Let t∗ determine the
last operation of any subsequent collective update assistance such that all active users in set AU t∗

conduct an update between the tAk +1 th and t∗ th operation. If all operations after the tAk th operation
are state updates, then the total size of ciphertexts sent due to the most recent updates by each active
user in set AU t∗ is Ω(k) for every CGKA construction that makes black-box use of PKE, where
|AU t∗ | = |EOt∗ |.

Overlapping Collective Update Assistances. We want to point out that effective operations
of different collective update assistances may overlap. For example, an active user A may update
their state during the sequence Seq precisely once after the passive users were added. The remaining
active users B and C may repeatedly perform new updates until the end of the sequence. In this
case, the effective operations of all collective update assistances in sequence Seq will include the
single update operation byA and always the most recent operations ofB and C since their respective
latest update in this sequence. As we will show in Section 5, there exists no optimal strategy to
exploit the fact that effective operations of different collective update assistances can overlap. For
example, one cannot successfully predict which single effective operations are in several collective
update assistances and thus make these single operations have large communication overhead, so
that large costs are not repeated several times.

Continuous Update Assistances. We finally come back to our motivating example CGKA
execution schedule. In this schedule, only one user A adds the k passive users, and another user
B removes A thereafter. In order to show that adding k passive users can induce a continuous
communication overhead, we extend this execution schedule: after adding the k passive users, l
active users replace each other, one after another. More precisely, first a user A adds k users as
well as a second user B, then user B removes A and adds a new user C, then C replaces user
B by a new user D, and so on. Each of these active users additionally performs a state update
after replacing their predecessor. The effect of this cascade of replace-update sequences is that each
contained update operation constitutes a single collective update assistance, individually inducing
a communication overhead of Ω(k).9 As a result, the entire schedule induces a communication

9We strike out “collective” because each update assistance is conducted by a single active user in this execution
schedule.

17

overhead of Ω(k · l). We formally define this CGKA execution schedule in Definition 3.3 and give
the corresponding Corollary 3.4.

Definition 3.3 (Continuous Update Assistance). Let Seq be an operation schedule of a CGKA
session during which user PK0 adds k passive users to the group until the tAk th operation. Schedule
Seq contains a Continuous Update Assistance of length l after the tAk th operation if Seq proceeds
after the tAk th operation with l repetitions of operation sequences (Opi,A,Opi,R,Opi,U), i ∈ [l], where
Opi,A = (Add,PKi,PKi+1), Opi,R = (Rem,PKi+1,PKi), and Opi,U = (Up,PKi+1,⊥) for indepen-
dent users PKj , j ∈ [l + 1].

Corollary 3.4 (Continuous Communication Overhead). For every CGKA execution schedule Seq
that contains a Continuous Update Assistance of length l after the tAk th operation, the total size
of ciphertexts output by the 3l operations after the tAk th operation is Ω(k · l) for every CGKA
construction that makes black-box use of PKE.

The proof of Corollary 3.4 is a direct application of Theorem 3.1 via a simple hybrid argument
that considers each replace-update sequence in Seq as a collective update assistance.

4 CKE Lower Bound from PKE
Before showing our lower bound for CKE from PKE, we need to define the model in which we
prove it.

Preliminaries. For a function f we write f(∗) = y to indicate f(x) = y for some input x. We
generalize this notation for the case in which some part of the input is fixed, writing f(a1, ∗) = y,
interpreted in the natural way. Many other preliminaries are deferred to Appendix A.

CKE in the Ψ-model. The model for our proof gives the protocol and adversary access to an
oracle distribution, defined as follows:

Definition 4.1. We define an oracle distribution Ψ that produces oracles (O,u,v), where O =
(g, e,d). The distribution is parameterized over a security parameter λ, but we keep it implicit for
better readability.

• g : {0, 1}λ 7→ {0, 1}3λ is a random length-tripling function, mapping a secret key to a public
key.

• e : {0, 1}3λ × {0, 1} × {0, 1}λ 7→ {0, 1}3λ: is a random function satisfying the following:
for every pk ∈ {0, 1}3λ, the function e(pk, ·, ·) is injective; i.e., if (m, r) 6= (m′, r′), then
e(pk,m, r) 6= e(pk,m′, r′).

• d : {0, 1}λ × {0, 1}3λ 7→ {0, 1} is the decryption oracle, where d(sk, c) outputs m ∈ {0, 1} if
e(g(sk),m, ∗) = c; otherwise, d(sk, c) = ⊥.

• v : {0, 1}3λ×{0, 1}3λ 7→ {⊥,>}, is a ciphertext-validity checking oracle: v(pk, c) outputs > if
c is in the range of e(pk, ·, ·) (that is, c := e(pk, ∗, ∗)); otherwise, it outputs ⊥.

18

• u : {0, 1}3λ×{0, 1}3λ 7→ {0, 1}∪ {⊥}, is an oracle that decrypts wrt invalid public keys; given
(pk, c), if there exists sk such that g(sk) = pk, then u(pk, c) = ⊥; otherwise, if there exists a
message m ∈ {0, 1} such that e(pk,m, ∗) = c, return m; else, return ⊥.

Now, we can define CKE in the Ψ-model.

Definition 4.2. A Compact Key Exchange scheme in the Ψ-model is defined equivalently as in
Definition 2.4, except that each of the CKE algorithms and the adversary additionally have access
to the Ψ oracles. We denote such access using Ψ as a superscript in the corresponding algorithms,
e.g., InitΨ(CRS). All other syntax and security requirements stay the same.

4.1 Proof Outline

Our lower bound is derived from the following two lemmas. The first lemma shows a random
(g, e,d) constitutes an ideally-secure PKE protocol, even against adversaries that have access to
the oracles (u,v), in addition to (g, e,d). The second lemma shows that the security of any
proposed CKE protocol (CRSGen, Init, Comm,Derive), instantiated with a random O := (g, e,d),
may be broken by an adversary making at most a polynomial number of queries to (O,u,v). The
black-box separation will then follow.

Lemma 4.3 (O is secure against (O,u,v)). For any polynomial-query adversary A:
Pr[AO,u,v(pk, c) = b] ≤ 1/2 + 1

2λ/2 , where (g, e,d,u,v) ←$ Ψ, O := (g, e,d), b ←$ {0, 1},
sk←$ {0, 1}λ, pk = g(sk), r ←$ {0, 1}λ and c = e(pk, b; r).

The following lemma shows how to break compact CKE constructions relative to the PKE
oracles. The lemma shows that even for encrypting single-bit keys (i.e., |K| = 1), a CKE ciphertext
cannot be sub-linear in n.

Lemma 4.4 (Breaking CKE relative to (O,u,v)). Let (CRSGen, Init, Comm, Derive) be a can-
didate black-box construction of CKE, where for any CKE ciphertext C, |C| ≤ 3λ(n−1)

2 . For any con-
stant c, there exists a polynomial-query adversary BrkO,u,v such that Pr[BrkO,u,v(PK1, . . . ,PKn, C) =
K] ≥ 1 − 1

λc , where (g, e,d,u,v) ←$ Ψ, O := (g, e,d), CRS ←$ CRSGenO(1λ), (PKi, ∗) ←$
InitO(CRS) for i ∈ [n], and (K,C)←$ CommO(CRS,PK1, . . . ,PKn).

Roadmap. Lemma 4.3 is proved in a straightforward way (hence omitted), given the random
nature of the oracles. The proof of Lemma 4.4 is the main technical bulk of our paper, consisting
of the description of an attacker and attack analysis. We first describe the attacker for the case
(Initg,Comme,Derived) in Section 4.2, and will then describe an attack against general construc-
tions in Appendix C. Lemma 4.4 will follow similarly from the below simpler attack. We may now
obtain the following from Lemmas 4.3,4.4, proved via standard black-box separation techniques.

Theorem 4.5. There exists no fully-black-box construction of CKE schemes from PKE schemes
with CKE ciphertext size o(n)|c|, where |c| denotes the ciphertext size of the base PKE scheme.

4.2 Attack for (CRSGeng, Initg, Comme, Derived)
We will show an attack for the case in which oracle access is of the form (CRSGeng, Initg,Comme,
Derived). This already captures the main ideas behind the impossibility result. We will then show
how to relax this assumption.

19

Attack overview. Let (PK1, . . . ,PKn, C) be the public keys and the ciphertext. We show an
impossibility as long as |C| ≤ 3λ(n−1)

2 , where recall that 3λ is the size of a base ciphertext as per
oracles generated by Ψ (Definition 4.1). This particular choice for the size of C will ensure that C
can “embed” at most n− 1 base ciphertexts, in a sense we will later define in Lemma A.2.

For simplicity, in this overview we assume that the scheme does not have a CRS. The attack
is based on the following high-level idea. During the generation of each (PKi,SKi) ←$ Initg(1λ) a
set of g-type query/answer pairs made. Let KPairi = {(pki,1, ski,1), . . . , (pki,t, ski,t)} be the set of
public/secret key pairs produced during the generation of PKi. These public keys are in someway
encoded in PKi, and the ability to decrypt with respect to these base pki,j public keys is the only
advantage that the ith party, who has SKi, has over an adversary.

Consider a random execution of (K,C)←$ Comme(PK1, . . . ,PKn), and let Q = {(pk1, bi, ri, ci) |
i ∈ [f]} contain the set of all query/answer pairs, and let Qc = {c1, . . . , cf}. Since the ciphertext C
is compact, C can embed at most (n− 1) ciphertexts ci from the set Qc. By embedding we mean
anyone, including the legitimate users, given only C can extract at most n− 1 valid pairs (pki, ci)
without querying e.

Now for each user consider its local decryption execution. Each user performing decryption will
need to decrypt pairs of the form (pk, c), in order to recover a shared K. We focus on those pairs
which are valid, meaning that c is in the range of e(pk, ·, ·). Looking ahead, the reason for this is
that for invalid pairs for which the answer is ⊥, an adversary can already simulate the answer by
calling u. Let S′i be the set of valid pairs that come up during decryption performed by user i. Since
C embeds at most n − 1 valid pairs (pk, c), for some user h: S′h ⊆ S′1 ∪ . . . S′h−1. In other words,
the set of base trapdoors needed to decrypt S′h is a subset of those for S′1 ∪ . . . S′h−1. Moreover, in
order for any user to be able to decrypt some (pk, c), the user should have observed a query/answer
pair (pk, sk) during its execution of Initg(1λ). Thus, recalling KPairh, the set of base secret keys
needed to decrypt elements in S′h is a subset of KPair1 ∪ . . . ,∪KPairh−1. But each of these KPairi
sets (for i ∈ [n]) is obtained by running Initg(1λ) on a security parameter, and so if an adversary
runs Initg(1λ) many times and collects all query/answer pairs in a set Freq, the adversary with
high probability will collect all the trapdoors needed to successfully decrypt for at least one user.

How to perform simulated decryption? So far, the discussion above says that an adversary
can collect a set Freq which with high probability contains all (pk, sk) pairs needed to decrypt with
respect to at least one user. But even given Freq, it is unclear how to perform decryption for any
user. The adversary cannot simply “look at” Freq and somehow decrypt C — the adversary will
need a secret key SK to be able to run Derive(SK, ·). The solution is to let the adversary sample a
“fake” secret keys for users, in a manner consistent with query-answer knowledge of Freq.

We make the following assumption for the construction (CRSGeng, Initg, Comme, Derived)
that we want to prove an impossibility for. The assumption is made only for ease of exposition.

Assumption 4.6. We assume for any oracle (g, e,d) ←$ Ψ picked as in Definition 4.1, each
algorithm in (CRSGeng, Initg, Comme, Derived) makes only a security parameter λ number of
queries.

Definition 4.7 (Partial oracles and consistency). We say a partial oracle O1 (defined only on a
subset of all points) is Ψ-valid if for some O2 ∈ Supp(Ψ): O1 ⊆ O2, where Supp denotes the support
of a distribution. We say an oracle (g, e,d) is PKE-valid if it satisfies PKE completeness. A partial
PKE-valid oracle is one which is a subset of a PKE-valid oracle. Note that any Ψ-valid oracle is

20

PKE-valid as well. We say a partial oracle O1 is consistent with a set of query/response pairs S if
O1 ∪ S is PKE-valid.

We also need to define the notion of a partial oracle forbidding a set of query/response pairs.
This technique of forbidding a set of query/answer pairs will be used extensively in our construc-
tions, and to the best of our knowledge, no previous impossibility results deal with this technique.

Definition 4.8 (Forbidding queries). Let Forbid consists of “wildcard” queries/ responses, of the
form (q −→

z
∗) or (∗ −→

z
u), where z ∈ {g, e}. We say that a partial oracle O1 = (g̃, ẽ) forbids Forbid

if (a) for any (q −→
z
∗) ∈ Forbid the oracle z̃ is not defined on input q and (b) for any (∗ −→

z
u) the

oracle z̃ is not defined on any input point with a corresponding output u (i.e., y is not in the set of
output points defined under z̃).

The attacker will first perform many random executions of Initg(CRS) to collect all likely
query/response pairs: those that appear during a random execution with a high-enough proba-
bility. This will allow the adversary to learn the secret keys for all likely base pk’s that might
be embedded to more than one user’s CKE public key. Once this step is done, the attacker will
sample partial oracles that are consistent with the set of collected query/answer pairs. Recall that
by Assumption 4.6 any execution of Initg(CRS) makes exactly λ queries. We say a partial oracle
O′ (defined only on a subset of points) is minimal for an execution InitO′(CRS;R), if the execution
makes queries only to those points defined in O′, and nothing else. This means in particular that
O′ is defined only on λ points. In the definition below, we talk about sampling minimal partial
oracles O′ that agree with some set of query/answer pairs.

Definition 4.9 (Sampling partial oracles). We define the procedure ConsOrc. In this definition we
assume that the algorithm Initg,e makes both g and e queries (as opposed to g only), since this
definition will also be used for the general attack.

• Input: (CRS,PK,Freq,Forbid): A CRS CRS, public key PK, and set of query/answer pairs
Freq and a set of query/answer pairs Forbid. The set Forbid consists of “wildcard” forbidden
queries/responses, of the form (q −→

z
∗) or (∗ −→

z
u), where z ∈ {g, e}.

• Output: (SK,O′) or ⊥, produced as follows. Sample a partial Ψ-generated O′ = (g′, e′)
defined only on λ queries (see Assumption 4.6), sample randomness R and a resultant SK
uniformly at random subject to the conditions that (a) O′ is consistent with Freq; (b) O′
forbids Forbid (Definition 4.8) (c) InitO′(CRS;R) = (PK,SK) and (d) O′ is R-minimal: the
execution of InitO′(CRS;R) makes only queries to those in O′, and nothing else. If no such
(SK,O′) exists, output ⊥.10

In our attack, the adversary will try performing simulated decryptions for different parties. The
adversary will do so by sampling a simulated secret key S̃K for that party, along with a partial oracle
g′ relative to which S̃K is a secret key for that party’s public key PK (i.e., (PK, S̃K)←$ Initg′(CRS)).
The adversary will then perform decryption with respect to an oracle g′♦∗O that is the result of
superimposing g′ on the real oracle O. We will define the superimposed oracle below. Essentially,
the superimposed oracle is defined in a way so that it agrees with g′, it is a valid PKE oracle,
and also agrees with the real oracle as much as possible. In the definition below we define this

10This can happen because of the presence of forbidding queries in Forbid.

21

superimposing process, but note that we are not claiming that the output of g′♦∗O on a given
query can be necessarily obtained by making a polynomial number of queries to O.

As notation we use (sk1 −→g pk1) to denote a query/answer pair of g-type. We use similar
notation for other types of queries. If L is a set of query/answer pairs, we use Query(L) to denote
the query parts of the elements of L.

Definition 4.10 (Composed Oracles ♦∗). Let O := (g, e,d) be a Ψ-valid oracle (a possible output
of Ψ) and let

g′ := {(sk1 −→g pk1), . . . , (skw −→g pkw)}

be a partial Ψ-valid oracle consisting of only g-type queries. We define a composed oracle g′♦∗O :=
(g̃, e, d̃) as follows.

• g̃(·): for a given sk, let g̃(sk) M= pki if sk = ski for i ∈ [w]; otherwise, g̃(sk) M= g(sk).

• d̃(·, ·): for a given pair (sk, c), define d̃(sk, c) as follows. Assuming pk = g̃(sk), if there exists
m ∈ {0, 1} such that c = e(pk,m, ∗), return m; otherwise, return ⊥.

In the definition above notice that the resulting oracle (g̃, e, d̃) is Ψ-valid (i.e., and hence a
valid PKE oracle, satisfying PKE completeness) as long as O and g′ are Ψ-valid. Thus, we have
the following lemma.

Lemma 4.11. Assuming O and g′ are Ψ-valid, (g̃, e, d̃), obtained as in Definition 4.10, is Ψ-valid,
and hence PKE-valid.

4.2.1 Description of the Attacker Against (CRSGeng, Initg,Comme,Derived)

Brkg,e,d,u,v(CRS,PK1, . . . ,PKn, C): The attack is based on two integers η, η′, instantiated later.

1. Let Decrypt = 0, Forge = 0, and Forbid = ∅.

2. Do the following for η iterations. Sample randomness R and execute Initg(CRS;R) and record
all query/response pairs in Freq.

3. Sample γ ←$ [η′] and do the following γ times. Run (PK, ∗) ←$ Initg(CRS) using fresh
randomness, sample (S̃K,g′) ←$ ConsOrc(CRS,PK,Freq,Forbid), and for every (sk −→

g
pk) ∈

g′ \ Freq, add (sk −→
g
∗) to Forbid; also, if (∗ −→

g
pk) /∈ Freq, add (∗ −→

g
pk) to Forbid.11 At the

end of each iteration, update Freq by adding all queries made during (PK, ∗) ←$ Initg(CRS)
to Freq.

4. For i ∈ [n]

(a) Sample (S̃Ki,g′i)←$ ConsOrc(CRS,PKi,Freq,Forbid). If (S̃Ki,g′i) = ⊥, then halt.12

(b) Let g′i♦∗O = (g̃, e, d̃).
11Note that since Init makes only g queries, the output of ConsOrc (Definition 4.9) does not have an e′ oracle.
12This can happen because the set Forbid makes some queries/responses off-limits.

22

(c) Execute Derived̃(S̃Ki, {PKi}, C) and answer the queries as follows. For a query qu :=
((sk, c) −→

d̃
?), if (sk −→

g
∗) ∈ Freq or (sk −→

g
∗) /∈ g′, then reply to the query with d(sk, c).

Otherwise, letting pk = g̃(sk) — which can be computed efficiently — if (sk′ −→
g

pk) ∈
Freq for some sk′, reply to qu with d(sk′, c). Else,
i. if v(pk, c) = ⊥, then reply to qu with ⊥;
ii. else if u(pk, c) = m 6= ⊥, then reply to qu with m;
iii. else, add (pk, c) to Chal, and if i < n, go to the next i (Step 4); otherwise, set

Forge = 1 and halt.
(d) If we have not halted so far, letting K̃i be the output of the simulated decryption

Derived̃(CRS,PK1, . . . ,PKn, S̃Ki, C), return K̃i, set Decrypt = 1 and halt.

Notation 4.12. Let (CRS,PK1, . . . ,PKn, C) be as above. Let QC be the set of query/response pairs
made to generate CRS ←$ CRSGeng(1λ). For i ∈ [n] let QGeni be the set of query/response pairs
made to generate (PKi,SKi) ←$ Initg(CRS). Let K be the corresponding key for C, and suppose
QEnc is the set of query/response pairs made to generate (K,C)←$ Comme(CRS,PK1, . . . ,PKn).

4.2.2 Attack Analysis

We define some events that will help us to analyze the effectiveness of the attack.

Definition 4.13. We define the following events, based on the variables introduced in Notation 4.12
and for attacker Brk.

• Event Evnt1 is the event that Decrypt = 1, and Evnt2 is the event that Forge = 1.

• Event Emptyi for i ∈ [n]: the event that g′i = ∅.13 We let Empty := ∨
i Emptyi.

• Event Agree: for all h ∈ [n], g′h agrees with ∪i 6=hQGeni ∪ QC ∪ QEnc. If g′h is empty, then
agreement is assumed to hold.

• Event Surprisei for i ∈ [n]: there exists (∗ −→
g

pk) ∈ g′i such that (∗ −→
g

pk) ∈ QC and
(∗ −→

g
pk) /∈ Freq. If g′i is empty, we say Surprisei does not hold. We let Surprise := ∨

i Surprisei.

• Event Spoof: the event that for some h ∈ [n], there exists (∗ −→
g

pk) ∈ g′h such that (a)
(∗ −→

g
pk) /∈ ∪i∈[n]QGeni ∪ QC ∪ Freq and (b) pk is g-valid; namely, g(∗) = pk.

• Event Intersect: the event that for two distinct i, j ∈ [n], there is either an intersection query
between QGeni and QGenj not picked up by Freq, or there is an intersection response between
QGeni and QGenj not picked up by Freq. That is, the event that (QGeni ∩ QGenj) \ Freq 6= ∅
or there exists pk such that (∗ −→

g
pk) ∈ QGeni and (∗ −→

g
pk) ∈ QGenj and (∗ −→

g
pk) /∈ Freq.

In the following lemmas we will bound the probability of each of the above events. Lemma 4.20
will make use of these bounds to bound the probability of the attack being successful.

13This is the same thing as (S̃Ki,g′i) = ⊥, namely the output of ConsOrc(), in Definition 4.9, is ⊥. The output of
ConsOrc() may indeed be ⊥ due to the presence of forbidding queries in Forbid.

23

Lemma 4.14. Assuming η ≥ λ0.1, for any i ∈ [n] Pr[Emptyi] ≤ 1
2ω(logλ) + 2λ1.1η′

η . Thus, Pr[Empty] ≤
n

2ω(logλ) + 2nλ1.1η′

η

Lemma 4.15. Assuming η ≥ λ0.1, Pr[Agree] ≥ 1− n
2ω(log(λ)) − nλ

η′ −
n2λ1.1

η .

Lemma 4.16. For any i ∈ [n] Pr[Surprisei] ≤ λ
η′ . As a result, Pr[Surprise] ≤ nλ

η′ .

Lemma 4.17. We have Pr[Spoof] ≤ 1
22λ .

Lemma 4.18. Assuming η ≥ λ0.1, Pr[Intersect] ≤ 2n2λ1.1

η + n2

2ω(logλ) .

Proof. Let p = λ0.1

η and note that pη ≥ ω(log λ). By Lemma A.7, for any fixed and distinct i and j,
the probability that (QGeni ∩QGenj) \ Freq 6= ∅ is at most 2λ1.1

η + 1
2ω(logλ) . The proof now follows

by the union bound over all pairs of (i, j), which is less than n2.

Lemma 4.19. Suppose |C| ≤ 3λ(n−1)
2 , where C is the CKE ciphertext. For any constant c > 0,

assuming η′ ≥ nλc+1 and η ≥ nη′λ1.1+c, Pr[Evnt2] ≤ 5
λc .

Lemma 4.20 (Attack effectiveness). Suppose |C| ≤ 3λ(n−1)
2 , where C is the CKE ciphertext. For

any constant c > 0, assuming η′ ≥ nλc+1 and η ≥ 4nη′λ1.1+c, Pr[K̃ = K] ≥ 1− 10
λc .

Proof. We have Pr[Evnt1 ∨ Evnt2 ∨ Empty] = 1. This is because whenever Brk halts, the halt-
ing condition specified in Line 4a (event Empty), or Line 4(c)iii (event Evnt2) or Line 4d (event
Evnt1) must be triggered. Thus, Pr[Evnt1] ≤ Pr[Evnt2] + Pr[Empty]. By Lemma 4.15 Pr[Agree] ≤
− n

2ω(log(λ)) − nλ
η′ −

n2λ1.1

η . By the particular values of η and η′, Pr[Agree] ≤ 3
λc . Moreover, by invoking

Lemmas 4.14 and 4.19 for these values of η and η′, we have Pr[Empty] ≤ 1
λc Pr[Evnt2] ≤ 5

λc .

Pr[K̃ = K] ≥ Pr[K̃ = K | Evnt1 ∧ Agree ∧ Empty] Pr[Evnt1 ∧ Agree ∧ Empty]

≥ 1(1− Pr[Evnt2]− Pr[Empty]− Pr[Agree]− Pr[Empty]) ≥ 1− 5
λc
− 3
λc
− 2
λc

= 1− 10
λc
.

The reason that Pr[K̃ = K | Evnt1 ∧ Agree ∧ Empty] = 1 is that, the oracle Õ := (g̃, e, d̃),
defined in Line 4b of Brk, is PKE-valid (c.f., Lemma 4.11). Also, (C,K) is a possible output of
CommÕ(PK1, . . . ,PKn), since Comm makes only encryption queries. Let h ∈ [n] be the index
for which Evnt1 holds. Since Agree occurs, CRS and (PKi, ∗) for i 6= h are a possible output
of CRSGeng̃(1λ) and Initg̃(CRS), respectively. Also, we know (S̃Kh,PKh) is a possible output of
Initg̃(CRS), because g̃ and g′h agree with each other. Now since Evnt1∧Empty holds, this means that
Evnt2 ∧ Empty holds, which means Line 4(c)iii of Brk is never hit, and so the simulated decryption
performed by Brk (for the index h) results in the same value as Derived̃(S̃Kh,PK1, . . . ,PKn, C).
The proof is now complete.

5 No Single Optimal CGKA Protocol Exists
In this section, we will show that there is no single best CGKA protocol. More precisely, for any
CGKA protocol Π, there is a distribution of CGKA sequences and some other CGKA protocol

24

Π′ such that on sequences drawn from this distribution, Π′ has much lower expected amortized
communication cost than Π. We make the same restriction on protocols that we have throughout
the paper: the protocols are only allowed to use PKE.

The main intuition behind this section is the following: As we saw from Corollary 3.2 of Theo-
rem 3.1, if starting with a group of n users with public keys PK1, . . .PKn in any state (for example,
every user has just executed an update),

1. k users are added to the group and then remain offline (i.e., do not execute any operations),

2. Then the α users (w.l.o.g., users 1, . . . , α with public keys PK1, . . .PKα) that have been online
since the first of the above users was added all update,

the combined size of their ciphertexts must be Ω(k). Now, consider the scenario in which user
1 adds all of the k new users, then updates, and then users 2, . . . , α all execute updates. While
adding the k new users, user 1 may or may not have built some structure for group members to
communicate with them until they come online (for example, in TTKEM, c.f. Appendix F, user 1
would have sampled and communicated key pairs for all nodes that are on the paths from the k
users’ leaves to the root). The protocol Π is then left with a choice regarding the updates of users
2, . . . , α. Roughly, either:

(a) Each of the users 2, . . . , α rebuild complete structure themselves (say, sample and communi-
cate their own key pairs for nodes on the paths from the k users’ leaves to the root, as user
1 would have done when adding them in TTKEM) to communicate with the k newly added
users; or

(b) At least one such user i does not (i.e., they only rebuild asymptotically incomplete structure
themselves) and thus relies on some asymptotically non-trivial amount of structure created
by the users that have executed operations before them to communicate with the k added
users.

We will however show that both (a) and (b) can be losing strategies; i.e., no matter if a protocol
Π chooses strategy (a) or (b) (or probabilistically favors one over the other), it can be starkly
outperformed by another protocol Π′ when executing certain sequences (by the same amount in
both cases). In the case of (a), if after users 2, . . . , α execute their updates, the k added users
come online and execute their own updates, then users 2, . . . , α all rebuilt complete structure
themselves unnecessarily – the k added users can themselves create structure which allows others
to communicate with them thereafter using O(logn) communication each (for example, in TTKEM,
they would just sample key pairs for their paths). Therefore if all subsequent operations are updates,
the communication of the protocol can easily stay low. So, if Π chose (a) then it communicated a
factor of Ω(k/ logn) more than it had to during the updates of Step 2; or Ω(n/ logn) if k = Ω(n).
In Section 5.1, we formally define the distribution containing such sequences as ActiveBad and in
Section 5.2 formally prove the statement of the previous sentence. (Technically, for fairness reasons
when comparing with the result of the next paragraph, we also account for the communication of a
certain number of updates after Step 2. So the result, while qualitatively the same, is quantitatively
not as stark.)

In the case of (b) consider the scenario in which (i) one of the α active users, user j, is randomly
selected to become passive for the remainder of the sequence, i.e., they never execute another
operation, then (ii) the other α−1 active users perform ` rounds of taking turns executing updates.

25

If Π chose strategy (b) and user j is the one who only rebuilt asymptotically incomplete structure
themselves, then according to Corollary 3.2, each of the ` rounds of Step (ii) will have high Ω(k)
communication each. However, if strategy (a) had been chosen by Π (and user 1 built complete
structure as well) then the communication of user j would allow for the ` rounds of Step (ii) to
be executed with low communication: O(α logn) (using TTKEM-like updates; we explain more
later). So if Π chose (b) then in expectation, it communicated a factor of Ω(`k/(α · (kα+`α logn)))
more than it had to; or Ω(n/ logn) if k = Ω(n), ` = Θ(n/ logn), and α = O(1). In Section 5.1, we
formally define the distribution containing such sequences as LazyBad and in Section 5.2 formally
prove the statement of the previous sentence (albeit with slightly different concrete parameters for
k, `, and α).

5.1 Bad Sequences of Operations

We first formally define the two distributions of sequences, LazyBad and ActiveBad, such that for
any CGKA protocol Π, we can choose one of these distributions and it will be the case that there is
some Π′ which has much lower expected communication than Π on that distribution. Both LazyBad
and ActiveBad are parameterized by:

• n: The number of users in the group before user 1 adds the new users;

• PreAddSeq: The operations of the pre-add phase, i.e., the sequence of valid operations (the
first operation is Add to create the group, only users that are not in the group are added
by users in the group, only users in the group are removed by other users in the group, only
users in the group can execute an update, and at the end of Seq the group has n members)
to be executed before the k adds and subsequent operations of ActiveBad or LazyBad.

• k: The number of users added by user 1;

• α: the number of active users after the first of the k users is added; and

• `: For LazyBad, the number of rounds of updates in which one of the originally active users
is passive. We use ` in ActiveBad only to ensure that on input the same parameters, the two
types of sequences have the same length (for fairness reasons).

We define both types of sequences as distributions, even though ActiveBad(n,PreAddSeq, k, α, `) is
just one sequence (i.e., that sequence is drawn from the distribution ActiveBad(n,PreAddSeq, k, α, `)
with probability 1). In the following, we will assume that both n and k are powers of 2, for
simplicity. Also, we will often make the parameters n, k, α, and ` implicit and simply refer
to ActiveBad(n,PreAddSeq, k, α, `) as ActiveBad(PreAddSeq) and LazyBad(n,PreAddSeq, k, α, `) as
LazyBad(PreAddSeq). We first define LazyBad(PreAddSeq):

Definition 5.1. A sequence Seq of CGKA operations drawn from distribution LazyBad(n,PreAddSeq,
k, α, `) consists of the following phases:

• Phase P0: The pre-add phase, i.e., the operations Op1, . . . ,OptA1 −1 of PreAddSeq.

• Phase P1: For i ∈ [k] operations Op1,i = (Add,PK1,PKn+i). Then operation Op1,k+1 =
(Up,PK1,⊥).

• Phase P2: For i ∈ [α− 1] operations Op2,i = (Up,PKi+1,⊥).

26

• Phase P3: Let j ←$ [α]. Then, for each m ∈ [`]: for every i < j (resp. i > j),
Op3,(m−1)(α−1)+i = (Up,PKi,⊥) (resp. Op3,(m−1)(α−1)+i−1 = (Up,PKi,⊥)), where PKi is
the most recent public key of user i.

Next, we define ActiveBad(PreAddSeq), which has the same phases 0 − 2 as LazyBad(PreAddSeq),
but differs in phase 3 as described above:

Definition 5.2. A sequence Seq of CGKA operations drawn from distribution ActiveBad(n,
PreAddSeq, k, α, `) consists of the same phases P0-P2 as above then:

• Phase P3: For i ∈ [` · (α − 1)]: Op3,i = (Up,PKn+1+(i mod α),⊥), where PKn+1+(i mod α) is
the most recent public key of user n+ 1 + (i mod α).

Note that by Theorem 3.1, for every CGKA protocol it must be that update Op1,k+1 =
(Up,PK1,⊥) in Phase P1 of either distribution requires Ω(k) communication, no matter what
the operations of PreAddSeq were and what structure the adds of user 1 in Phase P1 created. Since
with O(k) communication, user 1 can in this update create full structure with which other users
in the group can communicate with the added PKn+1 . . . ,PKn+α thereafter (as in TTKEM), it is
intuitively the best choice for a protocol to use this behavior for user 1. Thus, since we aim to
define these two distributions in a way that emphasizes the different choices protocols can make to
minimize communication, user 1’s first update is included in Phase P1 and we define the commu-
nication complexity of a protocol executing a sequence drawn from one of these two distributions
to include only the communication costs of the operations in Phase P2 and P3:

Definition 5.3. Let Seq be a sequence of CGKA operations drawn from distribution
LazyBad(PreAddSeq) (resp. ActiveBad(PreAddSeq)) and CCΠ[Op] be the communication cost of
a CGKA protocol Π executing operation Op of Seq after executing all preceding operations of Seq
in order. Then:

1. The amortized communication complexity of a protocol Π that executes Seq is CCΠ[Seq] :=
(∑Op∈P2∪P3 CCΠ[Op])/((α − 1) · (` + 1)), where P2 and P3 are the corresponding phases in
Seq of LazyBad(PreAddSeq) (resp. ActiveBad(PreAddSeq)).

2. The expected amortized communication complexity of a protocol Π on random Seq drawn
from LazyBad(PreAddSeq) (resp. ActiveBad(PreAddSeq)) is

CCΠ(LazyBad(PreAddSeq)) := ESeq←$LazyBad(PreAddSeq)[CCΠ[Seq]]

(resp. CCΠ(ActiveBad(PreAddSeq)) := ESeq←$ActiveBad(PreAddSeq)[CCΠ[Seq]]),
where the randomness is over the choice of Seq and the random coins of Π.

5.2 Suboptimality of all CGKA Protocols

We now state and prove our Theorem showing that all CGKA protocols must have suboptimal ex-
pected amortized communication complexity on either LazyBad(PreAddSeq) or ActiveBad(PreAddSeq).
First, we define a specific PreAddSeq which intuitively leaves the CGKA group in a full state:

Definition 5.4. Valid sequence of CGKA operations Fulln contains the following operations in or-
der: (Add,PK1,PK2), (Add,PK1,PK3), . . . , (Add,PK1,PKn), (Up,PK1,⊥), (Up,PK2,⊥), . . . , (Up,
PKn,⊥).

27

Theorem 5.5. Let ` = O(k/ logn). Then for every CGKA protocol Π and every PreAddSeq, there
exists some other protocol Π′ such that either

CCΠ(LazyBad(PreAddSeq)) ≥ CCΠ′(LazyBad(Fulln)) · Ω(`/α2), or

CCΠ(ActiveBad(PreAddSeq)) ≥ CCΠ′(ActiveBad(Fulln)) · Ω(k/` logn).

Note that PreAddSeq can be any valid sequence that results in a group with n members, includ-
ing (but not limited to) Fulln. As will be seen, our results combine general lower bounds for the
considered protocol Π on any PreAddSeq, with upper bounds for protocols Π′ on specifically Fulln.

Before proving the Theorem, we separate CGKA protocols Π into two classes based on their ex-
pected behavior in phase P2 of a sequence drawn from LazyBad(PreAddSeq) or ActiveBad(PreAddSeq).
The first class of protocols are more likely than not to have some lazy user in phase P2: i.e., a user
whose update operation Op2,i = (Up,PKi+1,⊥) in phase P2 has communication cost CCΠ[Op] =
o(k). The other class of protocols are the opposite – they are more likely than not to have only
heavy users in phase P2: i.e., all users have update operations Op2,i = (Up,PKi+1,⊥) in phase P2
with communication cost CCΠ[Op] = Ω(k).

Definition 5.6. CGKA protocol Π is Lazy if Pr[∃i ∈ [α−1] : CCΠ[Op2,i] = o(k)] > 1/2. Otherwise,
Π is Active.

We first show that there is a protocol ΠActive that has efficient communication on sequences drawn
from LazyBad(Fulln).

Lemma 5.7. There is a protocol ΠActive that has expected amortized communication cost
CCΠActive(LazyBad(Fulln)) = O(k/`+ logn) on random Seq drawn from LazyBad(n,Fulln, k, α, `).

Proof. The protocol ΠActive simply executes in phases P0 and P1 as TTKEM does (c.f. Appendix F).
It is easy to see that for any Seq drawn from LazyBad(n,Fulln, k, α, `), after phase P1 all nodes on
the paths of added users’ (PKn+1, . . . ,PKn+k) leaves to the root are tainted by user 1, and all other
nodes are untainted. Then, in phase P2 each of the users that execute Up(PKi) behave as user 1
did in phase P1, except that they refresh those nodes that are on the direct path of their own leaf,
instead of user 1’s leaf: i.e., they each independently refresh the tainted nodes of user 1 (those on
the paths from the leaves corresponding to PKn+1, . . . ,PKn+k) in addition to the nodes on their
direct path. Since there are O(k + logn) such nodes, it can easily be seen that each such Up(PKi)
can be done with communication cost CCΠ[Op] = O(k + logn) (by systematically generating new
secrets for each node and decrypting it to the public keys of its children, from the bottom of the
tree to the top) and thus the total communication cost of phase P2 is O((k + logn) · α). Then, in
phase P3, the users that execute Up(PKi) in each of the ` repetitions simply refresh the nodes on
their direct path and use the public keys generated by the user j that remains passive in phase P3
(i.e., does not execute any operations) to communicate with the added users PKn+1, . . . ,PKn+k; all
other key pairs on the added users’ paths are never again used. Therefore, the total communication
cost of phase P3 is O(` · α · logn). Thus, CCΠActive(LazyBad) = O(k/`+ logn).

The security of ΠActive follows almost immediately from the security of TTKEM and thus we
omit a formal proof for brevity. Informally, the security of phases P0 and P1 follows directly from
the security of TTKEM. Now, assume that when phase P2 begins, all users outside of users 1, . . . , α
that have been corrupted by the adversary have since executed an Up operation and they are never
corrupted by the adversary again. If this is not the case, then security of the subsequent operations

28

is not required for any CGKA protocol Π since, by correctness, the adversary can recover all group
secrets of these operations. There are two scenarios to consider: First, if the chosen passive user
j is corrupted after its update Up(PKj) of phase P2, then anyway for any CGKA protocol Π,
security of the operations in phase P3 is not required, as above. Otherwise, if j is not corrupted
after its update Up(PKj) of phase P2, then the key pairs that it generates for those nodes that
are on the paths from the leaves corresponding to PKn+1, . . . ,PKn+k remain secure. Additionally,
the users that execute operations Up(PKi) in phase P3 simply no longer encrypt to the key pairs
generated by users m other than user j for these nodes, so even if some such user m is corrupted,
no secrets are encrypted to such key pairs it has generated. Moreover, they otherwise execute their
update according to TTKEM, so their updates facilitate recovery as in TTKEM, and thus security
follows.

Now we show that those protocols Π that are Lazy do not have efficient communication on sequences
drawn from LazyBad(PreAddSeq) for any PreAddSeq.

Lemma 5.8. For every protocol Π that is Lazy and every PreAddSeq, the expected total communica-
tion cost CCΠ(LazyBad(PreAddSeq)) = Ω(k/α2) on random Seq drawn from LazyBad(n,PreAddSeq,
k, α, `).

Proof. Since Π is Lazy, with probability greater than 1/2, one of the users i who executes Up(PKi)
in phase P2 does so with communication cost CCΠ[Op] = o(k). The probability that this user is
the user j randomly chosen in phase P3 to remain passive (i.e., not execute any more operations)
for the rest of Seq is 1/α. If this is indeed the case, then by Corollary 3.2, since the update
of PKi had communication cost o(k), we know that each of the ` repetitions of phase P3 will
have total communication cost Ω(k). Putting things together, we have that for Lazy protocols Π,
CCΠ(LazyBad(PreAddSeq)) > 1

2α · (` · Ω(k))/O(α · `) = Ω(k/α2).

Next we show that there is a protocol ΠLazy that has efficient communication on sequences drawn
from ActiveBad(Fulln).

Lemma 5.9. There is a protocol ΠLazy that has expected total communication cost
CCΠLazy(ActiveBad(Fulln)) = O(logn) on random Seq drawn from ActiveBad(n,Fulln, k, α, `).

Proof. ΠLazy is simply TTKEM (c.f. Appendix F): It is easy to see that for any Seq drawn
from ActiveBad(n,Fulln, k, α, `), after phase P1 all nodes that are on the paths of added users’
(PKn+1, . . . ,PKn+k) leaves to the root are tainted by user 1, and all other nodes are untainted.
Therefore, it is obvious that all operations Up(PKi) of P2 and P3 have communication cost
CCΠ[Op] = O(logn), since all such executing users own 0 taints. Thus CCΠLazy(ActiveBad) =
O(logn).

Finally, we show that those protocols Π that are Active do not have efficient communication on
sequences drawn from ActiveBad(PreAddSeq) for any PreAddSeq.

Lemma 5.10. For every protocol Π that is Active and every PreAddSeq, its expected total com-
munication cost CCΠ(ActiveBad(PreAddSeq)) = Ω(k/`) on random Seq drawn from ActiveBad(n,
PreAddSeq, k, α, `).

29

Proof. Since Π is Active, with probability at least 1/2, all of the users i that execute operations
Up(PKi) in phase P2 do so with communication cost CCΠ[Op] = Ω(k). If this is the case, then we
know that phase P2 has total communication cost Ω(α · k). Putting things together, we have that
for Active protocols Π, CCΠ(ActiveBad(PreAddSeq)) ≥ 1

2 · Ω(α · k)/O(α · `) = Ω(k/`).

Proof of Theorem 5.5. Combining the results of Lemmas 5.7, 5.8, 5.9, and 5.10, Theorem 5.5 easily
follows.

The following corollary thus easily follows:

Corollary 5.11. Let k = Ω(n), ` = Θ(
√
n), and α = O(

√
logn). Then for every protocol Π, there

exists some other protocol Π′ such that either on a random sequence drawn from ActiveBad(Fulln), or
from LazyBad(Fulln), Π′ has a factor of Ω(

√
n/ logn) better amortized communication in expectation

than Π does.

References
[1] Alwen, J., Auerbach, B., Noval, M.C., Klein, K., Pascual-Perez, G., Pietrzak, K., Walter, M.:

Cocoa: Concurrent continuous group key agreement. In: Advances in Cryptology - EURO-
CRYPT 2022 (2022)

[2] Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: Security notions, proofs, and modular-
ization for the Signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I.
LNCS, vol. 11476, pp. 129–158. Springer, Heidelberg (May 2019)

[3] Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improvements for
the IETF MLS standard for group messaging. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 248–277. Springer, Heidelberg (Aug 2020)

[4] Alwen, J., Coretti, S., Jost, D., Mularczyk, M.: Continuous group key agreement with active
security. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 261–290.
Springer, Heidelberg (Nov 2020)

[5] Alwen, J., Jost, D., Mularczyk, M.: On the insider security of mls. Cryptology ePrint Archive,
Report 2020/1327 (2020), https://eprint.iacr.org/2020/1327

[6] Alwen, J., Capretto, M., Cueto, M., Kamath, C., Klein, K., Markov, I., Pascual-Perez, G.,
Pietrzak, K., Walter, M., Yeo, M.: Keep the dirt: Tainted treekem, adaptively and actively
secure continuous group key agreement. In: 2021 IEEE Symposium on Security and Privacy
(SP). IEEE (2021)

[7] Balli, F., Rösler, P., Vaudenay, S.: Determining the core primitive for optimally secure ratch-
eting. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part III. LNCS, vol. 12493, pp.
621–650. Springer, Heidelberg (Dec 2020)

[8] Barnes, R., Beurdouche, B., Robert, R., Millican, J., Omara, E., Cohn-Gordon, K.:
The Messaging Layer Security (MLS) Protocol. Internet-Draft draft-ietf-mls-protocol-14, In-
ternet Engineering Task Force (May 2022), https://datatracker.ietf.org/doc/html/
draft-ietf-mls-protocol-14, work in Progress

30

https://eprint.iacr.org/2020/1327
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-14
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-14

[9] Bhargavan, K., Barnes, R., Rescorla, E.: TreeKEM: Asynchronous Decentralized Key
Management for Large Dynamic Groups (2018), pubs/treekem.pdf, published at https:
//mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8

[10] Bienstock, A., Dodis, Y., Garg, S., Grogan, G., Hajiabadi, M., Rösler, P.: On the worst-case
inefficiency of CGKA. In: TCC 2022. LNCS, Springer (2022)

[11] Bienstock, A., Dodis, Y., Rösler, P.: On the price of concurrency in group ratcheting protocols.
In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 198–228. Springer,
Heidelberg (Nov 2020)

[12] Bienstock, A., Dodis, Y., Tang, Y.: Multicast key agreement, revisited. In: Galbraith, S.D.
(ed.) Topics in Cryptology – CT-RSA 2022. pp. 1–25. Springer International Publishing, Cham
(2022)

[13] Bienstock, A., Dodis, Y., Yeo, K.: Forward secret encrypted ram: Lower bounds and applica-
tions. In: TCC 2021: 19th Theory of Cryptography Conference (2021)

[14] Bienstock, A., Fairoze, J., Garg, S., Mukherjee, P., Raghuraman, S.: A more complete analysis
of the signal double ratchet algorithm. Cryptology ePrint Archive, Report 2022/355 (2022),
https://ia.cr/2022/355

[15] Boneh, D., Papakonstantinou, P.A., Rackoff, C., Vahlis, Y., Waters, B.: On the impossibility
of basing identity based encryption on trapdoor permutations. In: 49th FOCS. pp. 283–292.
IEEE Computer Society Press (Oct 2008)

[16] Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from
indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (Aug 2014)

[17] Canetti, R., Garay, J., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast security: a
taxonomy and some efficient constructions. In: IEEE INFOCOM ’99. Conference on Computer
Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer
and Communications Societies. The Future is Now (Cat. No.99CH36320). vol. 2, pp. 708–716
vol.2 (1999)

[18] Canetti, R., Jain, P., Swanberg, M., Varia, M.: Universally composable end-to-end secure
messaging. Cryptology ePrint Archive, Report 2022/376 (2022), https://ia.cr/2022/376

[19] Canetti, R., Kalai, Y.T., Paneth, O.: On obfuscation with random oracles. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 456–467. Springer, Heidelberg
(Mar 2015)

[20] Chung, K.M., Lin, H., Mahmoody, M., Pass, R.: On the power of nonuniformity in proofs of
security. In: Kleinberg, R.D. (ed.) ITCS 2013. pp. 389–400. ACM (Jan 2013)

[21] Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal security
analysis of the signal messaging protocol. In: 2017 IEEE European Symposium on Security
and Privacy (EuroS P). pp. 451–466 (2017)

31

pubs/treekem.pdf
https://mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8
https://mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8
https://ia.cr/2022/355
https://ia.cr/2022/376

[22] Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J., Milner, K.: On ends-to-ends encryp-
tion: Asynchronous group messaging with strong security guarantees. In: Lie, D., Mannan,
M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 1802–1819. ACM Press (Oct 2018)

[23] Coretti, S., Dodis, Y., Guo, S., Steinberger, J.P.: Random oracles and non-uniformity. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 227–258.
Springer, Heidelberg (Apr / May 2018)

[24] Dodis, Y., Guo, S., Katz, J.: Fixing cracks in the concrete: Random oracles with auxiliary
input, revisited. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol.
10211, pp. 473–495. Springer, Heidelberg (Apr / May 2017)

[25] Dowling, B., Hauck, E., Riepel, D., Rösler, P.: Strongly anonymous ratcheted key exchange.
In: ASIACRYPT 2022. LNCS (2022)

[26] Garg, S., Hajiabadi, M., Mahmoody, M., Mohammed, A.: Limits on the power of garbling
techniques for public-key encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018,
Part III. LNCS, vol. 10993, pp. 335–364. Springer, Heidelberg (Aug 2018)

[27] Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic cryptographic construc-
tions. In: 41st FOCS. pp. 305–313. IEEE Computer Society Press (Nov 2000)

[28] Harney, H., Muckenhirn, C.: Rfc2093: Group key management protocol (gkmp) specification
(1997)

[29] Mittra, S.: Iolus: A framework for scalable secure multicasting. In: Proceedings of the ACM
SIGCOMM ’97 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication. p. 277–288. SIGCOMM ’97, Association for Computing Machinery,
New York, NY, USA (1997), https://doi.org/10.1145/263105.263179

[30] Perrin, T., Marlinspike, M.: The double ratchet algorithm (2016), https://signal.org/
docs/specifications/doubleratchet/

[31] Poettering, B., Rösler, P., Schwenk, J., Stebila, D.: SoK: Game-based security models for
group key exchange. In: Paterson, K.G. (ed.) CT-RSA 2021. LNCS, vol. 12704, pp. 148–176.
Springer, Heidelberg (May 2021)

[32] Rösler, P., Mainka, C., Schwenk, J.: More is less: On the end-to-end security of group chats in
signal, whatsapp, and threema. In: 2018 IEEE European Symposium on Security and Privacy,
EuroS&P 2018 (2018)

[33] Sherman, A.T., McGrew, D.A.: Key establishment in large dynamic groups using one-way
function trees. IEEE Transactions on Software Engineering 29(5), 444–458 (2003)

[34] Smart, N.P.: Efficient key encapsulation to multiple parties. In: Blundo, C., Cimato, S. (eds.)
SCN 04. LNCS, vol. 3352, pp. 208–219. Springer, Heidelberg (Sep 2005)

[35] Wallner, D., Harder, E., Agee, R.: Rfc2627: Key management for multicast: Issues and
architectures (1999)

32

https://doi.org/10.1145/263105.263179
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/

[36] Weidner, M., Kleppmann, M., Hugenroth, D., Beresford, A.R.: Key agreement for decentral-
ized secure group messaging with strong security guarantees. In: Vigna, G., Shi, E. (eds.)
ACM CCS 2021. pp. 2024–2045. ACM Press (Nov 2021)

[37] Wong, C.K., Gouda, M., Lam, S.S.: Secure group communications using key graphs. In: Pro-
ceedings of the ACM SIGCOMM ’98 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication. p. 68–79. SIGCOMM ’98, Association for Com-
puting Machinery, New York, NY, USA (1998), https://doi.org/10.1145/285237.285260

A Omitted Preliminaries
Lemma A.1. Let x1, . . . , xr be independent boolean random variables where for all i ∈ [r], Pr[xi =
1] ≥ p. Then, Pr[x1 = · · · = xr = 0] ≤ 1

epr .

Proof. For all real x: 1 + x ≤ ex, and hence (1− p) ≤ e−p.

The black-box attack against CKE protocols makes use of the following lemma about output
compression with respect to random oracles. The proof of this result uses a simple adaptation
of the output compression technique from [24] (which, in turn, goes back to [27]), developed in
the context of the auxiliary random oracle model. We simply tweak the parameters to match our
precise setting.

Lemma A.2. Let A = (Ag
0 ,Ae

1) be a two-phase adversary, where Ag
0(1λ) outputs a string x0 while

only calling g, and Ae
1(x0) outputs a string x1 while only calling e. Let Bg,u,v,d(x0, x1) be an

adversary that takes as input (x0, x1), makes some number of queries to (g,u,v,d) (but not to
e) and outputs a set Chal = {(pk1, c1), . . . , (pkw, cw)}. We say the event Success holds if (i) w ≥
d2 |x1|

3λ e + 1; (ii) all the pairs are distinct, and (iii) for all i ∈ [w] v(pki, ci) = >. We then have
Pr[Success] ≤ 2−λ/2 = negl(λ), where the probability is taken over (g, e,d,u,v) ←$ Ψ and the
random coins of A and B.

Proof. (Sketch) As in all output compression results, we will show that the existence of such
algorithms A,B, where B’s probability of success is ε = 2−λ/2, leads to a pair of (computationally
unbounded) compression/decompression algorithms C and D which successfully compress a random
function e : {0, 1}3λ × {0, 1} × {0, 1}λ → {0, 1}3λ in a provably impossible way. Namely: (1) the
output of C(e) will save more than log(1/ε) bits compared to the length of e; (3) D can successfully
recover e with probability 1− ε on the (“short”) output of the compressor C(e).

In our case, we can fix random oracles (g,u,v,d) and local randomness of A,B, and only focus
on compressing e. Our compressor C(e) will emulate the run A,B, and will only succeed when
A,B jointly produce w values Chal = {(pk1, c1), . . . , (pkw, cw)} satisfying conditions (i)-(iii) of the
Lemma. In particular, condition (iii) implies that for each of the w values (pki, ci) there exists inputs
(mi, ri) ∈ {0, 1} × {0, 1}λ s.t. e(pki,mi, ri) = ci. Our compressor C(e) will then output: (a) the
compression string x1 output by Ae

1(x0); (b) the set In = {(m1, r1), . . . , (mw, rw)} in lexicographic
order; (c) in lexicographic order, the set of all other outputs of e except for w “special” input points
(pki,mi, ri).

We need to check two things now. First, that the output of C(e) is enough for D to reconstruct
e (when A,B succeed). Second, that the output of C(e) is too short under the conditions of the
Lemma. For the first part, notice that D has all the information it needs to successfully complete

33

https://doi.org/10.1145/285237.285260

the run of A,B, and thus obtain the set Chal = {(pk1, c1), . . . , (pkw, cw)}. This is so because x1
is the only string which depended on e, and C(e) was considerate enough to provide it in (a).
Coupled with the set In = {(m1, r1), . . . , (mw, rw)} provided by the compressor in (b), D now has
all the information to figure out the w input/output relationships missing in (c): namely, that
e(pki,mi, ri) = ci for all i.

It remains to argue that under the conditions (i) of the Lemma, C(e) would save more than
log(1/ε) bits. Namely, the naive representation of w outputs compressed in parts (a)+(b) of the
compression string is 3λw bits. However, C(e) only spent |x1|+w(1 +λ) bits. Thus, we must have
that:

|x1|+ w(1 + λ) + log(1/ε) ≥ 3wλ

Recalling that we set w = (d2 |x1|
3λ e+ 1), we get that |x1| ≥ 3(w − 1)λ/2, and thus

3(w − 1)λ/2 + w(1 + λ) + log(1/ε) ≥ 3wλ

This easily implies log(1/ε) ≥ wλ/2 ≥ λ/2, or ε ≤ 2−λ/2.

Lemma A.3. Let X1, . . . , Xt+1 be independent, Bernoulli random variables, where Pr[Xi = 1] = p,
for all i ≤ t+ 1. Then

Pr[X1 = 0 ∧ · · · ∧Xt = 0 ∧Xt+1 = 1] ≤ 1
t
.

Definition A.4 (Heavy queries/responses). Suppose Af (1λ) is an oracle-aided algorithm with ac-
cess to an oracle f . We say a query qu is p-heavy if the probability that qu is asked during a random
execution of Af (1λ) is at least p. We say a response y is a p-heavy response if the probability that
a query/answer of the form (∗ −→

f
y) occurs during a random execution of Af (1λ) is at least p.

We say a set of query/answer pairs Freq contains a query qu if (qu −→
f
∗) ∈ Freq. We say a set

of query/answer pairs Freq contains a response y if (∗ −→
f
y) ∈ Freq. Notice that if y has several

pre-images (i.e., several x1, ..., xw such that f(xi) = y for all i ∈ [w]), as long as Freq has at least
one of those preimages (i.e., for some i ∈ [w]: (xi −→

f
y) ∈ Freq), we say Freq contains the response

y. That is, Freq does not need to contain all the pre-images of y to deem y contained in Freq.

Lemma A.5 (Heavy query/response learner). Suppose Af (1λ) is an oracle-aided algorithm with
access to an oracle f , making t := t(λ) ∈ poly(λ) queries. Suppose p = 1

poly(λ) , and let η ≥ ω(log λ)
p .

Let Freq be the set of all query/answer pairs generated during η random executions of Af (1λ).
With probability at least 1− 1

2ω(log(λ)) , the set Freq contains both all p-heavy queries qu and p-heavy
responses y.

Proof. We show that for any p-heavy query qu the probability that qu does not occur during η
random executions is at most 1

eω(logλ) . Similarly, we show that for any p-heavy response y, the
probability that y never occurs as a response during η random executions is at most 1

eω(logλ) . Since
the number of p-heavy queries and p-heavy responses is at most 2t2/p = poly(λ) in total (see below
on why), the probability of missing at least one p-heavy query qu or at least one p-heavy response
y is at most poly(λ)

eω(logλ) ≤ 1
2ω(logλ) , as desired.

To see why we have at most t2/p = poly(λ) p-heavy queries, note that if qu is p-heavy, then for
some index i ∈ [t]: qu is ith p/t-heavy (i.e., the probability that the ith query is qu is at least p/t).

34

For any index i ∈ [t] we have at most t/p queries which are ith p/t-heavy. Thus, we have at most
t2/p = poly(λ) queries which are globally p-heavy.

Similarly, if an output y is a p-heavy response, then, by definition, the probability that y occurs
as a response to a query during a random execution of Af (1λ) is at least p. Thus, for some index
i ∈ [t]: y is an ith p/t-heavy response; namely, the probability that the output of the ith query is
y is at least p/t. For any i ∈ [t] we have at most t/p responses which are ith p/t-heavy response.
Thus, we have at most t2/p = poly(λ) responses which are globally p-heavy.

For a p-heavy query qu and i ∈ [η] let xi = 0 if qu does not occur during the ith execution of
Af (1λ). By Lemma A.1, the probability that qu does not appear during any of the η executions is
at most 1

epη ≤
1

eω(logλ) .
Similarly, for a p-heavy response y, let xi = 0 if y does not occur as a response during the ith

execution of Af (1λ). By Lemma A.1, the probability that y never appears as a response during η
executions is at most 1

epη ≤
1

eω(logλ) .

Lemma A.6. Let Af (1λ), t and p = 1
poly(λ) be as in Lemma A.5. Let Freq be the set of all

query/answer pairs generated during η random executions of Af (1λ), where η ≥ ω(log λ)
p . Let Q be

a set of query/answer pairs generated during a random execution of Af (1λ), made independently of
Freq. Let L be a set of t queries made independently of Q. Then the probability that there exists a
query in L which also appears in Q \ Freq is at most 1

2ω(log(λ)) + tp.

Proof. Let Bad be the event we need to bound. We let Collect be the event that all p-heavy
queries are collected by Freq. By Lemma A.5, Pr[Collect] ≤ 1

2ω(log(λ)) . Assuming Collect holds, the
probability that any fixed query of L appears in Q \ Freq is at most p, and so the probability that
some query of L appears in Q \ Freq is at most tp. Thus,

Pr[Bad] ≤ Pr[Collect] + Pr[Bad | Collect] ≤ 1
2ω(log(λ)) + tp, (1)

as desired.

Lemma A.7 (Intersection queries/responses learner). Let Af (1λ) be an oracle-aided algorithm
making t := t(λ) ∈ poly(λ) queries. Suppose p = 1

poly(λ) , and let η ≥ ω(log λ)
p . Let Freq be formed by

recording all query/answer pairs made during η random executions of Af (1λ). Let Q1 and Q2 be
the sets of query/answer pairs made during two random independent executions of Af (1λ). We say
Q1 and Q2 have an intersection query if (Q1 ∩ Q2) 6= ∅. We say Q1 and Q2 have an intersection
response, if there exists some y such that y occurs as a response in both Q1 and Q2; namely,
(∗ −→

f
y) ∈ Q1 and (∗ −→

f
y) ∈ Q2. The probability that there exists an intersection query or an

intersection response between Q1 and Q2 which is not picked up by Freq is at most 2tp + 1
2ω(logλ) .

That is,

Pr[(((Q1 ∩ Q2) \ Freq)) 6= ∅)
∨

(∃y s.t. (∗ −→
f
y) ∈ Q1 ∧ (∗ −→

f
y) ∈ Q2 ∧ (∗ −→

f
y) /∈ Freq)] ≤

2tp+ 1
2ω(log λ)

Proof. Let Intersect be the probability of the event we want to bound. By Lemma A.5 the probabil-
ity of the event, Pick, that all p-heavy queries qu and all p-heavy responses y are picked up by Freq

35

is at least α := 1− 1
2ω(logλ) . Assuming Pick, the probability that any fixed query qu of Q1 appears

in Q2 \ Freq is at most p. The reason is that since Pick holds and qu /∈ Freq, the query qu is not
p-heavy, hence occurring with probability at most p during another random execution. Similarly,
the probability that any fixed response y contained in Q1 also appears in Q2 \ Freq is at most p.
Assuming Pick, the probability there exists qu ∈ Q1 such that qu ∈ Q2 \ Freq is at most tp, by the
union bound. Similarly, assuming Pick, the probability there exists a response y in Q1 such that y
also appears in Q2\Freq is at most tp. Thus, Pr[Intersect] ≤ 1

2ω(logλ) +(1− 1
2ω(logλ))2tp ≤ 2tp+ 1

2ω(logλ) .
The proof is now complete.

Lemma A.8 (Hitting the image of random injective function). Let Af (1λ) be a polynomial-query
algorithm with access to an oracle f : {0, 1}λ → {0, 1}3λ chosen uniformly at random from the set
of all functions from {0, 1}λ to {0, 1}3λ. The adversary A at the end outputs t points. We have

Pr[(y1, . . . , yt)←$ Af (1λ) and ∃i ∈ [t] and x s.t. yi = O(x) ∧ (∗ −→
O
yi) /∈ QA] ≤ 2−2λ,

where the probability is taken over the random choice of f as well as A’s random coins, and where
QA is the set of all A’s query-answer pairs.

B Omitted Proofs from Section 4
Proof of Lemma 4.14. We prove this for i = 1. We will use Lemma A.6. For this proof, let Freq
denote the value of Freq right after Line 2 (and before executing Line 3) of Brk’s execution. If the
event Empty1 occurs, there must exist a query qu := (sk −→

g
pk) ∈ QGen1 such that (a) qu /∈ Freq

and (sk −→
g
∗) ∈ Forbid, or (b) (∗ −→

g
pk) ∈ Forbid and (∗ −→

g
pk) /∈ Freq. If neither (a) nor (b) holds,

there will always exist a (S̃Ki,g′i) as per line 4a of Brk’s computation. Let p = λ0.1

η and notice that
η ≥ ω(log λ)

p .
Define a set L of queries as follows:

• For any (sk −→
g
∗) ∈ Forbid, add (sk −→

g
?) to L; and

• for any (∗ −→
g

pk) ∈ Forbid, if g−1(pk) 6= ⊥, add (sk −→
g

?) to L, where sk = g−1(pk).14

If the event Empty1 occurs, then the event E defined as Query(QGen1 \ Freq) ∩ L 6= ∅ holds.
Since the set Forbid, as well as L, are formed independently of QGen1, and that L has most 2η′λ

elements, invoking Lemma A.6 for p = λ0.1

η and t := |L| ≤ 2η′λ

Pr[Empty1] ≤ Pr[E] ≤ 1
2ω(log λ) + 2λ1.1η′

η
. (2)

Proof of Lemma 4.15. We prove this for a fixed value of h (say, h = 1), and the overall bound will
follow via a union bound, via an additional multiplicative factor of n. Recall that Agree is the
event that the union set S := QC ∪ QEnc ∪i 6=1 QGeni agrees with g′1, where QEnc, QC and QGeni

14Since g is chosen at random and has a sparse range, there will exist at most one pre-image, with all but negligible
probability.

36

are defined in Notation 4.12. First, notice that g′1 always agrees with QEnc, because the former has
only g-type queries, while the latter has e-type queries. Thus, we need to bound the probability
that for any (x −→

g
y) ∈ QC ∪i 6=1 QGeni, either (x −→

g
∗) /∈ g′1 or (x −→

g
y) ∈ g′1.

We break up the event Agree into Agree1 and Agree2. We let Agree1 be the event QC agrees
with g′1, and let Agree2 be the event S′ := ∪i 6=1QGeni agrees with g′1.

We first bound the probability of Agree1. Let P be the process performed in each itera-
tion of Line 3 of Brk, namely the process of sampling a fresh (PK, ∗) and running (S̃K,g′) ←$
ConsOrc(PK,Freq,Forbid), and updating Forbid accordingly. Notice that (S̃K1,g′1) of Line 4a of Brk
is sampled according to the same process. We say an iteration of the process P is Good if either
(a) the sampled g′ in that iteration is empty; or (b) Query(g′) ∩Query(QC \ Freq) = ∅. Otherwise,
we say that iteration of P is Bad. The event Agree1 is the event that the iteration corresponding
to (S̃K1,g′1) in Line 4a is Bad. Also, notice that since |QC| = λ, we have at most λ Bad iterations.
The reason for this is that if for some iteration the event Bad happens, then the particular query
of QC which caused Bad is added to Forbid, and so the same query cannot make Bad happen in a
future iteration. Now since the iteration for (S̃K1,g′) is the (γ+ 1)’s iteration, where γ ←$ [η′], the
probability that that iteration is Bad is at most λ

η′ . Thus, Pr[Agree1] ≤ λ
η′ .

We now bound the event Agree2. Notice if Agree1 holds, there must exist a query in g′1 that also
appears in QGeni \ Freq for some i > 1. Let p = λ0.1

η and notice that η ≥ ω(log p)
p . Since QGeni for

all i ∈ {2, . . . , n} is formed independently of g′1, applying Lemma A.6 for p and η, the probability
there is an intersection between g′1 and (∪i 6=1QGeni)\Freq is at most 1

2ω(log(λ)) + nλ1.1

η . Here we used
the fact that | ∪i 6=1 QGeni| < nλ.

Proof of Lemma 4.16. We prove it for i = 1. The proof works exactly as that of bounding Pr[Agree1]
in Lemma 4.15. So, we repeat the argument with the necessary modifications. Let P be the
process performed in each iteration of Line 3 of Brk, namely the process of sampling a fresh (PK, ∗)
and running (S̃K,g′) ←$ ConsOrc(PK,Freq,Forbid), and updating Forbid accordingly. Notice that
(S̃K1,g′1) of Line 4a of Brk is sampled according to the same process. We say an iteration of the
process P is Good if either (a) the sampled g′ in that iteration is empty; or (b) there does not
exist a query/answer pair (∗ −→

g
pk) ∈ g′ such that (∗ −→

g
pk) ∈ QA \ Freq. Otherwise, we say

that iteration of P is Bad. The event Surprise1 is the event that the iteration corresponding to
(S̃K1,g′1) in Line 4a is Bad. Also, notice that since |QC| = λ, we have at most λ Bad processes.
The reason for this is that if for some iteration the event Bad happens, then the particular public
key pk of QC which caused Bad is added to Forbid, and so the same pk cannot make Bad happen in
a future iteration. Now since the iteration for (S̃K1,g′) is the (γ + 1)’s iteration, where γ ←$ [η′],
the probability that that iteration is Bad is at most λ

η′ .

Proof of Lemma 4.17. We show whenever the event Spoof holds, we can forge a public key pk in
the sense of Lemma A.8, implying the bound of 1

22λ . We build an adversary A in the sense of
Lemma A.8, as follows. The adversary A will generate all (PK1, . . . ,PKn), which are the input to
Brk, by running CRS ←$ CRSGeng(1λ) and (PKi, ∗) ←$ Initg(CRS). Then A performs the steps
of Brk up until producing g′1, . . . ,g′n – while populating Freq as in Brk’s procedure. At this point
notice that all queries made to g by A thus far are either contained in QA ∪ QGen1 ∪ · · · ∪ QGenn
or in Freq. Thus, if the event Spoof holds, then A has indeed forged a pk.

37

Proof of Lemma 4.19. We claim Pr[Evnt2 ∧ Surprise ∧ Spoof ∧ Intersect] ≤ negl(λ). Assuming this,
by Lemmas 4.16, 4.17, 4.14, 4.18

Pr[Surprise ∨ Spoof ∨ Intersect] ≤ nλ

η′
+ 1

22λ + 2n2λ1.1

η
+ n2

2ω(log λ) . (3)

Assuming η′ ≥ nλc+1 and η ≥ nη′λ1.1+c,

Pr[Surprise ∨ Spoof ∨ Intersect] ≤ 4
λc
. (4)

Thus, Pr[Evnt2] ≤ 5
λc , as desired.

To prove the above claim, we show whenever all the events

Evnt2 ∧ Surprise ∧ Spoof ∧ Intersect

hold, we can build a forger in the sense of Lemma A.2. The desired bound will then follow.
Since Evnt2 holds, Forge = 1. Let Chal := {(pk1, c2), . . . , (pkn, cn)} be the set of public

key/ciphertexts built up by Brk. To apply Lemma A.2, think of (PK1, . . . ,PKn) as x0, of C as
x1, and of Chal as the challenge set required by the lemma. First, note that a forger Bg,u,v,d(x0, x1)
may indeed efficiently compute Chal, because Brk never makes e queries, so Brk can be simulated
by B. We have to ensure: (i) n ≥ d2 |C|3λ e+ 1; (ii) all the pairs in Chal are distinct, and (iii) for all
i ∈ [n] v(pki, ci) = >. Condition (i) holds because |C| ≤ 3λ(n−1)

2 , by assumption. Condition (iii)
holds by the check (4(c)i) made by Brk.

We now show Condition (ii) holds. We will prove a stronger statement by showing that in
fact all pki’s in the set Chal are distinct.15 For any i ∈ [n], we claim: (a) (∗ −→

g
pki) ∈ g′i, (b)

(∗ −→
g

pki) /∈ Freq, and (c) pki ∈ g(∗). Conditions (a) and (b) hold because otherwise none of
the sub-bullets of Line 4c (and in particular Line 4(c)iii) would be hit, and so (pki, ci) would not
be added to Chal. Also, (c) holds because otherwise Line (4(c)ii) of Brk would be hit, and hence
(pki, ci) would not be added to Chal.

Now since Spoof holds, Condition (a) and (c) imply that for some ski, (ski −→g pki) ∈ ∪i∈[n]QGeni∪

QC∪Freq. Since (b) holds, (∗ −→
g

pki) ∈ ∪i∈[n]QGeni∪QC. Since Surprise and (b) hold, (∗ −→
g

pki) ∈
∪i∈[n]QGeni. Finally, since (b) and Intersect hold, for all distinct i and j: pki 6= pkj . Indeed, since
we already know (∗ −→

g
pki) ∈ QGeni \ Freq and (∗ −→

g
pkj) ∈ QGenj \ Freq, if pki = pkj , then the

assumption that Intersect holds will be violated. The proof is now complete.

C CKE Impossibility from Black-Box PKE: General Case
In this section, we present the general attack against CKE constructions that make use of the oracles
in arbitrary ways. To make proofs simpler, we assume that the CKE protocol is in a complied form,
with oracle access as (CRSGeng,e, Initg,e, Commg,e, Deriveg,e,d). Namely, we assume that no calls
to d are made by CRSGen, Init and Comm. One may put any protocol into this compiled form by
using standard compilation techniques [19, 26]. First, notice that we might assume that CRSGen

15In order for Lemma A.2 to apply it suffices to prove that the pairs are distinct.

38

makes no d queries, because answers to such queries can be predicted. Next, for Init we might
assume that it does not make any d queries that it knows the answers to already (i.e., any query
((sk, c) −→

d
?) such that Init has already produced a query/response pair ((pk, ∗, ∗) −→

e
c), where

pk := g(sk)). Thus, the only non-trivial decryption queries are of the form ((sk, c) −→
d

?) where c
was generated by CRS←$ CRSGen(1λ). Here is where the idea of compilations comes into play: we
might compile CRSGen and Init such that CRSGen will sample many random executions of Init in
its head and will collect all decryption queries appearing there; then, it will append the answers to
all such queries into CRS. This way we can change Init so that it will make no decryption queries.
Similarly, we can get rid of d queries for Comm, since both preceding algorithms (namely, CRSGen
and Init) can run many executions of Comm and provide decryption answers as part of their local
outputs. Finally, we note that the reason we cannot do this step of ridding of d queries as easily
for Derive is that Derive takes in a private key, which is not available to the previous algorithms.

For our general case we need a more general version of the output compression lemma, as given
below. Informally, under this more general version, we allow the forger to call e, but it should forge
public key/ciphertexts pairs that are not generated as part of e queries. Due to this restriction, the
proof template of Lemma A.2 still holds in this more general case, and we get the following more
general variant (whose proof is omitted).

Lemma C.1. Let Ag,e be an arbitrary adversary that makes a number of queries and outputs an ‘ad-
vice’ string x. Let Bg,e,u,v,d(x) be an adversary that takes as input x, makes queries to (g, e,u,v,d)
and outputs a set Chal = {(pk1, c1), . . . , (pkw, cw)}. Suppose Q is the set of all queries/responses
made by B. We say Chal is non-trivial if for no i ∈ [w], ((pki, ∗, ∗) −→e ci) ∈ Q. We say the event

Success holds if (i) w ≥ d2 |x|3λe + 1; (ii) all the pairs in Chal are distinct, (iii) for all i ∈ [w]
v(pki, ci) = > and (iv) Chal is non-trivial. We then have Pr[Success] = negl(λ), where the proba-
bility is taken over (g, e,d,u,v)←$ Ψ and the random coins of A and B.

For the general attack, we need to enhance the frequent queries learner, so that it also learns
the heavy queries of Comm, in addition to those of Init.

Definition C.2 (Sampling frequent queries). We define a probabilistic oracle procedure FreqPubO:

• Input: (CRS, η), where η is an integer.

• Output: A set of query/response pairs Freq sampled as follows. Let Freq = ∅. Do the
following η times, and record all query/answer pairs in Freq.

1. Sample n public keys PK1, . . . ,PKn by running Initg,e(CRS) n different times.
2. Execute Commg,e(PK1, . . . ,PKn).

We also need a procedure that allows us to super-impose a set of encryption queries Qc (sampled
independently of e) into e, in such a way that the super-imposed encryption oracle, eimp, agrees
with Qc, and with e as much as possible, and also that eimp has a corresponding super-imposed
decryption oracle.

Definition C.3. Let O := (g, e,d) be a Ψ-valid oracle and let

Qc := {{((pk1, b1, r1) −→
e
c1), . . . , ((pkw, bw, rw) −→

e
cw)}}

39

be a set of e-type query answer pairs, which may not agree with e. We define (eimp,dimp) := Qc♦∗O,
obtained by super-imposing Qc on O, as follows.

First, let W = {(pk1, c1), . . . , (pkp, cp)} and

W′ = {(pk1, e(pk1, b1, r1)), . . . , (pkp, e(pkp, bp, rp))}.

Define

eimp(pk, b, r) =


ci if (pk, b, r) = (pki, bi, ri), for some i ∈ [w]
ĉ else if (pk, e(pk, b, r)) ∈W,
e(pk, b, r) otherwise

(5)

where ĉ is defined as follows: Letting x be the smallest integer such that (pk, e(pk, b, r+x)) /∈W∪W′
we set ĉ = e(pk, b, r + x). Here, r + x is done using a standard method.

dimp(sk, c) =
{
bi if g(sk) = pki and c = ci for some 1 ≤ i ≤ w
d(sk, c) otherwise (6)

C.0.1 Description of the Attacker

We now give the CKE attacker for the general case. The attacker will at the end output a
(polynomial-sized) set of keys, and we will be interested in the probability that the set contains the
shared key. Since the set has a polynomial number of keys, we can also guess the correct key with
a non-negligible probability, assuming that the set has indeed the correct key.

Brkg,e,d,u,v(CRS,PK1, . . . ,PKn, C) :

1. Let DecValues := ∅ and Forbid = ∅. The set DecValues will maintain all decryption values.

2. Do the following for η iterations. Sample randomness R and execute FreqPubO(CRS) and
record all query/response pairs in Freq.

3. Sample γ ←$ [η′] and do the following γ times. Run (PK, ∗) ←$ Initg(CRS) using fresh
randomness, sample (S̃K,g′, e′)←$ ConsOrc(PK,Freq,Forbid), and

(a) for every qu := (sk −→
g

pk) ∈ g′ \ Freq, add (sk −→
g

?) to Forbid. Also, for any (sk −→
g

pk) ∈
g′ \ Freq if (∗ −→

g
pk) /∈ Freq, add (∗ −→

g
pk) to Forbid.

(b) for every qu := ((pk, b, r) −→
e
c) ∈ e′ \ Freq, add ((pk, b, r) −→

e
?) to Forbid. Also, for

((pk, b, r) −→
e
c) ∈ e′ \ Freq, if ((pk, ∗, ∗) −→

e
c) /∈ Freq, add ((pk, ∗, ∗) −→

e
c) to Forbid.

At the end of each iteration, update Freq by adding all queries made during (PK, ∗) ←$
Initg(CRS) to Freq.

4. For i ∈ [n]

(a) Sample (S̃Ki,g′i, e′i)←$ ConsOrc(PKi,Freq,Forbid). If (S̃Ki,g′i, e′i) = ⊥, then halt.
(b) Let O′′i = (g, e′′i ,d′′i) := e′i♦∗O.
(c) Let (g̃i, ẽi, d̃i) := g′i♦∗O′′i .

40

(d) Parse e′i := {((pk1, ∗, ∗) −→e c1), . . . , ((pkλ, ∗, ∗) −→e cλ)}. For all j ∈ [λ], add both (pki, ci)
and (pki, e(pki, bi, ri)) to Q. Also, for any (pk, c) such that ((pk, ∗, ∗) −→

e
c) ∈ Freq, add

(pk, c) to Q.

(e) Execute Deriveg̃i,ẽi,d̃i(S̃Ki, C) and reply to queries as follows. Reply to all g̃i and ẽi
queries as Part 2 of Lemma C.4. For a query qu := ((sk, c) −→

d̃i
?), if (sk −→

g
∗) ∈ Freq

or (sk −→
g
∗) /∈ g′, then reply to the query as in Part 3 of Lemma C.4. Otherwise, let

pk = g̃i(sk) — which can be computed efficiently — and
i. if (sk′ −→

g
pk) ∈ Freq for some sk′, reply to qu with d(sk′, c);

ii. if (pk, c) ∈ Q, then reply to the query as in Part 4 of Lemma C.4.
iii. else if v(pk, c) = ⊥, then reply to qu with ⊥;
iv. else if u(pk, c) = m 6= ⊥, then reply to qu with m;
v. else, reply to qu with ⊥ and add (pk, c) to Chal.

(f) Letting K̃i be the output of the simulated decryption of Derived̃(S̃Ki, C), add K̃i to
DecValues.

We give the following lemma whose proof is immediately obtained via inspection, and so the
proof is omitted.

Lemma C.4. Fix an Iteration i ∈ [n] in Step 4 of Brk’s procedure. Let e′i := {((pkj , bj , rj) −→e cj) |
j ∈ [λ]}. Define

W := {(pkj , cj) | j ∈ [λ]} (7)
W′ := {(pkj , e(pkj , bj , rj) | j ∈ [n]). (8)

Let Q := W ∪W′ ∪ {(pk, c) | ((pk, ∗, ∗) −→
e
c) ∈ Freq}, as in Step 4d of Brk’s procedure.

1. (g̃i, ẽi, d̃i) is a PKE-valid oracle; i.e., it satisfies perfect correctness (Definition 4.7).

2. Both g̃i and ẽi (Step 4c) can be computed efficiently on all points by having oracle access to
(g, e) and having (g′i, e′i) as input.

3. For any (sk, c) if (sk −→
g′i

?) /∈ g′i, or (sk −→
g

?) ∈ Freq, or (∗ −→
g

pk) ∈ Freq where pk := g̃i(sk),

then d̃(sk, c) can be efficiently computed by having oracle access to (g, e,d) and having g′i and
e′i as an input.

4. For any query ((sk, c) −→
d̃

?), letting pk := g̃i(sk) (which can be computed efficiently as

per Line 2), if (pk, c) ∈ Q, then ((sk, c) −→
d̃

?) can be computed efficiently, as follows. If

((pk, b, r) −→
e

c) ∈ Freq for some b and c, then d̃(sk, c) = b. If (pk, c) ∈ W′ \ W, then
d̃(sk, c) = ⊥. Else, if (pk, c) = (pkj , cj) for j ∈ [λ], then d̃(sk, c) = bj.

41

C.0.2 Analysis of the Attack

We work with the events given in Definition 4.13 with the following modifications. We define the
event

• Event Evnt2: the event that for every i ∈ [n], Line 4(e)v is hit with a value (pk, c) such that
((pk, ∗, ∗) −→

e
c) ∈ QEnc \ (∪iQGeni ∪ QC ∪ Freq).

We will bound all these bounds below. The bounds for events Surprise, Spoof and Intersect are
exactly those of Lemmas 4.16, 4.17 and 4.18, with exactly the same proofs. We now bound the
other events which require a slightly more general analysis.

Lemma C.5. Assuming η ≥ λ0.1, for any i ∈ [n] Pr[Emptyi] ≤ 1
2ω(logλ) + λ1.1η′

η . Thus, Pr[Empty] ≤
n

2ω(logλ) + nλ1.1η′

η

Proof. We prove this for i = 1. The event Empty1 occurs if there exists a query qu ∈ QGen1 such
that ∈ Forbid \ Freq. This is so because QGen1 consists only of g and e-type queries, and as long
as all queries of QGen1 can be picked by g′1, the event Empty1 will not occur. But in order for a g
and e-type query of QGen1 becomes “off-limits”, the same query should have been put in Forbid.
Now exactly as in Lemma 4.14 we may conclude Pr[Emptyi] ≤ 1

2ω(logλ) + λ1.1η′

η .

Lemma C.6. Assuming η ≥ λ0.1, Pr[Agree] ≥ 1− 3n
2ω(log(λ)) −

(n2+n)λ1.1

η − 3λn
η′ −

λ1.1

η .
Proof. We prove this for a fixed value of h (say, h = 1), and the overall bound will follow via a
union bound. We let Agree′ be the event that g′1 agrees with QC ∪ QEnc ∪i 6=1 QGeni and Agree′′
be the event that e′1 agrees with QC ∪ QEnc ∪i 6=1 QGeni. It is easy to see that the probability of
Agree is at most Pr[Agree′] + Pr[Agree′′]. Using the same argument as in Lemma 4.15, Pr[Agree′] ≤

1
2ω(log(λ)) + λ

η′ + nλ1.1

η .
To bound Agree′′ we break up Agree′′ into Agree′′, Agree′′2 and Agree′′3, where these describe the

events that ẽ1 agrees with QC, with ∪i 6=1QGeni, and with QEnc, respectively.
We first bound Agree′′1. Let P be the process performed in each iteration of Line 3 of Brk, namely

the process of sampling a fresh (PK, ∗) and running (SK′,g′, e′)←$ ConsOrc(PK,Freq,Forbid), and
updating Forbid accordingly. Notice that (S̃K1,g′1, e′1) of Line 4a of Brk is sampled according to
the same process. We say an iteration of the process P is Good if either (a) the sampled e′ in
that iteration is empty; or (b) there does not exists any ((pk, b, r) −→

e
c) ∈ QC \ Freq such that

either ((pk, b, r) −→
e
∗) ∈ e′ \ Freq or ((pk, ∗, ∗) −→

e
c) ∈ e′ \ Freq. Otherwise, we say that iteration of

P is Bad. By inspection, one can see that whenever Agree′′1 holds, the iteration corresponding to
(S̃K1,g′1, e′1) in Line 4a is Bad. Also, notice that since |QC| = λ, we have at most 2λ Bad iterations.
This is so because any query in QC can make at most two iterations Bad. Now since the iteration
for (S̃K1,g′1, e′1) is the (γ+1)’s iteration, where γ ←$ [η′], the probability that that iteration is Bad
is at most 2λ

η′ . Thus, Pr[Agree2] ≤ 2λ
η′ .

Exactly as in the proof of Lemma 4.15 we can deduce Pr[Agree′′2] ≤ 1
2ω(log(λ)) + nλ1.1

η .
To bound Agree′′3, notice if Agree′′3 holds, there must exist a query in ẽ1 that also appears in

QEnc. Let p = λ0.1

η and notice that η ≥ ω(log p)
p . Since QEnc is formed independently of ẽ1, applying

Lemma A.6 for p and η, the probability there is an intersection between ẽ1 and QEnc \ Freq is at
most 1

2ω(log(λ)) + λ1.1

η .

42

We now prove a lemma analogous to Lemma 4.19.

Lemma C.7. Suppose |C| ≤ 3λ(n−1)
2 , where C is the CKE ciphertext. For any constant c > 0,

assuming η′ ≥ nλc+1 and η ≥ nη′λ1.1+c, Pr[Evnt2] ≤ 5
λc .

Proof. The proof follows similarly to that of 4.19, except in the way Lemma C.1 will be invoked.
First, similarly to Lemma C.1

Pr[Surprise ∨ Spoof ∨ Intersect] ≤ 4
λc
, (9)

obtained from the way in which η and η′ are instantiated. We will now show whenever all the
events Evnt2 ∧ Surprise ∧ Spoof ∧ Intersect hold, we can build a forger in the sense of Lemma C.1.
The desired bound will then follow.

Let Chal := {(pk1, c1), . . . , (pkm, cm)} be the set of public key/ciphertexts built up by Brk.
Notice that it might be that m > n (because upon hitting Line 4(e)v, Brk continues the exe-
cution while pretending the answer is ⊥, while adding the pair to Chal), and that Chal contains
pairs that do not cause a contradiction, when applying Lemma C.1. So, we have to remove some
pairs from Chal, as explained below. To apply Lemma C.1, sample randomness R for generating
(CRS,PK1, . . . ,PKn). Let Ag,e,d be an adversary that has R hardwired, and which uses R to gener-
ate (CRS,PK1, . . . ,PKn), and which outputs C formed as (C, ∗)←$ Commg,e(PK1, . . . ,PKn) using
fresh randomness. Now let Bg,e,d,u,v(C), also getting R hardwired in, be an adversary that uses R
to re-generate (CRS,PK1, . . . ,PKn) and will then simulate Brk(PK1, . . . ,PKn, C) to get Chal. Now
for every pair (pk, c) in Chal such that there was a query ((pk, ∗, ∗) −→

e
c) ∈ ∪iQGeni ∪QC made by

B, it will remove (pk, c) from Chal. The fact that Evnt2 holds implies that Chal remains with at
least n pairs, none of which was generated as a result of a previous e query, by B. From this point
on, using exactly the same arguments in Lemma 4.19, we can conclude that all pairs in Chal are
distinct and valid. The proof is now complete.

Now that all the events have been bounded, we can prove an analogous statement to that of
Lemma 4.20, hence proving a lowerbound on the probability of attack success. This will imply
Lemma 4.4.

D Proof of CGKA Lower Bound
Proof of Theorem 3.1. We build a CKE construction that internally uses a CGKA scheme to exe-
cute a CGKA operation sequence. For conducting a CKE commit to k public keys, this operation
sequence contains at least one collective update assistance for k passive users. The core idea of the
CKE construction is that precisely the effective operations of this collective update assistance in the
CGKA sequence are embedded in the committed CKE ciphertext. Hence, the total size of these
effective CGKA operations equals the size of the CKE ciphertext. All remaining operations in the
CGKA sequence are, in different shapes, encoded in the CKE common reference string CRS.

As part of the proof, we reduce the security of this CKE construction to the security of the
underlying CGKA scheme. Finally, we show that a CGKA scheme that executes this sequence
without inducing a communication overhead of Ω(k) for the effective operations implies a CKE
construction with compact ciphertexts.

43

CKE Construction. For clarity, we build a CKE construction that always commits to k public
keys, where k ∈ poly(λ) is fixed and λ is the security parameter. This CKE construction can be
instantiated with any CGKA operation sequence Seq that adds k passive users and performs at
least one subsequent collective update assistance.

Internally, the CKE construction executes CGKA operation sequence Seq. All effective opera-
tions of the included collective update assistance in that sequence are embedded in the committed
CKE ciphertext. The pre-add phase as well as random coins for the remaining operations in that
sequence (i.e., add operations and ineffective pre-assistance operations) are embedded in the CKE
common reference string CRS. When processing a received CKE ciphertext to derive the exchanged
CKE key, all receivers independently execute the same CGKA operation sequence Seq internally.
Firstly, the pre-add phase is decoded from the CRS and processed. Then, random coins are de-
coded from the CRS with which the k add operations and the subsequent ineffective pre-assistance
operations are locally executed and then processed. Finally, the CGKA ciphertexts of the effective
operations are decoded from the received CKE ciphertext and then processed in order to compute
the CGKA key of the last operation in the collective update assistance. This CGKA key is output
as the derived CKE key.

Let k be the fixed number of input public keys for CKE commits, and Seq be a CGKA execution
schedule that adds k passive users from the tA1 th until the tAk th operation and afterwards performs
a collective update assistance until the t∗ th operation. Without loss of generality, sequence Seq
ends with the t∗ th operation such that the irrelevant end of that sequence is disregarded. Then
PU is the set of passive users’ public keys in that sequence, AU t∗ is the set of active users’ public
keys, and EOt∗ is the set of effective operations.

• CRSGen:

1. Execute (PK,ST)←$ Gen for all users in sequence Seq except for those in set PU
2. Add (PK, ST) to CRS for all users in set AU t∗

3. Add only PK to CRS for all users not in set PU ∪AU t∗

4. Sample random coins for all operations in Seq and execute the sub-sequence that ends
with the tA1 − 1 th operation with their coins

5. Add the random coins for all operations to CRS that were initiated by users in set AU t∗

except for the random coins of operations in set EOt∗

6. Add the output ciphertexts of all operations to CRS that were initiated by users not in
set PU ∪AU t∗

7. Add the description of Seq to the CRS
8. Return CRS

• Init(CRS):

1. Execute (PK,ST)←$ Gen
2. Return (PK, SK) = (PK, ST)

• Comm(CRS, {PKi}i∈[k]):

1. Execute sequence Seq until the tA1 − 1 th operation with the secret states of users in
set AU t∗ , respective random coins, and ciphertexts from CRS.

44

2. Execute sequence Seq from the tA1 th to the tAk th operation with the secret states of users
in set AU t∗ and the respective random coins from CRS. Each of the k operations that
add users in set PU takes a public key from input {PKi}i∈[k] as actually added CGKA
user in a distinct order

3. Execute sequence Seq from the tAk + 1 th to the t∗ th operation with the secret states of
users in set AU t∗ from CRS. Operations not in set EOt∗ use their respective random
coins from CRS and operations in set EOt∗ use freshly sampled random coins

4. Use the CGKA key output by the t∗ th operation as CKE key K
5. Compose the CKE ciphertext C from the list of ciphertexts output by operations in

set EOt∗

6. Return (K,C)

• Derive(CRS, SK, {PKi}i∈[k], C):

1. Execute steps 1 and 2 from algorithm Comm identically
2. Execute and/or process sequence Seq from the tAk + 1 th to the t∗ th operation with

the secret states of users in set AU t∗ from CRS and secret state ST from input SK.
Operations not in set EOt∗ use their respective random coins from CRS. Operations in
set EOt∗ are processed via CGKA algorithm Proc with ciphertexts from input C and
secret state ST from input SK

3. Use the CGKA key output by the t∗ th operation as CKE key K
4. Return K

When we write “execute sequence”, we mean that all operations initiated by active users are
indeed (re-)computed with their respective secret state and potentially fixed random coins from
CRS. This produces the corresponding output ciphertexts. The ciphertexts of all operations—
including the ones directly stored in CRS that are initiated by users who are neither marked active
nor passive—are then used for processing the sequence. The sequence is processed with the secret
states of the active and, in CKE algorithm Derive, passive users. The only operations by active
users that are never re-processed with their own states nor re-initiated after being initiated once in
CKE algorithm Comm are the effective operations in set EOt∗ . The effective operations in set EOt∗

are initiated once in CKE algorithm Comm and processed once per CKE receiver in CKE algorithm
Derive.

Security of CKE Construction.

Lemma D.1 (CKE Security). Let k ∈ poly(λ) be fixed and Seq be a CGKA operation schedule with
|PU | = k and with a collective update assistance ending with the t∗ th operation that instantiates
CKE construction CKE. For every adversary A that is successful according to Definition 2.4 in
breaking the security of CKE there exists an adversary B that is successful according to Definition 2.3
in breaking the security of the underlying CGKA construction such that Adv(A) ≤ Adv(B).

Proof of Lemma D.1. We define adversary B as follows: Given the CGKA execution schedule Seq
that instantiates CKE construction CKE, B composes its query to the CGKA security game by
extending this schedule. This extended schedule Seq′ additionally specifies that all active users in

45

set AU t∗ are corrupted twice: (1) immediately after their public-key secret-state pairs are generated
initially and (2) immediately before their respective first effective operation in set EOt∗ begins.
Furthermore, B specifies the t∗ th operation as the one that establishes the targeted key. The CGKA
security game responds on (Seq′, t∗) with transcript Trans that contains the following information:

• Public keys of all involved users

• Initial secret states of all active users in set AU t∗ (from the first corruption)

• Random coins of all operations initiated by the active users, except for the random coins of
effective operations in set EOt∗ (from the second corruption)

• Ciphertexts of all operations

Using this information, B composes CKE common reference string CRS, CKE public keys {PKi}i∈[k] =
PU , and CKE ciphertext C. B invokes A(CRS, {PKi}i∈[k], C), which returns its guessed key K.
This guessed CKE key K is forwarded to the CGKA security game as a guess for the CGKA key
that is exchanged with the t∗ th operation.

Reduction B perfectly simulates construction CKE and extracts A’s CKE solution to solve the
CGKA challenge. Since every successful adversary A is reduced to a successful adversary B, we
have Adv(A) ≤ Adv(B), which proves Lemma D.1.

Communication Complexity of CGKA. Given fixed k ∈ poly(λ), a CGKA operation sched-
ule Seq with |PU | = k and a collective update assistance ending with the t∗ th operation that
instantiates CKE construction CKE. The CKE ciphertext in construction CKE precisely contains
the CGKA ciphertexts of effective operations EOt∗ that realize the corresponding collective update
assistance. Assume there exists a CGKA scheme for which the effective operations compute ci-
phertexts with total size o(k). Using this CGKA scheme, we obtain a CKE construction CKE with
compact ciphertexts, which contradicts Theorem 4.5 and, consequently, proves Theorem 3.1.

E From CKE to CGKA Tightly
In this section, we show to build CGKA from CKE such that the worst-case communication com-
plexity of the CGKA scheme is asymptotically proportional to that of the CKE scheme. Together
with the result of Section 3, this shows that the worst-case size of CKE ciphertexts both lower
bounds and upper bounds the worst-case size of CGKA ciphertexts. Note: our CGKA scheme only
achieves the security of Definition 2.3; i.e., we do not prove FS properties nor adaptive security
for it. However, it is easy to see that it achieves FS similar (slightly weaker) to that of MLS [8]
(after an Up operation, a subsequent corruption of the corresponding user does not reveal group
keys from before the operation) and that a slightly stronger CKE definition would achieve adaptive
security for CGKA.

To build CGKA from CKE we, for simplicity, only consider those CKE schemes without a CRS
(i.e., those CKE schemes satisfying Definition 2.4 with CRS = ε). We thus in this section omit
CRS from the CKE syntax. Note that of course our black-box lower bound on CKE from PKE in
Section 4 still holds for such CKE schemes.

Using such a CKE scheme to build CGKA is straight-forward: All CGKA users during Gen set
(ST,PK) to be the outputs (SK,PK) of the CKE algorithm Init. A group member that executes a

46

CGKA operation simply collects the public keys of the users who will be in the group after their
operation, inputs them to the CKE Comm algorithm, and outputs the resulting CKE message C
and group key K. All other group members can then use CKE algorithm Derive and their CKE
secret key to determinstically derive the group key K in Proc.

Formally, each user will store M, the set of public keys of the current group members. Before,
a given user is added to the group, they will simply store M = {PK}, where PK is their own public
key. CGKA = (Gen,Add,Rem,Up,Proc) is defined as follows:

• Gen() executes (SK′,PK′) ←$ Init() and outputs (ST,PK) = ((SK′,PK′,M),PK′), with M =
{PK′}.

• Add(ST,PKadd) first parses ST = (SK′,PK′,M) and sets M′ ← M∪{PKadd}, ST′ ← (SK′,PK′,M′).
Then, it executes (K,C ′)←$ Comm(M′), sets CG ← (C ′,PKadd, ε), CB ← (PK′,PKadd, ε) and
outputs (ST′,K, (CG, CB)).

• Rem(ST,PKrem) first parses ST = (SK′,PK′,M) and sets M′ ← M\{PKrem}, ST′ ← (SK′,PK′,M′).
Then, it executes (K,C ′)←$ Comm(M′), sets CG ← (C ′, ε,PKrem), CB ← (PK′, ε,PKrem) and
outputs (ST′,K, (CG, CB)).

• Up(ST) first parses ST = (SKold,PKold,M) and executes (SKnew,PKnew) ←$ Init(). It
next sets M′ ← (M \ {PKold}) ∪ {PKnew}, ST′ ← (SKnew,PKnew,M′). Then it executes
(K,C ′) ←$ Comm(M′), sets CG ← (C ′,PKnew,PKold), CB ← (PKold,PKnew,PKold) and out-
puts (ST′,K, (CG, CB)).

• Proc(ST, CG, (B))16 first parses ST = (SK′,PK′,M) and CG = (C ′,PKadd,PKrem). Next:

1. If M = {PK′}, meaning the executing user was added in this operation, she computes
the current group member public key set M′ from the ciphertexts CB that have been
posted to the bulletin board B after each operation, then sets ST′ ← (SK′,PK′,M′).

2. If PK′ = PKrem, the algorithm sets M′ ← {PK′} and ST′ ← (SK′,PK′,M′), and outputs
(ST′,⊥).

3. Otherwise, the algorithm sets M′ ← (M\{PKrem})∪{PKadd} and ST′ ← (SK′,PK′,M′).17

If Step 2 above was not executed, K ← Derive(SK′, C ′,M′) is executed by the algorithm and
(ST′,K) is then output.

Theorem E.1. If CKE = (Init,Comm,Derive) is a correct and secure compact key exchange pro-
tocol, then CGKA = (Gen,Add,Rem,Up,Proc) defined above is a correct and secure continuous
group key agreement protocol.

Proof. Correctness of CGKA clearly follows from the correctness of CKE: the CGKA operation
executor simply executes Comm on input the current group members’ public keys to compute
group key K and message C, from which all other group members can compute K using Derive.
The executor also includes in the output direct CGKA message CG: the public key of the added
user during an Add operation, the public key of the removed user during a Rem operation, and

16Recall that Proc only takes in B for added users.
17We assume {ε} ≡ ∅ when considering set operations including {ε}.

47

her old and new public key during an Up operation, so that all group members can keep track of
the current pubic keys of other members. This information is additionally included in the bulletin
board message CB, so that added users can easily obtain the current group member public key set
from the bulletin board B.

For non-adaptive security of CGKA, we will show a reduction from the security of CKE. Assume
there exists some adversary A of CGKA that succeeds in the CGKA security game with probability
ε > negl(λ). We will use A to construct adversary B that has advantage ε in the CKE security
game, a contradiction.

First note that from operation sequence Seq and challenge epoch t∗ which A provides upon
initialization of the CGKA game, B can easily compute the number of users n in the group at epoch
t∗, forward this to its challenger, and assign to those users at epoch t∗ public keys PK1, . . . ,PKn

received from the CKE challenger. When A queries Gen(), if the resulting public key will not
be in the group in challenge epoch t∗ (which B can discern from Seq), then B simply executes
(SK,PK)←$ Init() and sends PK to A. Otherwise, it simply sends the corresponding PKi from the
CKE challenger to A. When A queries one of Add(PK,PK∗) or Rem(PK,PK∗) for epoch t 6= t∗,
B simply executes C ′ ←$ Comm(M′), constructs CG and CB, then sends (CG, CB) to A. For query
Up(PK) for epoch t 6= t∗, if the resulting public key will not be in the group in challenge epoch t∗
(which B can discern from Seq), then B first computes (SKnew,PKnew) ←$ Init(), then continues
as above. Otherwise, it instead uses the corresponding PKi from the CKE challenger in place of
PKnew, then continues as above. For the epoch t∗ query, B simply uses the challenge ciphertext C
from the CKE challenger, constructs CG and CB, then sends (CG, CB) to A. For Corr(PK) queries
from A, B simply returns the corresponding SK, and the random coins which it sampled for the
corresponding user’s executions of Comm() and Init(). When A sends K, B simply forwards it to
its challenger.

Clearly, B has perfectly simulated the CGKA security game against CGKA for A. Namely, since
the epoch t∗ which A challenges must not be in WeakEpochs, it must be that all users in the
group at epoch t∗ were either never corrupted, or were updated since their last corruption. Thus,
all corruptions queried by A correspond to secret states and randomness which B generated and
sampled, respectively, on its own. Thus since A wins the CGKA game with probability ε, B wins
the CKE game against CKE with probability ε, a contradiction.

The following corollary follows immediately from the construction of CGKA above:

Corollary E.2. The asymptotic worst-case communication complexity of CGKA operations with
n group members is equivalent to the asymptotic worst-case communication complexity of CKE
Comm() algorithm on input n public keys.

F Tainted TreeKEM Summary
Here we give a summary of Tainted TreeKEM (TTKEM). We take it almost verbatim from Alwen
et al. [6, §2], adapting it to our notation, and removing details which are not relevant to our paper.

F.1 Overview

TTKEMworks over a binary tree T and makes black-box use of PKE protocol PKE = (Gen,Enc,Dec)
and PRF F . The nodes in the tree are associated with the following values:

48

• a seed ∆;

• (all nodes except the root) a PKE secret/public key pair (sk, pk) derived deterministically
from the seed; and

• (all nodes except leaves and root) a tainter ID.

The root has no associated public/secret key pair, instead its seed is the current group key.
To achieve FS and PCS, and to manage group membership, it is necessary to constantly renew

the secret keys used in the protocol. We will do this through the group operations Up(), Rem(),
and Add(). We will use the term refresh to refer to the renewal of a particular (set of) key(s)
(as opposed to the group operation). Each group operation will refresh a part of the tree, always
including the root and thus resulting in a new group key which can be decrypted by all members
of the current group.

Due to our simplified CGKA definition, each group member has a consistent view of the public
information in the tree, namely public keys, tainter IDs and past operations. Furthermore, group
members will have a partial view of the secret keys. More precisely, every user has an associated
protocol state ST (or state for short when there is no ambiguity), which represents everything users
need to know to stay part of the group. In particular, we define a state as the double ST = (M,T),
where

• M denotes the set of group members, i.e. PK’s that are part of the group; and

• T denotes a binary tree defined as above, where for each group member, their PK is associated
to a leaf node.

As mentioned, a user will generally not have knowledge of the secret keys associated to all tree
nodes. However, if they add or remove parties, they will potentially gain knowledge of secret keys
outside their path. We observe that this will not be a problem as long as we have a mechanism
to keep track of those nodes and refresh them when necessary, towards this end we introduce the
concept of tainting.

Tainting. Whenever party i refreshes a node not lying on their path to the root, that node
becomes tainted by party i. Whenever a node is tainted by a party i, that party has potentially
had knowledge of its current secret in the past. So, if party i was corrupted in the past, the secrecy
of that value is considered compromised (even if she deleted that value right away and is no longer
compromised). Even worse, all values that were encrypted to that node are compromised too. We
will assign a tainter ID to all nodes. This can be empty, i.e. the node is untainted, or corresponds
to a single party i, who last generated this node’s secret but is not supposed to know it. The tainter
ID of a node is determined by the following simple rules.

• After party i initialises, all internal nodes not on her path become tainted by her.18

• If party i updates or removes someone, refreshed nodes on her path become untainted.

• If party i updates or removes someone, all refreshed nodes not on her path become tainted
by her.

18Our CGKA syntax only allows party i to one-by-one add other users to the group, instead of an explicit initiali-
sation algorithm, but we keep this here for completeness.

49

Hierarchical derivation of updates. When refreshing a whole path we sample a seed ∆0
and derive all the secrets for that path from it. This way, we reduce the number of decryptions
needed to process the update, as parties only need to recover the seed for the “lowest” node that
concerns them, and then can derive the rest locally. To derive the different new secrets we follow
the specification of TreeKEMv9 [8]. Essentially, we consider a PRF F , fix tag x, and together with
Gen, we derive the keys for the nodes as follows:

(ski,∆i+1) := F (∆i, x)

pki ← Gen(ski)

where ∆i is the seed for the ith node (the leaf being the 0th node, its parent the 1st etc.) on the
path and (ski, pki) its new key pair.

With the introduction of tainting, it is no longer the case that all nodes to be refreshed lie on
a path. Hence, we partition the set of all the nodes to be refreshed into paths and use a different
seed for each path. For this we need a unique path cover, as users processing the update will need
to know which nodes secrets depend on which. A concrete example is given in [6, §A.2], but any
unambiguous partition suffices. The only condition required is that the updating of paths is done
in a particular common order that allows for encryptions to to-be-refreshed nodes to be done under
the respective updated public key (one cannot hope for PCS otherwise).

Let us stress that a party processing an update involving tainted nodes might need to retrieve
and decrypt more than one encrypted seeds, as the refreshed nodes on its path might not all be
derived hierarchically. Nonetheless, party needs to decrypt at most logn ciphertexts in the worst
case.

F.2 TTKEM Dynamics

Whenever a user i wants to perform a group operation, she will generate and send the appropriate
Update, Add or Remove message to all group members, and post the appropriate information to the
bulletin board. Messages should contain the identity of the sender, the operation type, encryptions
of the new seeds, and any new public keys. A more detailed description, as well as pseudo-code for
the distinct operations is presented in [6, §A.3].

Initialize. To create a new group with user public keys M = {PK1, . . .PKn}, user 1 generates
a new tree T, where the leaves have the associated public keys corresponding to the group mem-
bers.19 The group creator then samples new key pairs for all the other nodes in T (optimizing
with hierarchical derivation) and crafts welcome messages for each party. These welcome messages
should include an encryption of the seed that allows the computation of the keys of the appropriate
path. Each party will download from the bulletin board tree T.

Add. To add a new user with PKj to the group, user i identifies a free spot for them, samples a
seed ∆, and derives seeds for the nodes along the path to the root. She then encrypts the new seeds
to all the nodes in the co-path (one ciphertext per node suffices given the hierarchical derivation)
and sends them over together with the public key PKj of the added party.

19Again, our CGKA syntax does not have an explicit initialisation algorithm, but we keep this here for completeness.

50

Update. To perform an Update, a user computes a path partition for the set of nodes not on her
path that need to be refreshed (nodes tainted or with a tainted ancestor), samples a seed per such
path, plus a seed for their path, and derives the new key-pairs for each node, as described above.
She then encrypts the secret keys under the appropriate public keys in the copaths.

Remove. To remove user with PKj , user i performs an Update as if it was user j, refreshing all
nodes in user j’s path to the root, as well as all her tainted nodes (which will become tainted by
user i after the removal).

Process. When a user receives a protocol message C, it identifies which kind of message it is and
performs the appropriate update of their state, by updating the list of participants if necessary,
overwriting any keys, and updating the tainted ID’s.

51

	Introduction
	Our Results
	Compact Key Exchange
	Standard Security of Continuous Group Key Agreement
	Equivalence of CKE and CGKA Worst-Case Communication Complexity
	Black-Box Compact Key Exchange Lower Bound
	No Single Optimal CGKA Protocol Exists
	Lessons Learned for Practice

	Definitions
	Continuous Group Key Agreement
	Compact Key Exchange

	From CGKA to CKE Tightly
	Embedding CGKA Ciphertexts in CKE Ciphertexts

	CKE Lower Bound from PKE
	Proof Outline
	Attack for (CRSGeng, Initg, Comme, Derived)
	Description of the Attacker Against (CRSGeng, Initg, Comme, Derived)
	Attack Analysis

	No Single Optimal CGKA Protocol Exists
	Bad Sequences of Operations
	Suboptimality of all CGKA Protocols

	Omitted Preliminaries
	Omitted Proofs from Section 4
	CKE Impossibility from Black-Box PKE: General Case
	Description of the Attacker
	Analysis of the Attack

	Proof of CGKA Lower Bound
	From CKE to CGKA Tightly
	Tainted TreeKEM Summary
	Overview
	TTKEM Dynamics

