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Abstract

In this work we challenge the common misconception that information-theoretic (IT) privacy is too
impractical to be used in the real-world: we propose to build simple and reusable IT-encryption solutions
whose only efficiency penalty (compared to computationally-secure schemes) comes from a large secret
key size, which is often a rather minor inconvenience, as storage is cheap. In particular, our solutions are
stateless and locally computable at the optimal rate, meaning that honest parties do not maintain state
and read only (optimally) small portions of their large keys with every use.

Moreover, we also propose a novel architecture for outsourcing the storage of these long keys to
a network of semi-trusted servers, trading the need to store large secrets with the assumption that it
is hard to simultaneously compromise too many publicly accessible ad-hoc servers. Our architecture
supports everlasting privacy and post-application security of the derived one-time keys, resolving two
major limitations of a related model for outsourcing key storage, called bounded storage model.

Both of these results come from nearly optimal constructions of so called doubly-affine extractors:
locally-computable, seeded extractors Ext(X,S) which are linear functions of X (for any fixed seed S),
and protect against bounded affine leakage on X. This holds unconditionally, even if (a) affine leakage
may adaptively depend on the extracted key R = Ext(X,S); and (b) the seed S is only computationally
secure. Neither of properties are possible with general-leakage extractors.

1 Introduction

Information-theoretic (IT) security is very attractive as it enables provably secure schemes that resist ad-
vances in computational power, novel cryptanalysis, or the possibility of quantum computers. This is espe-
cially important for privacy applications, where huge amounts of encrypted communication are being stored
and recorded, with the danger that all these communications could be decrypted years later. Unfortunately,
the famous impossibility result of Shannon [29, 10] states that IT-secure schemes come at a price: the secret
should be at least as large as the message. The traditional interpretation of this negative result is that one
must settle for much weaker computational security, so as to make the problem of key distribution feasible.

1.1 Reusable IT-Encryption

As we observe, just because the secret key must be large does not make the system automatically impractical.
In fact, since local storage is often cheap, a (necessarily) large secret key X might be a very reasonable price to
pay for unconditional security, provided this is the only efficiency penalty when compared to computationally-
secure schemes. For the purposes of this work, we will interpret this latter requirement by demanding that
our solutions are simultaneously stateless and locally-computable.

Stateless. Our first requirement demands that parties keep no state beyond storing the original key X.
This is crucial when there are many parties that cannot easily remain synchronized together. For example,
this could be the case when the secret key is shared by k � 2 parties and each party cannot view all
transmissions (possibly intentionally). It also removes out-of-sync errors as a common potential source of
insecurity that cause multiples parties to accidentally reuse the same portion of the key. In particular,
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statelessness rules out trivial solutions where parties slowly utilize consecutive (fresh) portions shared key
X (e.g., as one-time pads) until X “runs out” that is infeasible with many parties.

Locally Computable. Our second requirement of local compatibility ensures that each concrete appli-
cation of the scheme (both as sender and receiver) only accesses the long secret key X in very few locations.
We call this number of locations p the probe complexity, and the ratio α = m

p ∈ [0; 1] the locality of a given

solution. Requiring p � |X| rules out elegant (stateless) solutions using so called `-wise independent hash
functions, because all conventional `-wise independent hash functions read the entire long key X for every
evaluation.

Rate of IT-encryption. We can now define our first motivating question more formally. As the “price”
for being stateless and locally computable, we introduce a “waste” parameter β > 0, indicating that the
total length of all the messages we wish to (statelessly) encrypt is bounded by (1−β)|X|. Given this “waste”
β > 0 and message length m, our goal is to minimize the probe complexity p (and maximize locality α).

It is not hard to see (this follows from the more general observation of [31]) that p ≥ m/β (i.e., α ≤ β),
which is indeed independent of the key length |X|. Intuitively, since in any stateless scheme up to (1− β)-
fraction of X might have been already used to encrypt prior messages, one needs to sample on average 1/β
bits of X to get an “unused” bit. We ask if this exact bound is tight, and optimal locality α ≈ β can
be achieved, perhaps up to an sub-linear additive loss (that we denote by o(m) while omitting the security
parameter λ from notation)?

Open Problem 1. Design practical, stateless and reusable IT-secure encryption schemes of m-bit messages
with n-bit key and probe complexity p = m/β + o(m), where (1 − β)n is the upper bound on the total length
of the encrypted messages.

As one of our main results, we present the first affirmative solution to this open question, achieving
p = m/β + O(

√
λ(m + λ))) = m/β + o(m), whenever message length m = ω(λ). Our scheme is quite

practical. We present the exact expression with no hidden constants in Theorems 9 and 11, and demonstrate
concrete improvements over prior state-of-the-art solutions [5, 4] in Section 6.

1.2 Delegating Storage

While solving Open Problem 1 means that long secrets is the only “price” for unconditional security (when
compared to computationally-secure schemes), we would like to do even better, and delegate the storage of
these large keys (to a cloud provider as an example). Since this clearly overcomes the Shannon’s impossibility
result, we require strong trust assumptions with the storage server.

To achieve this ambitious goal, our encryption scheme for message M will compute a ciphertext C =
(S,R ⊕M), where R = Ext(X,S), Ext is a carefully chosen locally computable extractor [31] and S is a
fresh random seed chosen by the sender. At a high level, we would like the server to store X instead of the
users, and only the honest sender/receiver(s) be able to retrieve the correct one-time pads R = Ext(X,S)
from the server.

Basic Architecture. As the first attempt, imagine some virtual server T will choose the long random
string X, for the altruistic purpose of helping users utilize “reusable IT-security”. In our final architecture,
the virtual server will be emulated by a network of semi-trusted servers under (still strong, but) more plausible
trust and communication assumptions. But, for now, we will think of T as not only stateless and locally
computable, but also fully trusted, incorruptible, and having private channels to any user who contacts it.1

Since T might not even know its user base, we assume that T is truly public, and does not perform any
explicit authentication. Hence, anybody, including the attacker A, can send a seed S to T, and get back the
value R = Ext(X,S). However, we assume that the total length of one-time pads obtained by the attacker

1These strong assumptions will be substantially weakened, once we replace the virtual server by several “real” servers. This
is similar in spirit to IT secret sharing [28] and MPC literature [8], which assume private channels to uncorrupted servers.
However, we will do even better, as there are no “consistency requirements” for generating randomness. For example, our
servers will be ad hoc, and do not communicate (or possibly even know!) about each other. See Section 5.2.
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is bounded by (1 − β)|X| that may be achieved by ensuring that servers stop responding after a certain
number of requests.

Sharing the seed. In the setting of Section 1.1, the seed S used to derive R = Ext(X,S) was sent in
the clear, as part of the ciphertext C = (S,R ⊕M). This was fine since access to X was given only to the
honest uses, and not the attacker A. Now, however, S cannot be sent in the clear, as then A can directly
query T on S, just as the honest recipient would.

Now, we need some mechanism how only the authorized parties learn S. Moreover, they need to do this
repeatedly for every new message M . This looks like a chicken-and-egg problem, as transmitting fresh seeds
while protecting their privacy unconditionally is as hard as solving the reusable IT-encryption. To resolve
this dilemma, we would like for this idea to work even if the seed S is shared using some computationally-
secure mechanism. As natural examples, parties can (a) run fresh Diffie-Hellman key agreement to generate
S; or (b) share a short symmetric key k once, and have the sender computationally encrypt seed S using k;
or (c) in the public-key setting, computationally encrypt S using the receiver’s public key. In all of these
scenarios, we want to claim that M is remains private forever, as long as the privacy of S is not broken
during the lifetime of server T. We call this notion of privacy everlasting privacy, following the terminology
of [2].

Allowing adversarial seeds. In the setting of Section 1.1, the attacker could only observe prior
extractor outputs Ext(X,Si) on honestly chosen, random seeds Si. In contrast, the current setting enables
the adversary A to learn outputs Ext(X,Si) on adversarial seeds Si. Moreover, the seed Si could be chosen
effectively depending on the “challenge one-time pad” R = Ext(X,S). With respect to the security game,
if A observes “challenge encryption” P = R ⊕M and knows the message M ∈ {V0, V1}. Therefore, A can
deduce R ∈ {P ⊕ V0, P ⊕ V1} without knowing the “challenge seed” S. Hence we want our architecture to
be post-application secure [12]. That is, it should be safe to let the attacker interact with the servers, even
after the honest parties use the challenge encryption P (either large portions of P or all of P may be leaked
to A).

To summarize the preceding discussion, to soundly realize our basic architecture for key delegation, the
chosen extractor Ext(X,S) must be (a) everlastingly private with computationally-secure seeds; and (b)
post-application secure.

Open Problem 2. Design IT-secure, locally computable extractor Ext for the sound implementation of the
basic delegation architecture. In particular, Ext should be post-application secure and support computationally-
secure seeds.

In this work we design the first architecture which supports these guarantees. Moreover, we show how
to distribute the virtual server among several servers, only some of which can be trusted. Our solution is
(a) ad-hoc, meaning servers do not need to know about or coordinate with each other, and (b) almost fully
stateless, meaning the servers need to maintain minimal-to-no state except to ensure that adversaries view
a bounded amount of leakage.

1.3 Locally Computable Extractors to the Rescue?

Our first hope is that standard locally computable extractors (LCEs), as originally formalized in the context
of Bounded Storage Model (BSM) encryption [31], would be precisely what we need to solve Open Prob-
lems 1 and 2. Such an extractor Ext(X,S) is guaranteed to work on a uniform, n-bit key X, even despite the
attacker obtaining up (1− β)n leakage bits L = f(X), for any function f of attacker’s choice. In particular,
by modeling previous extractor outputs Ext(X,Si) as leakage on X, the resulting scheme appears to be
suffice for our purposes of building reusable IT-encryption. Unfortunately, general LCEs do not work for
either of our questions, both quantitatively and qualitatively.

Suboptimal Rate. While the best upper bound [31] on the locality α of LCEs is the same α ≤ β as we
have in our simpler setting, we currently do not have schemes matching this bound. Thus, this approach will
not help us resolve Open Problem 1. The best known scheme of [5] achieves α0(β) ≈ − log2(1 − h−1

2 (β)),
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where h2(z) = −z log2(z)− (1− z) log2(1− z) is the binary entropy function, and h−1
2 (β) takes the smaller

of two possible inverses. It is easy to see that α0(β) � β for all β even slightly bounded away from 0
and 1. For example, α0(0.5) = 0.168 � 0.5 and α0(0.1) = 0.019 � 0.1. In fact, [5] proved the optimality
of their particular proof technique based on the so called “subkey prediction lemma” [1, 5, 4] (although
it is conceivable a better non-asymptotic LCE bound will be found with a different technique; e.g., those
from [24, 31]).

Computationally Secure Seeds. Just like in our setting from Section 1.2, supporting computationally
secure seeds would be a huge win for the BSM setting. Surprisingly, several works [19, 14] showed that the
BSM (and LCE) is too general to handle computationally-secure seeds. First, everlasting privacy in the BSM
may not be reduced in a black-box manner to any computational assumption [19]. Second, there are explicit
examples of computationally secure mechanisms to generate S which would break BSM security for any LCE.
For example, if the attacker knows encryption Z of S under some fully homomorphic encryption (FHE),
this still leaves S computationally secure. Yet, the attacker can efficiently evaluate Ext(X, ·) inside the
ciphertext as its compact leakage function L = f(X,Z), learning FHE of the one-time pad R = Ext(X,S).
When the attacker later becomes unbounded, it can break the FHE, and learn R.

Fortunately, this attack on BSM does not translate to our setting in the delegated storage setting. The
servers will refuse to homomorphically evaluate the given ciphertext, as this does not correspond to evaluating
Ext(X,Si) on some seed Si. However, it shows that we need a more refined approach to provably achieve
everlasting privacy.

Post-Application Security. In the traditional BSM setting, the leakage L = f(X) may only depend on
the random source X. For post-application security, however, we allow the leakage function to also depend
on R; that is, L = f(X,R). Unfortunately, general LCEs cannot be post-application secure, at least for the
interesting setting when |S| < |R|.2 To see this, consider a boolean leakage function f(X,R) which is 1 if
and only there exists some seed S which yields R = Ext(X,S). When |S| < |R|, such f(X,R) will always
be true with “real” R, but almost never true with random R (see Appendix B).

Once again, this attack does not translate to our setting, as such leakage does not correspond to evaluating
Ext(X,Si) on some seed Si. However, it shows that we need a more refined approach to provably achieve
post-application-security.

1.4 Doubly-Affine Extractors

To overcome the limitations of existing LCEs, we notice that, for both of our application scenarios, the leakage
of X consists of values Ext(X,Si) for various seeds Si. Hence, we can try to design efficient extractors which
are only secure against leakage of their own outputs. Moving forward, we will denote LCEs with this property
as simply extractors. With this approach, we will resolve both Open Problems 1 and 2.

Linearity. We observe that most existing LCEs [2, 14, 22, 31] are linear (affine) functions of X (for any
fixed S). For our settings, an affine extractor only needs to be secure against what is called affine leakage
functions resulting from previous extractor outputs. Such extractors are called affine extractors [15], and
certainly appear easier than “general leakage” extractors. However, until now affine extractors have only
been considered in the seedless setting. As a result, such seedless affine extractors can be neither locally
computable, nor linear.

In this work, we initiate the study of seeded affine extractors which are both locally computable and
linear functions of the source X. For conciseness, we will call such (seeded, locally computable) extractors
doubly-affine, where “affine” now refers to both the leakage and the extractor itself.

Our Model and its Advantages. The formal security game for doubly-affine extractors is given in
Figure 1. The attack is split in two stage. In this first state, the attacker A1 is given challenge output
R (either Ext(X,S) or uniform), and can make up to ` = (1 − β)n adaptive affine leakage queries. Since
these queries are adversarial and our extractor is linear, they can model extractor outputs Ext(X,S∗) on
adversarial seeds S∗. Thus, post-application security is built into the definition.

2Setting |S| ≥ |R| is uninteresting for BSM, as parties can then use S instead of R.
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In the second stage, the attacker A2 is given the seed S, but cannot make any more leakage queries.
This models everlasting privacy, although not necessarily with respect to computationally secure seeds (yet).
To model the latter concern, we augment the basic definition in Figure 1 to a seemingly more advanced
setting in Figure 2, where some abstract seed-generating procedure Σ(S′) outputs the extractor seed S and
the side-information Z. This side information Z is given to A1 to help making its affine queries, and the
entire seed S′ used by the computationally secure seed generator is given to the second-stage attacker A2.
We require that the game in Figure 2 is secure against any computationally bounded A1 and unbounded A2,
as long as S remains pseudorandom to A1 given Z.

For example, to model Diffie-Hellman key exchange, we set S′ = (a, b), Z = (ga, gb) and S = Prg(gab),
for some pseudorandom generator Prg. The fact that we give the values a and b to A2 now accurately
models the fact that an unbounded attacker can break discrete log of ga and gb eventually, and thus learn
more information than simply recovering the extractor seed S = Prg(gab).

Fortunately, unlike the setting of general LCEs, we show that any doubly-affine extractor satisfying a
the simpler definition in Figure 1 will also automatically satisfy the definition in Figure 2. Thus, our basic
definition in Figure 1 also covers everlasting security against computationally secure seeds.

Parameters and Efficiency. Last, but not the least, restricting to linear leakage allows to solve our
nearly optimal probe complexity p ≈ m/β, settling Open Problem 1 in the affirmative. As we show in
Section 6, our construction is also concretely efficient, making it attractive for real-world applications where
IT-security matters.

As an additional advantage, it gracefully extends to a more refined model of local computability, where in
addition to the probe complexity p, we also wish to minimize the number of non-contiguous memory c blocks
one needs to read the required p bits. We call this parameter c cache complexity, as it roughly corresponds
to the number of cache misses to read c non-contiguous regions of memory. Unlike probe complexity, cache
complexity does not have to grow with the number of extracted bits m, and can be as small as c = O(λ),

where λ is the security parameter. Indeed, our main construction generally gives p = m
β · (1 +

√
O(λ)
c )).

To summarize, doubly-affine extractors provide all the properties we need to simultaneously resolve Open
Problems 1 and 2.

1.5 Our Constructions and Techniques

Our doubly-affine extractor follow the sample-then-extract approach introduced by Vadhan [31] for LCE.
The first sampling step selects a subset I of p bits of X, denoted by Y = X|I , and the second step applies
a non-local extractor to Y to produce the final output R. In our work, we improve the parameters for both
steps, when the leakage is restricted to be affine.

Sampler Improvement. The two samplers we analyze were already considered by prior work on LCEs [23,
24, 31, 5], but our work presents new, improved analyses for the case of affine leakage. As our key insight, we
prove (see Theorem 2) that the optimal affine leakage strategy against any sampler is to select some physical
(1−β)n bits of X. In other words, the best adversarial strategy is to simply try and guess as many locations
of the sampled bits as possible.

This result is surprising for two reasons. First, the same equivalence is false for general-leakage samplers:
[5] shows that even simple (but highly non-linear) leakage functions may greatly outperform physical-bit
leakage. Second, the equivalence is false for the overall setting of doubly-affine extractors. Ignoring locality,
for example, parity of all n bits of X is trivially secure against bounded leakage of up to (n− 1) bits, but is
trivially insecure against a single-bit of affine leakage.

Once we reduce to physical-bit leakage, a simple Chernoff bound easily implies that the number of “non-
leaked” physical bits in a “random-enough” p-bit sample of X is highly concentrated around its expected
value βp — a conclusion which would seem highly non-obvious without our equivalence.

Extractor Improvement. Once we know that the sample Y has entropy of approximately βp in the
adversary’s view, we can apply any non-local linear Ext′ to extract m ≈ βp bits from Y . For concrete security,
especially for small values of m, we still want to optimize the entropy loss (βp − m). Using extractors for

5



general leakage, this entropy loss is known to be at least 2λ [27], and this bound is easily achieved by many
linear extractors (e.g., [20]).

Once again, we observe that our non-local extractor only has to withstand affine leakage. In particular,
we show that the optimal entropy loss for (non-local) doubly-affine extractors is only λ, saving a factor of two
over general-leakage extractors. We present a general construction of such non-local, doubly-affine extractors
from rank-preserving matrices (see [11]), that may be instantiated from a variety of concrete matrices such
as Toeplitz matrices.

Seed Length. In our analysis, we did not optimize the length s of S. Existentially, we show that all
our improvements are possible (unconditionally) with s = O(λ), while our concrete constructions use larger
seed length s = O(m + λ log(n)). Such a seed-length is quite acceptable for most applications, as this only
increases the ciphertext length (or communication with the server T) by a constant factor. Moreover, to
match computationally-secure encryption schemes with optimal ciphertext length m+O(λ), we use the fact
that doubly-affine extractors are everlastingly private with computationally-secure seeds. Hence, we can use
any stream cipher (e.g., SALSA20 or CHACHA) to expand a λ-bit seed S′ into the required longer seed
S = Prg(S′), while maintaining IT-security.

For example, our reusable IT-encryption in Section 1.1 can have ciphertext (S′,Ext(X,Prg(S′)) ⊕M)
of optimal length (m + λ), matching that of computationally secure schemes! Similarly, the communication
complexity when interacting with our virtual server T from Section 1.2 can be made optimal: λ “upstream”
bits S′ from the users, and m “downstream” bits R = Ext(X,Prg(S′)) from the server. We stress that we
need an extremely weak kind of computational-security security for the Prg: just ability to fool a concrete,
and easily computable statistical test (which we know a random expanding function satisfies w.h.p.). Thus,
it seems extremely plausible that SALSA20 or CHACHA satisfy this combinatorial property unconditionally.
Nevertheless, it is a good theoretical question to improve the seed length s to the optimal value O(λ).

1.6 Applications

Replicated Setting. We generalize the setting of Section 1.1, where the entire long secret key X is
replicated among several trusted parties. We already saw that doubly-affine extractors immediately give
locally computable, CPA-secure encryption C = (S,Ext(X,S)⊕M) with optimal locality in this setting. In
fact, the same scheme is trivially CCA1-secure, since doubly-affine extractors support leakage of extractor
outputs on adversarial seeds S. To get CCA2 security, and even achieve the strongest notion of authenticated
encryption (AE) [6], the parties can additionally share a short key for computationally-secure MAC, and
use this fixed key to authenticate the ciphertext C = (S, P ) above. In this variant, the authenticity is
computational, but the privacy is everlasting, as long as the MAC is not broken while the post-challenge
decryption oracle is used. Moreover, all these schemes are still everlastingly private with computationally-
secure seeds S, allowing to achieve optimal ciphertext length (m +O(λ)).

Distributed Setting. We generalize the setting of Section 1.2 where parties delegate the storage of X
to several servers. We already saw that doubly-affine extractors are enough in the single server case, as they
provide the required post-application security and support computationally secure seeds. For example, the
server T can help the parties to achieve all the efficiency benefits of (symmetric-key) authenticated encryption
with associated data (AEAD) plus everlasting privacy. All the parties need to do is use a computationally-
secure AEAD (using a short shared key) to encrypt the seed S,3 instead of the message M . Similar techniques
also work in the public-key setting, where S can be appropriately encrypted using the receiver’s public-key.

While relying on a single trusted server T may be challenging due to privacy of the channel, we can,
instead, consider distributed setting with multiple servers t ≥ 2 where we use the standard assumption in
the information-theoretic literature that channels between the user and at least g servers are secure and
the remaining t − g channels may be compromised. This is a common assumption that has been used in
many prior seminal works including information-theoretic secret sharing [28], multi-party computation [8]
and secure message transmission [13].

3Technically, S should be encrypted with associated data P = R⊕M .
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Specifically, we extend our architecture to the setting of t ≥ 2 servers, who jointly emulate the virtual
server T. In more detail, each of the t servers will independently generate and store a subset of the random
source X. For the distributed setting, we only assume that g ≤ t servers are honest with a private channel
to users. Moreover, the servers do not need to coordinate, or even know each other’s existence: each simply
picks a random string, and provides access to its random string to users.

We also consider two cases where the (t−g) corrupted servers are either honest-but-curious or malicious.
Our honest-but-curious solution works for any g ≥ 1, and achieves multiplicative overhead roughly t/g
for the user, as compared to the single-server case. In particular, each server accesses and returns a sub-
linear number of bits p′ ≈ m/(βg). For the malicious setting, we necessarily assume that g > 2t/3, and
use simple error-correcting techniques to achieve overhead roughly t/(3g − 2t), with each server returning
p′ ≈ m/(β(3g − 2t)) bits.

2 Definitions

In this section, we formally define doubly-affine extractors that output affine functions of the random source
while tolerating affine leakage. We start by presenting the affine oracle that provides linear access to a
truly random string. Afterwards, we define doubly-affine extractors in both the information theoretic and
computationally secure settings.

2.1 Affine Leakage Model

In the affine leakage model, there is a uniformly random string X ∈ {0, 1}n. Throughout our work, X is
referred to as the source or random source. The string X is accessed through an affine oracle that receives
a n-bit string Q ∈ {0, 1}n and returns the dot product of LINX(Q) = Q ·X. In other words, one query to
the affine oracle enables retrieving the XOR of a subset of bits of X.

For convenience, multiple queries to the affine oracle may be represented using a single matrix. In
particular, q queries may be represented using a q× n bit-matrix Q ∈ {0, 1}q×n such that LINX(Q) = QX
where the affine oracle returns the multiplication of Q and X resulting q bits.

Definition 1. For any X ∈ {0, 1}n, the affine oracle LINX receives a q × n binary matrix Q ∈ {0, 1}q×n
for any q ≥ 1. Then, LINX(Q) = QX.

2.2 Information-Theoretic Doubly-Affine Extractors

The main focus of our work is to construct efficient extractors in the affine leakage model. The goal of a
doubly-affine extractor is to utilize a short random seed along with access to the oracle LINX to derive a
random string that may be used at higher level applications. For security, the extractor’s output should
remain random even if an adversary uses the oracle LINX to learn large (but not all) of the underlying
random string X.

In more detail, extractors are defined as algorithms that receive a random s-bit seed and output a m-bit
random string where m > s (that is, the output random string is larger than the input seed). Extractors
are able to perform queries to the oracle LINX to access the uniformly random string X. The output of
extractors should remain random to an adversary that has utilized the oracle LINX to learn at most ` bits
about the underlying random string X.

In this paper, we restrict our attention to extractors that only perform non-adaptive queries to LINX .
In other words, the extractor must pick a single query matrix Q, send it to the LINX and use the response
to generate the output. To our knowledge, all prior works also exclusively studied extractors that non-
adaptively accessed the underlying random string X. Non-adaptivity may be beneficial in settings where
sending queries to LINX may be expensive.

For convenience, we will make the assumption that the output of doubly-affine extractors will simply be
the response from the single query to the oracle LINX . We show that this limitation is not important as our
constructions will be essentially optimal. With this restriction, the output of doubly-affine extractors will
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G(Ext, n, s,m, `,A = (A1,A2))
C A = (A1,A2)
Draw b← U1.
Draw X ← Un.
Draw challenge seed S ← Us.
If b = 0, set R← Ext(X,S).
If b = 1, draw R← Um.

R
−−−−−−−−−−−−−→

t1 Set t1 ← A1(R).
←−−−−−−−−−−−−−

Set L1 ← LINX(t1). L1

−−−−−−−−−−−−−→
. . . . . . . . .

t` Set t` ← A1(R,L1, . . . , L`−1).
←−−−−−−−−−−−−−

Set L` ← LINX(t`). L`
−−−−−−−−−−−−−→

Set state← A1(R,L1, . . . , L`).

Send seed S as challenge. S
−−−−−−−−−−−−−→

b′ Set b′ ← A2(S, state).
←−−−−−−−−−−−−−

If b 6= b′, output 0.
If b = b′, output 1.

Figure 1: Game G(Ext, n, s,m, `,A).

also be affine. This property will be integral in settings when the adversary’s leakage consists of previous
extractor outputs.

We define extractors as Ext : {0, 1}n × {0, 1}s → {0, 1}m where the first argument is the n-bit random
string, the second argument is s-bit random seed and the output are the m extracted bits. As we consider
non-adaptive extractors, we note that all extractors Ext are uniquely defined by a query algorithm PickExt :
{0, 1}s → {0, 1}m×n that outputs a m× n binary matrix that will be query to the oracle LINX . Since Ext
returns the output from the oracle, we note that Ext(X,S) = LINX(Pick(S)) for any n-bit random string
X and s-bit random seed. We will use Ext and PickExt interchangeably in our paper.

The security of doubly-affine extractors are presented in Figure 1. The adversary A is given a challenge
of either a m-bit unifomly random string or the extractor output. Using the oracle LINX , A may perform `
adaptive queries to learn at most ` linear functions of X with knowledge of the challenge. Afterwards, A is
given the input seed and must guess the origin of the challenge. We say A has ε advantage if A has 1/2 + ε
probability of guessing correctly. For ease of presentation, we split A into stateful adversaries A1 and A2

that are responsible for generate oracle queries and computing the final guess respectively. We note that
both adversaries are computationally unbounded.

We stress that A is given the challenge prior to performing any queries to the oracle LINX . As a result,
we require that doubly-affine extractors provide security against post-application leakage. This is a notion
that is not achievable in other models with general leakage (we present a counterexample in Appendix B).
By restricting to linear leakage, we enable a significant improvement in security.

Definition 2. A deterministic algorithm Ext : {0, 1}n×{0, 1}s → {0, 1}m is (`, ε)-secure if for any adversary
A, Pr[G(Ext, n, s,m, `,A) = 1] ≤ 1

2 + ε.

We move onto the efficiency of extractors. We define the probe complexity of an extractor as the number
of bits of X accessed by the oracle in a single extractor execution. We define the cache complexity of an
extractor as the number of disjoint regions of X accessed by the oracle in a single extractor execution. Probe
complexity measures the total running time of oracle in a single extractor execution while cache complexity
measures the number of cache misses incurred in a single extractor execution. Note that probe complexity
may be measured as the number of non-zero columns in the query matrix produced by PickExt. Cache
complexity corresponds to the number of consecutive groups of non-zero columns found in the query matrix
produced by PickExt.
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Gc(Ext, n, s,m, `,Σ,A1,A2)
C A = (A1,A2)
Draw b← U1.
Draw X ← Un.
Draw S′ ← Us′ .
Draw (S, Z)← Σ(S′).
If b = 0, set R← Ext(X,S).
If b = 1, draw R← Um.

R,Z
−−−−−−−−−−−−−→

t1 Set t1 ← A1(Z,R).
←−−−−−−−−−−−−−

Set L1 ← LINX(t1). L1

−−−−−−−−−−−−−→
. . . . . . . . .

t` Set t` ← A1(Z,R,L1, . . . , L`−1).
←−−−−−−−−−−−−−

Set L` ← LINX(t`). L`
−−−−−−−−−−−−−→

Set state← A1(Z,R,L1, . . . , L`).

Send seed S′ as challenge. S′

−−−−−−−−−−−−−→
b′ Set b′ ← A2(S′, state).

←−−−−−−−−−−−−−
If b 6= b′, output 0.
If b = b′, output 1.

Figure 2: Game Gc(Ext, n, s,m, `,Σ,A1,A2).

Definition 3. Ext is (p, c)-local if for every seed S, PickExt(S) has at most p non-zero columns and at
most c consecutive non-zero column groups.

2.3 Computational Doubly-Affine Extractors

As another advantage of doubly-affine extractors, we show that they may be built even when using seeds
that are only computationally-secure. In more detail, suppose the extractor’s input seed is computationally-
secure with respect to leakage seen by the adversary. Is it possible for the extractor’s output to remain
information-theoretically random with help from the affine oracle? This is impossible for computationally
unbounded adversaries with access to the oracle as the adversary may compute the seed and query the
oracle to obtain the extractor’s output. Instead, we want computational extractors to produce outputs that
are secure against adversaries that are computationally-bounded only when the oracle is available and may
become computationally-unbounded afterwards. The ability to handle computationally-secure seeds is a
benefit of the affine leakage model that is impossible in general leakage models (see [14, 19]).

The security game for computational extractors is shown in Figure 2. As a major result, we will prove
that the security games in Figure 1 and Figure 2 are equivalent (see Section 4). That is, every information-
theoretic extractor is also a computational extractor. We consider hybrid adversaries A = (A1,A2) where
A1 is a stateful PPT adversary and A2 is a computationally unbounded adversary. The game uses a
computationally-secure protocol Σ that produces a computational seed S as well as leakage Z using a
(typically) shorter random seed S′. A1 is given both the extractor’s output and the leakage Z of Σ. The
role of A1 is to adaptively query the oracle LINX to learn ` bits about X. A2 will use the knowledge gained
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G⊕(Ext, n, s,m, `,A)
C A

t1, . . . , t` Set t1, . . . , t` ← A().
←−−−−−−−−−−−−−

Draw S ← Us.
Compute s1, . . . , sm ← PickExt(S).
Set S ← span(s1, . . . , sm).
Set L ← span(t1, . . . , t`).
Set d← dim(S ∩ L).
Output 1 if d > 0.
Output 0 if d = 0.

Figure 3: Linear Span Game G⊕(Ext, n, s,m, `,A).

by A1 as well as the original seed S′ to distinguish between challenges of either uniformly random strings
or extractor outputs.

Definition 4. A deterministic algorithm Ext : {0, 1}n×{0, 1}s → {0, 1}m is (`,Σ, ε)-computationally-secure
if for any hybrid adversary A = (A1,A2) such that A1 is PPT, Pr[Gc(Ext, n, s,m, `,Σ,A) = 1] ≤ 1

2 + ε.

3 Information-Theoretic Doubly-Affine Extractors

In this section, we present our constructions for information-theoretic doubly-affine extractors. We start by
reducing the security game of doubly-affine extractors to linear algebraic concepts. Afterwards, we show that
constructing doubly-affine extractors requires two simpler primitives: samplers and non-local doubly-affine
extractors (or non-local extractor, for short). By presenting efficient samplers and non-local doubly-affine
extractors, we obtain our final efficient extractor. We also present various lower bounds for the studied
primitives.

3.1 Optimal Doubly-Affine Extractor Adversary

One of the main results in our paper is the ability to reduce the complex security game of doubly-affine
extractors to a simpler game. Consider the following adversarial approach to compromise doubly-affine
extractors according to the security game in Figure 1. Suppose the adversary has chosen ` queries to LINX .
Next, the adversary receives the seed S and computes the query matrix PickExt(S). Next, the adversary
checks whether extractor’s output bits is a linear combination of any of the ` leakage bits. This is equivalent
to checking whether the span of the extractor’s queries intersects the span of the adversary’s queries. In the
case of an intersection, the adversary can check whether the output bit matches the linear combination. For
real challenges, this is always true. For random challenges, this is only true with probability 1/2. Therefore,
the adversary has significant advantage as long as the intersection of query spans is non-empty.

We show that the above adversary is essentially optimal up to choosing the oracle queries. Formally, we
prove this by showing the security game in Figure 1 is equivalent to the same simpler game in Figure 3.
The game in Figure 3 severely limits the adversary by forcing the adversary to follow the above adversarial
approach. The adversary must ignore both ignore the extractor output and non-adaptively query the oracle.
Additionally, the adversary loses the ability to post-process the oracle results. Instead, the challenger
determines the winner of the game by checking whether the intersection of the adversarial query subspace
and the extractor query subspace is non-empty. We show the security games in Figures 1 and 3 are identical.

As a caveat, we note that the adversary could also check whether the extractor’s outputs bit are linearly
independent. If any output bit is a linear combination of the other output bits, then the adversary will already
win the game. For real challenges, the linearly dependent output bit must match the linear combination of
the other output bits. For random challenges, this only happens 1/2 of the time. Therefore, we will assume
that the extractor outputs bits will be linearly independent. In other words, the extractor’s oracle queries
will always be linearly independent without loss of generality.
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Theorem 1. Suppose that Ext is (`, ε)-secure with respect to security game G⊕. That is, for any adversary
A, Pr[G⊕(Ext, n, s,m, `,A) = 1] ≤ ε. Then, Ext is (`, ε)-secure with respect to G according to Definition 2.

Proof. We use the H-coefficient technique to upper bound the advantage of any adversary. We denote G0

to be the real experiment where b = 0 and G1 to be the ideal experiment in Figure 1. Let t1, . . . , t` be
the leakage vectors chosen by the adversary A while s1, . . . , sm are the output m row vectors outputted by
PickExt(S). We denote L := span(t1, . . . , t`) and S := span(s1, . . . , sm). We will define the set of all good
transcripts T defined such that dim(L ∩ S) = 0.

Fix any transcript in t ∈ T . We will consider a step-by-step analysis of G0 and G1 and compute the
probabilities of the next message conditioned on the previous messages being fixed. Note, the output of A
depends only its input and its internal randomness. Therefore, the output distribution of A will always be
the same as long as the input is the same. So, we only focus on the messages sent by the challenger. Let
us start with the seed S, which is drawn uniformly at random in both G0 and G1. Note that s1, . . . , sm are
all linearly independent by our assmption on the extractor. Therefore, as X is uniformly random, each of
Ri = LINX(si) = si ·X are uniformly random.

By a similar assumption on the adversary, we note that all t1, . . . , t` will be linearly independent. As
we are assuming that dim(L ∩ S) = 0, we know that ti is linearly independent from all of s1, . . . , sm and
t1, . . . , ti−1. As X is uniformly random, we know that LINX(ti) = ti · X is a uniformly random bit. So,
Pr[T (G0) = t] = Pr[T (G1) = t] for all t ∈ T and their ratio is always 1. By the H-coefficient technique (see
Theorem 13 in Appendix A), the advantage of A is upper bounded by Pr[T (G1) /∈ T ].

Therefore, we only need to bound Pr[T (G1) /∈ T ]. In particular, we can reinterpret this as a new game
where the adversary A is attempting to maximize the probability that dim(L∩ S) > 0 in G1. We will show
that this game corresponds to the game in Figure 3 and Pr[T (G1) /∈ T ] ≤ Pr[G⊕(Ext, n, s,m, `,A′) = 1] for
any adversary A′, which would complete our proof.

To prove this, we will convert any adversary A for Figure 1 into an adversary A′ for Figure 3. Note in
G1, that each of R,L1, . . . , L` and S are generated uniformly at random. We construct A′ who generates
R,L1, . . . , L` on their own without interacting with the challenger and feeds them to A to get the vectors
t1, . . . , t`. Note, the view of A is identical to G1. As a result, Pr[T (G1) /∈ T ] = Pr[G⊕(Ext, n, s,m, `,A⊕) =
1] as required.

With this theorem, we already see that the main challenge for extractors is to ensure output bits are not
a linear combination of the adversarial oracle queries.

3.2 Sample-then-Extract Paradigm

To construct doubly-affine extractors, we use the sample-then-extract paradigm that was introduced by
Vadhan [31]. This paradigm constructs extractors in two steps. First, a subset of the random string X is
sampled such that the sample contains a large amount of entropy conditioned on the adversary’s leakage.
Next, a non-local doubly-affine extractor (that we will also denote as a non-local extractor) is executed on
the sampled subset. The non-local extractor is expected to utilize the entirety of the sampled subset to
produce as many random bits as possible (since no locality is required, they are denoted as non-local).

We now explain at a high level why the sample-then-extract algorithm results in an extractor. All the
sampled bits will not be random after the adversary views leakage bits. If the adversary sees ` bits of the
n-bit random string X, then we expect only (1− `/n)-fraction of the sampled bits to be random. The role of
the non-local extractor is to condense the mixture of random and non-random sampled bits into a smaller
string of truly random bits. We will both define and construct samplers and non-local extractors in the
upcoming sections.

3.3 Samplers

The notion of samplers has been well studied in the past (see [7, 9, 24, 32, 31, 17] as some examples).
Prior works studied samplers with respect to general functionalities and/or general leakage. In our work, we
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G⊕,λ(Samp, n, s, p, `,A)
C A

t1, . . . , t` Set t1, . . . , t` ← A().
←−−−−−−−−−−−−−

Draw S ← Us.
Compute I1, . . . , Ip ← PickSamp(S).
Set S ← span(1I1 , . . . ,1Ip ).
Set L ← span(t1, . . . , t`).
Set d← dim(S ∩ L).
Output 1 if p− d < λ.
Output 0 if p− d ≥ λ.

Figure 4: Relaxed Linear Span Game G⊕,λ(Samp, n, s, p, `,A).

Gunit,λ(Samp, n, s, p, `,A)
C A

T1, . . . , T` Set T1, . . . , T` ← A().
←−−−−−−−−−−−−−

Draw S ← Us.
Compute I1, . . . , Ip ← PickSamp(S).
Set S ← span(1I1 , . . . ,1Ip ).
Set L ← span(1T1 , . . . ,1T` ).
Set d← dim(S ∩ L).
Output 1 if p− d < λ.
Output 0 if p− d ≥ λ.

Figure 5: Relaxed Unit Span Game Gunit,λ(Samp, n, s, p, `,A).

define samplers in a narrower manner within the affine leakage model that will be easily composable in the
sample-then-extract paradigm.

Samplers are deterministic algorithms Samp : {0, 1}n × {0, 1}s → {0, 1}p with inputs of a n-bit random
string X and a s-bit seed S that outputs p sampled bits of X. The goal is to sample as many random bits
as possible in the view of the adversary with leakage bits. As discussed in the previous section, it is unlikely
that all sampled bits will be secure. If an adversary has ` random leakage bits of X, then only (1 − `/n)p
sampled bits will be secure in expectation.

For any Samp, we denote PickSamp as the queries sent to the oracle (similar to extractors). The output
of Samp will also be the response from the oracle. In other words, Samp(X,S) = LINX(PickSamp(S)).
As Samp samples bits, each column of PickSamp(S) will be a unit vector. We will use Samp and PickSamp

interchangeably in the remainder of the paper.
We relax the security game of doubly-affine extractors (Figure 3) to obtain a security game for samplers

in affine leakage model presented in Figure 4. Recall that the extractor adversary should not compromise any
output bits. We modify the definition for samplers so at least λ sampled bits are random in the adversary’s
view. We chose to immediately define samplers with respect to the optimal adversary for convenience. One
could re-define sampler security using a natural game by relaxing the security of doubly-affine extractors in
Figure 1.

Definition 5. A deterministic algorithm Samp : {0, 1}n × {0, 1}s → {0, 1}p is (`, ε, λ)-secure if for any
adversary A, Pr[G⊕,λ(Ext, n, s,m, `,A) = 1] ≤ ε.

Specific to samplers, we immediately show that the adversary may immediately be weakened without
loss of generality. Consider a simple adversary for samplers that also samples ` bits from X. If the adversary
samples λ+ 1 bits identical to the sampler, the adversary will distinguish the real-or-random challenge with
high advantage. We prove that this adversary is optimal. In other words, sampler adversaries do not gain
advantage by learning linear combinations of X as opposed to sampling single bits of X. To formalize this
idea, we modify the sampler game in Figure 4 such that the adversary may only sample physical bits of X.
The new game may be found in Figure 5.

Theorem 2. Suppose that Samp is (`, ε, λ)-secure with respect to security game Gunit,λ. That is, for any
adversary A, Pr[Gunit,λ(Samp, n, s,m, `,A) = 1] ≤ ε. Then, Samp is (`, ε, λ)-secure with respect to G⊕,λ

according to Definition 5.
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Proof. Take any adversary A⊕ and we will construct an adversary Aunit with no worst advantage. Consider
any output of A⊕ as T with the ` row vectors t1, . . . , t`. We will show that there exists a strategy that
replaces t1, . . . , t` with unit vectors without affecting the adversary’s advantage. First, perform Gaussian
elimination on T without the ability to swap columns. Without loss of generality, we get row vectors
t′1, . . . , t

′
` such that each t′i will have a leading 1 entry in column ji and 1 ≤ j1 < . . . < j` ≤ n. Furthermore,

we know that span(t1, . . . , t`) and span(t′1, . . . , t
′
`) are identical. We will choose our unit vectors as T1 :=

1j1 , . . . , T` := 1j` .
Consider the matrix output by PickSamp(S) with the row unit vectors I1, . . . , Ip where S is drawn

uniformly at random. Suppose the dimension of span(t′1, . . . , t
′
`)∩ span(1I1 , . . . ,1Ip) is d. Denote the basis

of this intersection by v1, . . . ,vd. Note each vk is a linear combination of t′1, . . . , t
′
`. That is, vk = b1t

′
1+. . .+

b`t
′
`. If bi = 1, then we know that the ji-th entry of vk must be 1. Then, for all bi = 1, this implies that 1ji was

chosen as a row unit vector by PickSamp(S). Consider the new vector v′k = b1T1+. . .+b`T`. The set of indices
of v′k that are 1 are exactly {ji | bi = 1}. As a result, v′k also belongs to span(1I1 , . . . ,1Ip). Note, the set
{v′1, . . . ,v′d} is linearly independent since {v1, . . . ,vs} is linearly independent. Therefore, span(v′1, . . . ,v

′
d)

has dimension d and is contained in the intersection of span(1T1
, . . . ,1T`) and span(1I1 , . . . ,1Ip). This

mean the dimension d′ of the intersection achieved by the new adversary Aunit is at least d achieved by A⊕,
completing the proof.

The above security reductions significantly simplify analyzing sampler security. Before moving on, we
highlight that the majority of our efficiency gains are achieved from our improved samplers. In particular,
the insight that optimal sampler adversaries in the affine leakage model model are limited is the key reason
as to why our doubly-affine extractors are more efficient than previous constructions in the general leakage
model.

(p, c)-Local Sampler Construction. We start by presenting an efficient (p, c)-local sampler. The idea
is to view the n-bit source X as a two-dimensional matrix with c rows and n/c columns and the seed
S = (S1, . . . , Sc) as c integers from the set [n/c] that are represented using log(n/c) bits. The sampler will
sample p/c bits from each row. In the i-th row, the sampler chooses the consecutive p/c bits starting from the
Si-th column. Samp is (p, c)-local as a total of p bits are sampled that may be arranged into c consecutive
groups (one group per row). Our construction is similar to ones presented in [14], but is was never analyzed
or defined as a stand-alone sampler.

Theorem 3. For any 0 ≤ ` < n, c > 0, ε > 0 and λ > 0, there exists a (p, c)-local sampler that is
(`, ε, λ)-secure with seed length s = c log(n/c) and probe complexity

p = max

c,
λ

1− `
n −

√
ln(1/ε)

c

 .

Proof. Fix any output of indices T1, . . . , T` from the adversary A. Suppose that I1, . . . , Ip are the indices of
bits sampled by Samp. Then,

dim(span(1T1
, . . . ,1T`) ∩ span(1I1 , . . . ,1Ip)) = |{T1, . . . , T`} ∩ {I1, . . . , Ip}|.

Consider any index Ij that appears in row i. There are exactly p/c different choices of Si such that the
Samp will sample the bit at index Ij . Overall, there are n/c choices of Si. Therefore, Ij is sampled by
Samp with probability exactly (p/c)/(n/c) = p/n.

Suppose that `i indices appear in row i of M, for all i ∈ [c]. Note that ` = `0 + . . .+`c−1. Denote Xi to be
the number of bits sampled by Samp that do not overlap with leaked bits. We know thatE[Xi] = p/c−(`ip)/n
by linearity of expectation. If we set µ = X0 + . . .+Xc−1, then

µ = p− `p

n
= p ·

(
1− `

n

)
.
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As exactly p/c bits are sampled in each row, Xi ≤ p/c. We now apply Chernoff bounds (see [16]) to get that
for any constant 0 < δ < 1,

Pr[X ≤ (1− δ)µ] ≤ e
−δ2µ2

c(p/c)2 ≤ e−δ
2c(1− `n )

2

.

Therefore, we know that there exists at least λ = p(1− δ)(1− `/n) sampled bits that are not leaked to the

adversary except with probability e−δ
2c(1− `n )

2

.

We know that ε ≤ e−δ
2c(1− `n )

2

so δ ≤
√

ln(1/ε)/(c(1− `/n)2) whenever c > ln(1/ε)/(1− `/n)2. Plugging

back into λ = p(1 − δ)(1 − `/n), we get that λ = p(`/n +
√

ln(1/ε)/c). We can set λ = p − m. After
re-arranging, we get the desired theorem.

We note that the efficiency of our sampler is almost optimal. Note that an adversary may always pick
` random bits of X as leakage. If p bits are sampled, it is expected that only (1 − `/n)p sampled bits
are secure. Our construction secure samples λ = (1 − `/n −

√
ln(1/ε)/c)p bits implying that at most

(
√

ln(1/ε)/c)-fraction of bits are lost beyond the expectation.

(p, p)-Local Sampler Construction. For the setting where cache complexity is irrelevant, we present a
(p, p)-local sampler that ends up being more concretely efficient. Our construction simply picks a subset of
p bits from X uniformly at random using a seed S that encodes a random subset using log

(
n
p

)
bits.

Theorem 4. For any 0 ≤ ` < n and λ > 0, there exists a (p, p)-local sampler that is (`, ε, λ)-secure with
seed length log

(
n
p

)
and probe complexity p satisfying

ε ≤ (p− λ) ·
(

n− `
p− λ− 1

)
·
(
`

λ+1

)(
n
p

)
In Appendix C, we prove the above theorem. We also analytically show that our (p, p)-local sampler is

concretely more efficient than our (p, c)-local sampler whenever p = c.

3.4 Non-Local Doubly-Affine Extractors

In the sample-then-extract paradigm, the goal of non-local extractors is to take sampled bits containing
both random and non-random bits and produce a truly random string. We abstract the setting to the
original doubly-affine extractor security game by assuming that the non-random bits are leakage viewed by
the adversary. In other words, we assume that the random source X has n random bits except that ` bits
are not random as they have been viewed by the adversary.

The simplest way to build non-local extractors is to use affine universal hash functions and the leftover
hash lemma [20]. As the input string X has n − ` random bits, the leftover hash lemma states that there
exists a non-local extractor that outputs n− `− 2 log(1/ε) random bits except with probability ε.

In our work, we improve upon this result by constructing non-local extractors that produces n−`−log(1/ε)
random bits. This reduces the lost entropy by a factor of two. The ability to build improved non-local
extractors is another advantage of doubly-affine extractors.

To do this, we generically reduce the construction of non-local extractors to a special family of matrices
with certain properties. Consider m matrices A1, . . . , Am with n rows and s columns. For any non-empty
subset ∅ 6= I ⊆ {1, . . . ,m}, the matrix AI =

∑
i∈I Ai has rank n. We present an instantiation using field

multiplication.

Special Matrix Family from Toeplitz Matrices. We instantiate the matrix family using Toeplitz
matrices to achieve s = n + m − 1. Note, as m ≤ n, the seed length is at most s ≤ 2n. Toeplitz matrices
are the matrices where all diagonals are equal. For any Toeplitz matrix T , it is always the case that
Ti,j = Ti+1,j+1. In particular, we will use Toeplitz matrices of dimension n× (n + m− 1). We define the set
T1, . . . , Tm in the following way. Ti consists of the first i−1 columns only of 0’s followed by the n×n identity
matrix occupying the next n columns. All remaining columns will also consist of only 0’s. As an example,
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T1 consists of the identity matrix occupying the first n columns followed by all 0’s. Using this construction,
we get that for any seed S ∈ {0, 1}n+m−1, TiS = (Si, Si+1, . . . , Si+n−1). We note that the computational
cost of this instantiation is O(n log n) using FFT (see [25] for more details). In Appendix D, we present an
instantiation from field multiplication with smaller seed lengths, but higher computational costs. We use
the Toeplitz matrix instantiation for practical considerations.

Theorem 5. For any subset ∅ 6= I ⊆ [1, . . . ,m], TI =
∑
i∈I Ti has rank n.

Proof. To show this, we prove there will always exist n linearly independent column vectors in TI for any
I 6= ∅. We show that all n unit vectors always appear as column vectors. Consider all column vectors where
all non-zero entries are contributed by exactly one of Ti where i ∈ I. There are exactly n of these vectors
each with exactly a single 1 entry. Furthermore, they all correspond to unique unit vectors implying that
the rank of TI is n.

Non-Local Extractor Construction. Our non-local extractor is built using the m matrix familyA1, . . . , Am

described above. The non-local extractor receives a s-bit seed S and a n-bit input string X with m random
bits. Then, the output of the non-local extractor is X · (A1S), . . . , X · (AmS). In other words, the i-th output
bit is the dot product of X and the matrix-vector multiplication of the Ai and the seed S.4 We note that
our construction is similar to the one [11], but our security analysis is different, as we extracting more bits
in our setting.

Theorem 6. For any 0 ≤ ` < n and ε > 0, there exists a non-local extractor that is (`, ε)-secure that outputs
m = n− `− log(1/ε) bits with seed length n.

Proof. We use the game G⊕ to evaluate the security of NLExt. Fix any leakage vectors T := (t1, . . . , t`).
PickNLExt(S) will output the vectors A1S, . . . , AmS. We need to bound the probability that the intersection
of L := span(t1, . . . , t`) and S := span(A1S, . . . , AmS) will contain a non-zero vector. To do this, we pick
any non-zero vector v ∈ S and compute the probability that v occurs in the intersection. Note that L
contains at most 2` vectors. We show that v is a vector chosen uniformly at random from a set of 2n. As v
is non-zero, we rewrite

v =
∑
i∈I

AiS = (
∑
i∈I

Ai)S = AIS

where I 6= ∅. As a result, AI has rank at least n and v is a random vector from a set of 2n. Therefore,
Pr[v ∈ L] ≤ 2`−n. To complete the proof, we apply a Union bound over all at most 2m − 1 non-zero vectors
in S. Therefore,

Pr[G⊕(NLExt, n, s,m, `,A) = 1 | A() = T] ≤ (2m − 1)
2`

2n
≤ 2m+`−n

for any fixed leakage vectors T. As a result, we get that

Pr[G⊕(NLExt, n, s,m, `,A) = 1]

≤
∑
T

Pr[A() = T] · Pr[G⊕(NLExt, n, s,m, `,A) = 1 | A() = T]

≤ 2m+`−n ·
∑
T

Pr[A() = T] ≤ 2m+`−n.

We derive ε ≥ 2m+`−n by choosing m ≤ n− `− log(1/ε).

We also present a lower bound on the number of extractable bits by non-local extractors that is tight up
to an additive constant factor.

4Some of our constructions will yield universal hash functions. Unfortunately, we are unable to generically prove log(1/ε)
loss using only the universality property.
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Theorem 7. Non-local extractors extract at most n− `− log(1/ε)−O(1) bits.

Seed Length. While our construction extracts an almost optimal number of bits, it requires a large seed
length of n. Our seed length is similar to those obtained using the leftover hash lemma resulting in seed
lengths of at least n − ` + log(1/ε) − O(1) bits [20]. In Appendix D, we existentially show there exists a
matrix family that would result in a non-local extractor with seed length log(n`/ε) while extracting the
same number of bits. We also present a seed length lower bound showing that the existential construction
is almost optimal. We leave it as an open question to construct such a matrix family explicitly, but remind
that: (a) in our setting it is safe to expand the seed computationally (unlike general extractors [3]); (b) in
the random oracle model, one can expand the seed using the random oracle as done in [5, 4]; (c) one can use
theoretical extractors of [18] which are linear, have seed O(log n + log(1/ε)), but double the entropy loss to
2 log(1/ε).

3.5 Doubly-Affine Extractors

With constructions of both samplers and non-local extractors, we finally construct our local extractors. First,
we will formally define the sample-then-extract paradigm and show that it is secure. Afterwards, we plug in
our sampler and non-local extractor constructions to obtain our efficient local extractors.

Sample-then-Extract. We formally define the sample-then-extract composition. Suppose we have a
sampler Samp with seed length SSamp that samples p bits. Note, the corresponding PickSamp algorithm
outputs a p× n query matrix. Additionally, assume we have a non-local extractor NLExt with seed length
SNLExt that extracts from an p-bit input and produces m-bit outputs. The corresponding PickNLExt

algorithm outputs a m × p query matrix. The resulting local extractor Ext is defined by its oracle query
function

PickExt(S = (SSamp, SNLExt)) = PickNLExt(SNLExt)PickSamp(SSamp).

In other words, the oracle query sent by Ext is the matrix multiplication of the query matrices chosen by
NLExt and Samp.

Theorem 8. Let Samp be a (`, ε1, λ)-secure sampler with seed length S1 that samples p bits from an n-bit
source and NLExt be a (p− λ, ε2)-secure non-local extractor with seed length S2 that receives a p-bit source
and outputs m bits. Then, there exists an extractor Ext that that is (`, ε1 +ε2)-secure with seed length S1 +S2

that outputs m bits. If Samp is (p, c)-local, then Ext is (p, c)-local.

The proof may be found in Appendix E. Using the above theorem, we present our constructions using
our sampler and non-local extractors. The resulting extractors are more efficient than all prior works (see
Section 6 for comparisons).

Theorem 9 ((p, c)-Local Extractor). For any 0 ≤ ` < n, m > 0 and ε > 0, there exists an (p, c)-local
extractor that is (`, ε)-secure with seed length s = c log(n/c) + p with probe complexity

p = max

c,
m + log(2/ε)

1− `
n −

√
ln(2/ε)

c


for any cache complexity c ≥ ln(2/ε)(1− `/n)−2.

We note that our extractor is almost optimal in terms of randomness efficiency. Once again, we can
consider a simple adversary that samples ` leakage bits of X randomly. For any extractor with probe
complexity p, only (1 − `/n)-fraction of the probed bits will be random in expectation. Our extractor is
able to produce m = (1 − `/n −

√
ln(2/ε)/c)p − log(2/ε) bits that is only (

√
ln(2/ε)/c)-fraction from the

expectation along with another log(2/ε) additive bit loss.
We also present the following lower bound on cache complexity for extractors whose proof may be found

in Appendix E.
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Theorem 10. Any (p, c)-local extractor that is (`, ε)-secure with one output bit must have cache complexity
c = Ω(log(1/ε)/ log(np/`)).

In terms of cache complexity, we note that our extractor requires cache complexity at least ln(2/ε)(1 −
`/n)−2. Our extractor’s cache complexity matches the lower bound in the setting that a constant fraction
of bits are leaked, ` = Θ(n).

We also present an extractor when cache complexity is ignored (c = p). While both constructions are
asymptotically identical, our (p, p)-local extractor is more concretely efficient. This construction is also more
efficient than all previous schemes (see Section 6 for comparison).

Theorem 11 ((p, p)-Local Extractor). For any 0 ≤ ` < n, m > 0 and ε > 0, there exists an (p, p)-local
extractor that is (`, ε)-secure with seed length s = p log(n/p) + p with probe complexity p satisfying

ε ≤ 2(m + log(2/ε)) ·
(

n− `
m + log(2/ε)− 1

)
·

(
`

p−m−log(2/ε)+1

)(
n
p

) .

4 Computational Doubly-Affine Extractors

We move onto constructing extractors that are secure when using computationally-secure seeds. To refresh
readers, recall that computational extractors considered security games against hybrid adversaries A =
(A1,A2) where A1 is a PPT adversary and A2 is computationally unbounded. A1 queries the oracle for
information about the random source X using the real-or-random challenge and seed leakage. After A1

learns ` bit of leakage from the oracle, A2 is able to use all learned information to distinguish a real-or-
random challenge. Note that A1 cannot be computationally unbounded as, otherwise, A1 could derive the
original seed, query the oracle to compute the extractor’s output and compare with the challenge. For the
full definition, we refer readers back to Section 2.3. We re-iterate that computational seeds are not possible
with general leakage [14, 19].

As a major result of our work, we show that any information-theoretic extractor is already a computational
extractor. In other words, our constructions from Section 3.5 are also computational extractors with similar
parameters. In particular, we prove that the security game in Figure 1 generically implies security with
respect to Figure 2.

To prove this result, we will utilize insights similar to the ones presented in Theorem 1. Recall that
Theorem 1 proved that after receiving the extractor seed, the optimal adversary for information-theoretic
extractors simply checked whether any extractor output is a linear combination of the leakage bits received
from the oracle. Note that this post-processing adversary may be executed in PPT adversary, which is
the key reason why doubly-affine extractors may utilize computational seeds. This statement is not true in
other general leakage models that prevent their usage of computational seeds. We present the proof of the
following result in Appendix F.

Theorem 12. If Ext is information-theoretically (`, ε)-secure, then Ext is computationally (`, ε+ε′)-secure
if the computationally-secure seed generator is a PPT algorithm that is secure against PPT adversaries except
with probability ε′.

Therefore, our efficient information-theoretic extractors from Section 3.5 are also computational extrac-
tors that may be used with computational seeds.

5 Applications

In this section, we utilize our doubly-affine extractors to present information-theoretic encryption solutions.
We critically leverage both restrictions of affine output and leakage in the following way. Let the random
source X be the secret key. To encrypt a message M , one first samples a random seed S and produces the
ciphertext (S,Ext(X,S)⊕M). To decrypt a ciphertext (S,M ′), one can compute the value M ′⊕Ext(X,S) =
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M . In the above protocol, an adversary with access to encryption/decryption oracles end up only learning
extractor outputs that are affine. As a result, the adversary obtains only affine leakage about X. So, doubly-
affine extractors end up being the perfect primitive for information-theoretic encryption. While one may
also use seeded extractors with general output and leakage, we show our doubly-affine extractors result in
better probe/cache complexity (see Section 6 for numerical comparisons).

5.1 Replicated Setting

We consider the problem with k ≥ 2 parties that need reusable information-theoretic encryption to com-
municate multiple messages over potentially insecure channels. This may also be referred to as the group
communication problem. For the case of k = 2, we note there is a simple stateful solution. Each party
consumes the secret key X as one-time pads starting from different ends and stops when meeting in the
middle. However, this solution does not scale well for k > 2 parties where all parties do not see all en-
crypted messages. The natural generalization is to split X into k parts for each party. This is sub-optimal in
terms of utilizing X when some parties encrypt infrequently and other parties encrypt frequently. By using
doubly-affine extractors, we avoid these issues.

IND-CCA1 Encryption. We show that the simple example presented earlier is already an IND-CCA1
secure for secret key X and messages M .

• Enc(X,M) = (S,M ⊕Ext(X,S)) with uniformly random S.

• Dec(X, (S,M ′)) = M ′ ⊕Ext(X,S).

We prove security in a stronger variant of real-or-random challenges denoted by IND-CCA1$. The adversary
submits a challenge message M . The challenger returns either an encryption to M or a random string
that must be distinguished by the adversary. Note, this requires that ciphertexts are indistinguishable from
random strings. We formally prove define and prove security in Appendix G.1.

IND-CCA2 Authenticated Encryption. We present the first application of our computational doubly-
affine extractors for constructing IT authenticated encryption (AE) that is IND-CCA2$ secure. We assume
the existence of a standard, computationally-secure AE with associated data (AEAD) scheme, EncAEAD

and DecAEAD. We assume that the secret key is (X,KAEAD) where KAEAD is an AE secret key.

• Enc((X,KAEAD),M) = (EncAEAD(KAEAD, S,M
′),M ′) with M ′ = M ⊕ Ext(X,S) and uniformly

random S.

• Dec((X,KAEAD), (S′,M ′)) = M ′ ⊕Ext(X,DecAEAD(KAEAD, S
′,M ′)) and rejecting whenever

DecAEAD(KAEAD, S
′,M ′) fails authenticity verification.

It is straightforward to adapt our scheme to an IT AEAD by appending associated data with M ′ in the
above scheme. Our construction also achieves authenticity against any PPT adversaries from the underlying
AEAD scheme.

For security, we adapt our real-or-random challenge from the prior sections where the adversary must
distinguish between an encryption of an adversarially chosen message and a random string. For IND-CCA2$,
the adversary is able to make both encryption and decryption queries after the challenge. A computationally
unbounded adversary in IND-CCA2$ may trivially break the scheme. For the challenge ciphertext (S′,M ′),
the adversary sends a decryption query for ciphertext (S′,M ′′) where M ′′ 6= M ′ to receive M ′′ ⊕Ext(X,S)
where S is the encrypted seed. Therefore, the adversary computes Ext(X,S) and may break the scheme. Due
to this limitation, we consider adversaries that are PPT when encryption/decryption queries are available
but computationally unbounded afterwards. The security game and proof are presented in Appendix G.2.
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5.2 Distributed Setting

We consider another setting where the random source X is jointly stored by t ≥ 2 servers. Each server
stores a disjoint subset of X. We will use the standard assumption from information-theoretic cryptography
literature where the user will have a private channel with only a subset of g < t trusted servers and the
remaining t − g channels may be compromised and/or the servers may be compromised and using faulty
randomness. This is a common assumption that appears in many prior important works such as information-
theoretic secret sharing [28], multi-party computation [8] and secure message transmission [13]. Note users
do not know which servers are compromised. For simplicity, we assume each server stores an equal portion
of X (our analysis is trivial to extend when this is not the case). If there are t − g bad servers, a (t − g)/t
fraction of X will be leaked. Adversaries may also query the servers to learn affine leakage about the random
source X.

We modify our extractors for the multi-server setting. Recall that our extractors first sample bits then
apply a non-local extractor on sampled bits. With multiple servers, our extractor first executes the sampler
portion with each server individually. Afterwards, the non-local extractor will be executed on all sampled
bits to obtain the final extractor output. In terms of efficiency, we note that the virtual random source has
only n := (g/t)|X| random bits excluding parts of X stored by the bad servers. Any (p, c)-local extractor
will probe (g/t)p bits from good servers and the remaining sampled bits are assumed to be compromised
already. Executing a non-local extractor over all sampled bits can output (g/t)p − log(1/ε) random bits.
By considering the multi-server setting, we must increase the probe complexity of our extractors by a
multiplicative factor of (t/g). In particular, consider any extractor with probe complexity p in the replicated
setting that outputs m bits. To obtain m output bits in the multi-server setting, our extractors must instead
probe (t/g)p bits.

We emphasize that our doubly-affine extractors are easily amenable to the distributed setting. In par-
ticular, the distributed servers do not need any communication or coordination. The seeds that are sent
to each server may be computationally-secure. To encrypt/decrypt a message M , the communication and
computation from each server is sub-linear in the length of M . Our encryption schemes are easily adaptable
to settings where servers may go offline and new servers join as well if servers are malicious. Most of these
great properties are not be obtainable by other primitives when moving to distributed settings (such as
MPC, secret sharing, etc).

As one requirement, servers must limit the leakage that may be obtained by an adversary. To do this, the
servers may keep track of the number of unique bits that are sampled by all users. To limit adversaries to
` leakage bits, the servers should stop responding after `/g unique queries. As a result, the g servers return
at most ` leakage bits. Note that keeping track of the unique sampled bits may be done very efficiently with
small storage (using HyperLogLog [21] as an example).

Public-Key IND-CCA2 Encryption. With the server setting, there may be a need for public-key
encryption as parties no longer share the secret key. We show that we may build public-key IND-CCA2$
encryption schemes using our computational doubly-affine extractors. We re-use our previous IND-CCA2$
definition with the only difference that the adversary obtains the public key before any encryption/decryption
queries.

We will use any public-key encryption (PKE) scheme (EncPK,DecPK) with IND-CCA2 security against
PPT adversaries with label support [30] where the label is not private but is required for decryption. Suppose
that the PKE has key pair (pk, sk) and Ext(X,S) is computed using distributed variant of our doubly-affine
extractors.

• Enc(X,pk,M) = (EncPK(pk, S,M ′),M ′) with M ′ = M ⊕Ext(X,S) and uniformly random S.

• Dec(X, sk, (S′,M ′)) = M ′ ⊕Ext(X,DecPK(sk, S′,M ′)).

We formally define and prove security in Appendix H.1.

Computationally-Secure Keys. In the server setting, parties no longer need to meet and share the secret
key as they may generate shared randomness through the servers. We show that two parties may utilize
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information-theoretic encryption schemes without meeting. First, the two parties use key exchange to agree
on a computationally-secure seed S. To encrypt a message M , we may use any of the prior constructions
where Ext(X,S) is computed using the servers.

Malicious Servers. In this last section, we consider when the t−g corrupted servers are malicious. Malicious
servers are able to answer in an arbitrary manner including no response, wrong responses and responses that
are inconsistent across multiple requests. As an example, malicious servers may ignore sampler seeds and
return random bits for each request. Therefore, malicious servers can force our extractor outputs to no
longer be deterministic. For two queries with the same seeds, the outputs might be difference that will be
problematic for many applications.

In this section, we present a solution to this problem. The main modification is to utilize Reed-Solomon
codes to handle both errors (servers returning wrong responses) and erasures (servers not returning any
response). Using a Reed-Solomon code that adds z check bits, the decoding algorithms may handle up to a
errors and b erasures such that 2a + b ≤ bz/2c. All p sampled bits will be encoded using a Reed-Solomon
code. If there are at t − g malicious servers, that means at most (t − g)/t · p errors and/or erasures may
occur in the sampled bits. Therefore, we choose to use a Reed-Solomon code with z ≥ 2(t − g)/t · p check
bits. In applications, multiple parties will have to share both the same seeds as well as the z check bits to
guarantee the same output.

As the z check bits generated by the Reed-Solomon code must be shared between multiple parties, we
consider the z check bits to be public and, thus, available to the adversary. One reason we chose to use
Reed-Solomon code is that that check bits are linear in the message and, thus, linear in the sampled bits.
So, we may consider the leaked z check bits as general linear leakage obtained by the adversary. This
requires several modifications to DExt. Note that our extractors require that the sampled bits from the
g good servers have m + log(2/ε) bits of residual entropy as the non-linear extractor will lose log(2/ε) bits
of entropy. For malicious server setting, the z check bits will be publicly released. Therefore, we need the
sampled bits from the good servers to have residual entropy of m+ z + log(2/ε) bits as we will lose z bits of
entropy for the public check bits and another log(2/ε) from the non-linear extractor. Additionally, at most
t/3 of the servers may be malicious.

6 Experimental Evaluation

We now analyze the efficiency of our extractors in several dimensions. In this section, we aim to answer
several concrete questions. First, how do our extractors compare to previous works? Secondly, how efficient
are our constructions with respect to randomness extraction? Finally, what is the relationship between probe
and cache complexity in our constructions?

6.1 Comparison with Previous Works

We compare our extractors with those that appeared in previous works. The majority of previous works
such as [14, 31] focused on asymptotic as opposed to concrete efficiency. We focus on two recent works that
present concretely efficient (p, p)-local extractors [5] and (p, c)-local extractors [4]. We caveat that these
extractors were built for general leakage as opposed to only linear leakage like our extractors. Therefore, we
expect our constructions to be more efficient.

Both [5] and [4] assume the existence of a random oracle. The random oracle is utilized for both seed
generation and non-local extraction. To make a fair comparison with our doubly-affine extractors, we replace
random oracles with our non-local extractor (see Theorem 6) and require that the requisite seed length is
provided as input. With these modifications, our constructions have smaller or identical seed lengths. The
(p, c)-local extractor of [4] uses seeds of length p log(n/c) that is larger than our extractor’s seed length of
c log(n/c) (Theorem 9). Our (p, p)-local extractors in Theorem 11 use log

(
n
p

)
seeds that are identical to the

ones used in [5]. We present numerical comparisons in Figures 6 and 7 verifying that our extractors are more
efficient. For our comparison, we use security parameter ε = 2−64. In all settings, our constructions extract
more bits compared to both previous works when using the same probe and/or cache complexity.
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p Ours [5]

500 309 210
1000 734 484
2000 1638 1031
4000 3399 2127

279 128 88
436 256 174
742 512 342

351 188 128
584 381 256
1052 775 512

p Ours [5]

500 82 20
1000 282 104
2000 721 272
4000 1723 608

621 128 40
934 256 93
1527 512 192

1142 343 128
1903 678 256
3426 1452 512

Figure 6: Numerical examples, comparison with [5]. Both tables consider 100 GB random sources
and ε = 2−64. The left table considers 10% leakage and the right table 50% leakage. The leftmost columns
denote the probe complexity p. The second and third column denote the number of random bits extracted.

c 1 8 32 64 512
Ours [4] Ours [4] Ours [4] Ours [4] Ours [4]

250 53 53 885 524 3738 695 7542 723 60796 748
500 234 189 2334 1130 9532 1471 19129 1572 153488 1575
1000 622 463 5436 2343 21942 3024 43950 3134 352057 3229
5000 3690 2655 31237 12048 128746 15445 257558 15994 2060924 16464
10000 8263 5395 66565 24178 266455 30972 532976 32068 4264226 33008

c 1 8 32 64 512
Ours [4] Ours [4] Ours [4] Ours [4] Ours [4]

250 0 0 85 90 538 146 1142 157 9596 168
500 34 0 734 262 3132 374 6329 396 51088 417
1000 222 84 2236 608 9142 831 18350 874 147257 914
5000 1960 757 16137 3371 64746 4482 129558 4697 1036924 4892
10000 4263 1598 34565 6825 138455 9046 276976 9475 2216266 9864

Figure 7: Numerical examples, comparison with [4]. Both tables consider 100 GB random sources
and ε = 2−64. The left table considers 10% leakage and the right table 50% leakage. The leftmost column
denotes the cache complexity c. The first row denotes the number of probed bits in each of the c groups.
The remaining entries denote the number of random bits extracted.

6.2 Randomness Efficiency

Next, we evaluate the randomness efficiency of our constructions. Consider an extractor with probe complex-
ity p and an adversary with ` leakage bits from a n-bit random source, Only a (1−`/n)-fraction of the p probed
bits will be random in the adversary’s view. Our lower bound in Theorem 7 shows that at least log(1/ε)
additional bits will be lost. Therefore, a theoretically optimal extractor would extract (1− `/n)p− log(1/ε)
bits. In Figure 8, we show that our extractors are concretely very close to the theoretically optimal extractor.
We consider three settings where the adversary learns 10%, 50% and 90% of the random source (that is,
`/n ∈ {0.1, 0.5, 0.9}). As the number of probed bits increase, the number of extracted bits approach the
theoretical optimum. We also show that our (p, p)-local extractor (Theorem 11) outperforms our general
(p, c)-local extractor (Theorem 9 using Corollary 1).

6.3 Probe And Cache Complexity

Finally, we investigate the cost of small cache complexity in terms of probe complexity. In particular,
suppose we fix all parameters except cache and probe complexity. Does smaller cache complexity require
larger probe complexity? We show this is the case in Figure 9 where the required probe complexity decreases
exponentially as cache complexity increases. This justifies that cache complexity is an important efficiency
dimension for extractors.
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(a) 10% Leakage (b) 50% Leakage

(c) 90% Leakage

Figure 8: Percentage of probed bits that are extracted for (p, p)-local extractor from Theorem 11 and
Corollary 1 with a 100 GB random source and ε = 2−64.

7 Conclusions

In this paper, we define the notion of doubly-affine extractors where both the output and leakage must be
affine. Using these two restrictions, we present a series of reductions showing that optimal doubly-affine
extractors end up being simple PPT algorithms that check intersection of linear subspaces. Using these
insights, we show that doubly-affine extractors may tolerate post- application leakage and computational
seeds, which are impossible in general leakage models. We present extractor constructions that are almost
concretely optimal in terms of randomness usage, probe and cache complexity beating prior works. Finally,
we show that the doubly-affine restrictions are perfect for the application of information-theoretic encryption.
Using our concretely efficient extractors, we obtain state-of-the-art information-theoretic encryption.
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A The H-Coefficient Technique

In this section, we describe the H-coefficient technique [26] that will be useful for analyzing the best advantage
of an adversary in distinguishing between real and ideal experiments.

We denote the transcript as the messages that are communicated between the challenger and adversary
in a game. The H-coefficient technique partitions the set of all transcripts into good and bad sets. For good
transcripts, a lower bound on the ratio of the probability of any fixed good transcript appearing in the
real experiment compared to the probability of the good transcript appearing in the bad experiment. Bad
transcripts are typically chosen where a lower bound on the ratio cannot be proven. Instead, we derive an
upper bound on the probability that any bad transcript will ever appear. Furthermore, this bound will be
done using the ideal experiment, which typically simplifies the proofs.

Consider a real game G0 and an ideal game G1. We denote T (G0) and T (G1) to be the distribution of
transcripts that appear when simulating G0 and G1 respectively. Let T be the set of all good transcripts.
The H-coefficient technique states the following result:

Theorem 13 (H-Coefficient Technique [26]). For two experiments G0 and G1, if there exists a set of
transcripts T and ε, δ ≥ 0 satisfying

1. Pr[T (G0) = t]/Pr[T (G1) = t] ≥ 1− ε for all t ∈ T ;

2. Pr[T (G1) /∈ T ] ≤ δ;

then the best distinguishing advantage for any adversary A is at most ε+ δ.

B Impossibility of Security against Post-Application Leakage with
General Leakage

Theorem 14. For models with general leakage, any extractor whose output of m-bits is longer than its input
seed of s-bits will be generically secure against post-application leakage

Proof. We present a simple counterexample. Consider the binary leakage function f(X,R) where X is the
uniformly random string and R are potential extractor outputs. Suppose the leakage function f(X,R) = 1
if and only if there exists a seed S such that the extractor given the seed S and the input string X outputs
the string R. As the input seed length is shorter than the extractor output bit length, it is impossible
for the extractor’s output to be a uniformly random string when the adversary has access to the leakage
f(X,R).
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C Proof and Analysis of (p, p)-Sampler (Theorem 4)

Proof of Theorem 4. Fix any output of ` indices T1, . . . , T` from the adversary A and let I1, . . . , Ip be the
random p bits sampled by Samp. Denote the variable X as the intersection of the sampled and leakage
subspaces

X := dim(span(1T1 , . . . ,1T`) ∩ span(1I1 , . . . ,1Ip) = |{T1, . . . , T`} ∩ {I1, . . . , Ip}|.

We need to analyze Pr[X ≥ p−m + 1], which we decompose in the following way:

Pr[X ≥ p−m + 1] =

p∑
z=p−m+1

Pr[X = z].

To analyze Pr[X = z], note that there are
(
`
z

)
·
(
n−`
p−z
)

ways for the adversary learn z bits out of
(
n
p

)
different

ways for Samp to sample bits. Therefore, we get that

p∑
z=p−m+1

Pr[X = z] ≤
p∑

z=p−m+1

(
`
z

)
·
(
n−`
p−z
)(

n
p

) ≤ m ·
(

`
p−m+1

)(
n−`
m−1

)(
n
p

)
as Pr[X = z] is maximized when z = p−m + 1.

Next, we analytically compare our (p, p)-local sampler with the (p, c)-local sampler of Theorem 3 to show
that the (p, p)-local sampler is more concretely efficient. To do this, we first set p = c in Theorem 3 to get
the following corollary.

Corollary 1. For any 0 ≤ ` < n and λ > 0, there exists a (p, p)-local sampler that is (`, ε, λ)-secure with
seed length p log(n/p) and probe complexity

p ≤ m
1−`/n

+
ln(1/ε)+

√
ln2(1/ε)+4(1−`/n)m ln(1/ε)

2(1−`/n)2

≈ 1
1−`/n

·max
(
m , ln(1/ε)

1−`/n

)
.

Proof. By Theorem 3, we know that p = m

1−(`/n)−
√

ln(1/ε)/p
, which is a quadratic function in p. By solving

the quadratic equation, we can determine the optimal value of p. By rearranging, we get that√
p ln(1/ε) = p

(
1− `

n

)
−m

p ln(1/ε) = p2

(
1− `

n

)2

− p · 2m
(

1− `

n

)
+ m2

0 = p2

(
1− `

n

)2

− p ·
(

2m

(
1− `

n

)
+ ln(1/ε)

)
+ m2

Note, the above requires that p(1− `/n)−m ≥ 0. In other words, it must be the case that p ≥ m/(1− `/n).
We will utilize this condition later to pick the correct root when solving the quadratic equation. After solving
the quadratic equation, we get

p =
2m(1− `/n) + ln(1/ε)±

√
(2m(1− `/n) + ln(1/ε))2 − 4(1− `/n)2m2

2(1− `/n)2

If we choose the negative sign, we note that p < m/(1 − `/n) which is not allowed. Therefore, we have to
pick the positive sign. After re-arranging, we can see that

p =
m

(1− `/n)
+

ln(1/ε) +
√

ln2(1/ε) + 4(1− `/n)m ln(1/ε)

2(1− `/n)2

≤ m

1− `/n
+

ln(1/ε)

(1− `/n)2
+

√
m ln(1/ε)

(1− `/n)3
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where the last inequality used
√
a+ b ≤

√
a+
√
b.

We numerically analyze the two different samplers in Section 6 where we show that Theorem 4 is better
than using the above corollary deriving from Theorem 3.

D Non-Local Doubly-Affine Extractor Proofs

We start by presenting two instantiations of the special family of matrices from field multiplication with
smaller seed length but larger computational costs compared to our Toeplitz matrix instantiation. Then,
we present our lower bound. Finally, we present an existential construction with very short seed length, but
leave it as an open question to construct explicitly.

Special Matrix Family from Field Multiplication. We present one instantiation of the matrix set
with s = n. For our construction, we consider the Galois field of size n, GF [2n] and let p(x) be an irreducible
polynomial of degree n that generates GF [2n]. In particular,

p(x) = xn + pn−1x
n−1 + . . . p1x+ 1 mod 2.

We represent p(x) using the n-dimensional vector −→p = (pn−1, . . . , p1, 1) so that

p(x) = (1,−→p ) · (xn, xn−1, . . . , x, 1) mod 2.

We will define the matrix P which represents the operation of multiplying a polynomial by x modulo p(x).
So, for any seed S ∈ {0, 1}n:

PS = (S2, S3, . . . , Sn, 0)⊕ S1
−→p .

Note, that the result of PS is linear, so it easy to construct such a matrix P . We define the set of matrices
P1, . . . , Pm by setting Pi = P i−1. This construction also appears in [11] as well as the proof of the following
theorem.

Theorem 15. For any subset ∅ 6= I ⊆ [1, . . . ,m], PI =
∑
i∈I Pi has rank n.

Note, the computation based on P1, . . . , Pm is very efficient consisting of only cyclic shifts and XOR
operations on average half the time. However, this assumes that one already has an irreducible polynomial
p(x) of degree n. For large n, generating these irreducible polynomials may be computationally expensive
and difficult.

Lower Bound for Non-Local Extractors. We present our lower bound on non-local extractors (Theo-
rem 7).

Proof of Theorem 7. Consider ` random but linearly independent leakage vectors t1, . . . , t`. For any seed S,
consider the m-dimensional extracted subspace AS . Then, we get that over the random choices of t1, . . . , t`:

Pr
t1,...,t`

[span(AS) ∩ span(t1, . . . , t`) = {−→0 }]

= (1− 2m−n)(1− 2m+1−n) · · · (1− 2m+`−n)

= e−2m−n(2m+2m+1+...+2m+`)

= e−2m−n(2`+1−1)

≤ e−2m−n+`−O(1)

.

Towards a contradiction, suppose that m > n− `− log(1/ε) +O(1). As a result, we know that m− n +
`−O(1) > log(ε). Plugging this into the above formula, we get that for any fixed seed S

Pr
t1,...,t`

[span(AS) ∩ span(t1, . . . , t`) = {−→0 }] < e−2log(ε)

= e−ε < 1− ε
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for small enough ε > 0. As this is true for every fixed seed S, it is also true over any distribution over seeds
as well. In particular,

Pr
S,t1,...,t`

[span(AS) ∩ span(t1, . . . , t`) = {−→0 }] < 1− ε

over the random choice of S and t1, . . . , t`. Finally, this implies that

Et1,...,t` [Pr
S

[span(AS) ∩ span(t1, . . . , t`) = {−→0 }]] < 1− ε

which means there exists bad leakage vectors t1, . . . , t` such that at least one of the m output bits are not
random with probability greater than ε providing the desired contradiction.

Existence of Almost Optimal Extractor. Finally, we show that there exists a non-local extractor with
very small entropy loss and seed length. However, we can only show the existence of such an extractor as
opposed to a concrete instantiation at this point in time.

Theorem 16. There exists a non-local extractor NLExt : {0, 1}n × {0, 1}s → {0, 1}m that extracts m =
n− `− log(1/ε)−O(1) bits with a seed length of s = log(n`/ε) ≤ 2 log(n/ε).

Proof. To do this, we consider D := 2s random matrices A1, . . . , AD of dimension n × m representing all
possible seeds. We now bound the probability that there exists ` leakage vectors t1, . . . , t` that compromise
an ε-fraction of the D possible seeds.

Pr[∃t1, . . . , t` that compromise εD seeds]

≤
∑

t1,...,t`⊆{0,1}n
Pr[t1, . . . , t` compromises εD seeds]

≤
(

2n

`

)(
D

εD

)
Pr[∃Ai such that t1, . . . , t` compromises Ai]

εD

≤
(

2n

`

)(
D

εD

)
(2`−n + 2`+1−n + . . .+ 2`+m−n)εD

≤ 2n`(e/ε)εD(2`+m−n)εD

= 2n`+εD(log(e/ε)−n+`+m)).

We note that the second inequality comes from the fact that the probability a `-dimensional leakage subspace
intersects the m-dimensional extracted subspace of Ai is at most 2`−n + 2`+1−n + . . .+ 2`+m−n.

Note, we require that log(e/ε) < n − ` − m which implies that the number of extracted bits is at most
m < n− `− log(1/ε)−O(1).

Additionally, it must be that n` < εD(n − ` − m − log(e/ε)) So, we know that D = Ω(n`/ε) implying
that the seed length must be s = Ω(log(n`/ε)) bits. If we consider the natural setting where ` = n/c for
some constant c > 0, then s = Ω(log(`/ε)). As a result, there exists D matrices A1, . . . , AD that specify a
non-local extractors with the desired properties.

E Local Doubly-Affine Extractor Proofs

Sample-then-Extract Proof. We prove the sample-then-extract theorem used by our local extractor
constructions.

Proof of Theorem 8. Let’s consider an adversary A for G⊕(Ext, n, sSamp + sNLExt,m, `,A). We will show
that A has advantage at most εSamp+εExt. Consider the security of Samp and the gameG⊕,λ(Samp, n, sSamp, p, `,A).
Suppose that A chooses t1, . . . , t` as leakage vectors. For convenience, denote L := span(t1, . . . , t`) and
S := span(1I1 , . . . ,1Ip) where I1, . . . , Ip are the row vectors outputted by PickSamp(S). Except with prob-
ability εSamp, we know that dim(L ∩ S) ≤ p− λ. Let us suppose that dim(L ∩ S) ≤ p− λ. In this case, we
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can reduce the adversary to winning the game G⊕(NLExt, p, sNLExt,m, λ,A) as the adversary A may ask
at most p− λ leakage vectors about XSamp(S). By Theorem 6, we know A has advantage at most εNLExt.
Therefore, A has advantage at most εSamp + εNLExt as required. Since NLExt only operates over sampled
bits, the resulting extractor remains (p, c)-local.

Local Extractor Lower Bounds. We present a lower bound on cache complexity, c, of any local extractor.
In particular, we prove a lower bound single-bit extractors (so they also apply for all extractors).

Proof of Theorem 10. Consider the following adversary that picks `/p locations in the n-bit source X uni-
formly at random. For each of `/p locations, the adversary queries and recovers the ` bits following and
including the chosen location. Therefore, the adversary queries at most ` times. such that the adversary
learns `/p groups of exactly ` consecutive bits.

Since Ext is (p, c)-local, the single output bit is a deterministic function of at most c groups where each
group consists of at most ` bits each. Suppose Ext queries 1 ≤ i ≤ c consecutive groups. The probability that
the adversary chose a group starting at the same location as each of these i consecutive groups is

(
`/p
i

)
/
(
n
i

)
.

This probability is minimized by setting i = c. Therefore, there exists an adversary with advantage at least
ε ≥

(
`/p
c

)
/
(
n
c

)
. Note, (

`/p
c

)(
n
c

) =
(`/p) · (`/p− 1) · · · (`/p− c + 1)

n · (n− 1) · · · (n− c + 1)
≥
(
`

pn
− c

n

)c

.

As typically c� `/p, we get ε ≥ ( `pn )c or c = Ω(log(1/ε)/ log(pn/`)).

F Computational Doubly-Affine Extractors

Proof of Theorem 12. Towards a contradiction, assume there exists an adversary A = (A1,A2) with advan-
tage strictly greater than ε+ ε′. We will convert this into a PPT adversary AΣ for the computational seed
generator Σ with advantage strictly greater than ε′.

Consider the modified version of game Gc in Figure 2 where the seed S is uniformly random as opposed
to being passed by Σ. Note this game is identical to game G in Figure 1 except that the leakage Z is also
given to A1. Note that we may essentially repeat the proof of Theorem 1 to show that there exists an
optimal PPT adversary A2 with advantage at most ε. The only difference is that A2 is given the seed S′

to Σ as opposed to the computational seed S itself. However, A2 may recover S by executing Σ(S′) as Σ is
assumed to be PPT. Therefore, if the computational seed S is indistinguishable from a random seed, then
A has advantage at most ε.

Since the assumption is that A has advantage strictly greater than ε + ε′, it must be that A is able to
distinguish between the computational seed and a random string with probability strictly greater than ε′.
With the usage of the optimal PPT A2 adversary, A is now a PPT adversary. Therefore, there exists a PPT
adversary to break Σ with probability strictly larger than ε′ providing the contradiction.

G Replicated Setting

In this section, we formally define and prove security of our encryption schemes from Section 5.1. For our
definitions of IND-CCA1$ and IND-CCA2$ security, we will suppose that adversaries may perform at most
`1 oracle queries prior to the challenge and at most `2 oracle queries after the challenge. We say that a
secure is (`1, `2, ε)-secure if the protocol is secure against an adversary with such oracle query upper bounds
except with ε probability. An encryption scheme is (p, c)-local if it probes at most p bits of the secret key
X that may be arranged into at most c consecutive groups.
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GIND-CCA1$(Enc,Dec, n,m, `1, `2,A)
C A
Draw X ← Un.

a1, T1 Set a1, T1 ← A().
←−−−−−−−−−−−−−

If a1 = 0, R1 ← Enc(T1, X).
If a1 = 1, R1 ← Dec(T1, X). R1

−−−−−−−−−−−−−→
. . .

a`1 , T`1 Set a`1 , T`1 ← A(R1, . . . , R`1−1).
←−−−−−−−−−−−−−

If a1 = 0, R`1 ← Enc(T`1 , X).
If a1 = 1, R`1 ← Dec(T`1 , X). R`1

−−−−−−−−−−−−−→
M Set M ← A(R1, . . . , R`1 ).

←−−−−−−−−−−−−−
Draw b← U1.
If b = 0, R← Enc(M,X).
If b = 1, R← Ua. R

−−−−−−−−−−−−−→
T ′1 Set T ′1 ← A(R,R1, . . . , R`1 ).

←−−−−−−−−−−−−−
Set R`1+1 ← Enc(T ′1, X). R`+1

−−−−−−−−−−−−−→
. . .

T ′`2
Set T ′`2

← A(R,R1, . . . , R`1+`2−1).

←−−−−−−−−−−−−−
Set R`1+`2

← Enc(T ′`2
, X). R`1+`2

−−−−−−−−−−−−−→
b′ Set b′ ← A(R,R1, . . . , R`1+`2

).
←−−−−−−−−−−−−−

If b 6= b′, output 0.
If b = b′, output 1.

Figure 10: Game GIND-CCA1$(Enc,Dec, n,m, `1, `2,A).

G.1 IND-CCA1$ Encryption

The IND-CCA1$ security game is presented in Figure 10. We present the following theorem.

Theorem 17. Let Ext be (p, c)-local extractor that is (`, ε)-secure. For any `1, `2 ≥ 0 such that ` ≤
m(`1 + `2), there exists an (p, c)-local IND-CCA1$ encryption scheme that is (`1, `2, ε)-secure.

Proof. For our above construction, if an adversary sends a decryption oracle query (Si, Ci), the adversary
can retrieve the value C ⊕ Ext(X,Si). So, the adversary can retrieve Ext(X,Si) for the chosen seed Si.
For encryption oracle queries, the adversary sends a message Mi and will receive (Si,M ⊕ Ext(X,Si)) for
a Si ← Us. So, the adversary learns Ext(X,Si) for a seed chosen uniformly at random. Without loss
of generality, we may assume that the adversary always performs ` decryption oracle queries before the
challenge.

Towards a contradiction, suppose there exists AIND-CCA1$ that wins game GIND-CCA1$ against (Enc,Dec)
with probability larger than ε. We construct A that wins game G against Ext with probability greater than
ε. A executes AIND-CCA1$ to get decryption oracle queries (Si, Ci). A forwards the m row vectors of Si to
get Ext(X,Si) and computes Dec((Si, Ci), X) = Ci ⊕ Ext(X,Si) that is sent back to AIND-CCA1$. For the
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GIND-CCA2$(Enc,Dec, n, s,m, `1, `2,A1,A2)
C A = (A1,A2)
Draw X ← Un.

a1, T1 Set a1, T1 ← A1().
←−−−−−−−−−−−−−

If a1 = 0, R1 ← Enc(T1, X).
If a1 = 1, R1 ← Dec(T1, X). R1

−−−−−−−−−−−−−→
. . .

a`1 , T`1 Set a`1 , T`1 ← A1(R1, . . . , R`1−1).
←−−−−−−−−−−−−−

If a1 = 0, R`1 ← Enc(T`1 , X).
If a1 = 1, R`1 ← Dec(T`1 , X). R`1

−−−−−−−−−−−−−→
M Set M ← A1(R1, . . . , R`1 ).

←−−−−−−−−−−−−−
Draw b← U1.
If b = 0, R← Enc(M,X).
If b = 0, R← Ua. R

−−−−−−−−−−−−−→
a′1, T

′
1 Set a′1, T

′
1 ← A1(R,R1, . . . , R`1 ).

←−−−−−−−−−−−−−
If a′1 = 0, R`1+1 ← Enc(T ′1, X).
If a′1 = 1 and T ′1 6= R, R`1+1 ← Dec(T ′1, X). R`1+1

−−−−−−−−−−−−−→
. . .

a′`2
, T ′`2

Set a′`2
, T ′`2

← A1(R,R1, . . . , R`1+`2−1).

←−−−−−−−−−−−−−
If a′`2

= 0, R`1+`2
← Enc(T ′`2

, X).

If a′`2
= 1 and T ′`2

6= R, R`1+`2
← Dec(T ′`2

, X). R`1+`2

−−−−−−−−−−−−−→
Set state← A1(R,R1, . . . , R`1+`2

).

b′ Set b′ ← A2(state).
←−−−−−−−−−−−−−

If b 6= b′, output 0.
If b = b′, output 1.

Figure 11: Game GIND-CCA2$(Enc,Dec, n, s,m, `1, `2,A1,A2).

challenge, A receives M from AIND-CCA1$. Furthermore, A receives the challenge seed S and the value R
that is either uniformly random or Ext(X,S). A computes (S,M ⊕R) and sends it to AIND-CCA1$. Finally,
A receives b′ from AIND-CCA1$ and outputs b′.

With probability 1/2, we know that R = Ext(X,S). Then, Enc(M,X) = (S,M ⊕ Ext(X,S)) with
probability 1/2. With the remaining 1/2 probability, R is uniformly random, so (S,M ⊕R) is also uniformly
random as S is always uniformly random. Therefore, A wins with probability at least ε. Since AIND-CCA1$

sends the same answer, AIND-CCA1$ also wins with probability ε.

G.2 IND-CCA2$ Authenticated Encryption

Our security game of IND-CCA2$ security is found in Figure 11. We prove the following theorem about our
AE scheme.

Theorem 18. Let Ext be a (p, c)-local extractor that is (`, ε)-secure and (EncAEAD, DecAEAD) be a
computationally-secure AEAD scheme that is both IND-CCA2$ secure and provides ciphertext integrity
(CXT-INT) except with probability ε′. For any `1, `2 ≥ 0 such that ` ≤ m(`1 + `2), there exists an (p, c)-local
IND-CCA2$ encryption scheme that is (`1, `2, ε + ε′)-secure. Furthermore, the scheme provides ciphertext
integrity CXT-INT with respect to PPT adversaries.
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Proof. If a PPT adversary can find a (C,P ) such that Dec properly decrypts implies finding a (C,P ) such
that DecAEAD(KAEAD, C, P ) decrypts properly. So, computational CXT-INT follows directly from the
AEAD scheme.

To show that (Enc,Dec) is an IND-CCA2$ encryption scheme, we first use the standard observation [6]
(which holds with hybrid attackers) that CXT-INT property shown above means that we can ignore all
decryption queries (still made when A is PPT), and effectively show security against an IND-CPA variant
of the security game in Figure 11. Next, we replace the second stage unbounded attacker A2 with the
optimal PPT adversary described in Section 3.1. We omit the proof as it follows similarly to Theorem 1 and
Theorem 12.

Now that our overall attacker A is PPT, we present a series of hybrid games to show that the attacker’s
advantage in distinguishing b = 0 from b = 1 is at most ε + ε′. In the resulting game where b = 0 denoted
by G0, we know that R = (EncAEAD(KAEAD, S, P ), P ) such that P = M ⊕ Ext(X,S). Consider the
game G1 where R = (C,P ) and P = M ⊕ Ext(X,S) such that C is a uniformly random string. Note, G0

and G1 are indistinguishable with probability at most ε′ by the fact that the underlying AEAD scheme is
computationally IND-CPA$ secure, and our adversary is PPT. Consider the next hybrid game G2 where we
replace P = M⊕Ext(X,S) with P that is chosen uniformly at random. Since Ext is an (`, ε)-secure extractor
and all encryption oracles queries are equivalent to m oracle queries, games G1 and G2 are indistinguishable
except with probability at most ε. Finally, note that G2 is equivalent to our final game where b = 1, as
R = (C,P ) is chosen uniformly at random.

H Distributed Setting

In this setting, we prove the security of our public-key IND-CCA2$ encryption scheme. Furthermore, we
present usage of error-correcting codes to deal with malicious servers. Recall there are t total servers and g
good servers (thus, t− g bad servers).

H.1 Public-Key IND-CCA2$ Encryption

The security game for our IND-CCA2$ security notion is found in Figure 11. We prove the security of our
public-key scheme from Section 5.2.

Theorem 19. Let Ext be a (p, c)-local extractor that is (`, ε)-secure and (EncPK, DecPK) be a computationally-
secure public-key encryption scheme that is IND-CCA2$ secure with label support except with probability ε′.
For any `1, `2 ≥ 0 such that ` ≤ m(`1 + `2), there exists an (p, c)-local IND-CCA2$ encryption scheme that
is (`1, `2, ε+ ε′)-secure.

Proof. The proof follows identically to the proof of Theorem 18 with the modification that the decryption
oracle for the underlying public-key scheme must be used instead of the AEAD decryption oracle.
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