
Message Transmission with Reverse Firewalls�

Secure Communication on Corrupted Machines

Yevgeniy Dodis1?, Ilya Mironov2, and Noah Stephens-Davidowitz1??

1 Dept. of Computer Science, New York University.
2 Google.

Abstract. Suppose Alice wishes to send a message to Bob privately over an untrusted channel. Cryp-
tographers have developed a whole suite of tools to accomplish this task, with a wide variety of notions
of security, setup assumptions, and running times. However, almost all prior work on this topic made a
seemingly innocent assumption: that Alice has access to a trusted computer with a proper implementa-
tion of the protocol. The Snowden revelations show us that, in fact, powerful adversaries can and will
corrupt users' machines in order to compromise their security. And, (presumably) accidental vulner-
abilities are regularly found in popular cryptographic software, showing that users cannot even trust
implementations that were created honestly. This leads to the following (seemingly absurd) question:
�Can Alice securely send a message to Bob even if she cannot trust her own computer?!�

Bellare, Paterson, and Rogaway recently studied this question. They show a strong lower bound that in
particular rules out even semantically secure public-key encryption in their model. However, Mironov
and Stephens-Davidowitz recently introduced a new framework for solving such problems: reverse �re-
walls. A secure reverse �rewall is a third party that �sits between Alice and the outside world� and
modi�es her sent and received messages so that even if the her machine has been corrupted, Alice's
security is still guaranteed. We show how to use reverse �rewalls to sidestep the impossibility result of
Bellare et al., and we achieve strong security guarantees in this extreme setting.

Indeed, we �nd a rich structure of solutions that vary in e�ciency, security, and setup assumptions,
in close analogy with message transmission in the classical setting. Our strongest and most important
result shows a protocol that achieves interactive, concurrent CCA-secure message transmission with
a reverse �rewall�i.e., CCA-secure message transmission on a possibly compromised machine! Sur-
prisingly, this protocol is quite e�cient and simple, requiring only four rounds and a small constant
number of public-key operations for each party. It could easily be used in practice. Behind this result
is a technical composition theorem that shows how key agreement with a su�ciently secure reverse
�rewall can be used to construct a message-transmission protocol with its own secure reverse �rewall.

1 Introduction

We consider perhaps the simplest, most fundamental problem in cryptography: secure message
transmission, in which Alice wishes to send a plaintext message to Bob without leaking the plaintext
to an eavesdropper. Of course, this problem has a rich history, and it is extremely well-studied with
a variety of di�erent setup assumptions and notions of security (e.g., [BDPR98]). There are many
beautiful solutions, based on symmetric-key encryption, public-key encryption, key agreement, etc.

However, in the past few years, it has become increasingly clear that the real world presents many
vulnerabilities that are not captured by the security models of classical cryptography. The revelations
of Edward Snowden show that the United States National Security Agency successfully gained access
to secret information by extraordinary means, including subverting cryptographic standards [PLS13,
BBG13] and intercepting and tampering with hardware on its way to users [Gre14]. Meanwhile, many

? Partially supported by gifts from VMware Labs and Google, and NSF grants 1319051, 1314568, 1065288, 1017471.
?? Partially supported by National Science Foundation under Grant No. CCF-1320188. Any opinions, �ndings, and

conclusions or recommendations expressed in this material are those of the authors and do not necessarily re�ect
the views of the National Science Foundation.

(apparently accidental) security �aws have been found in widely deployed pieces of cryptographic
software, leaving users completely exposed [LHA+12, CVE14a, CVE14b, CVE14c, Jun15]. Due to
the complexity of modern cryptographic software, such vulnerabilities are extremely hard to detect
in practice, and, ironically, cryptographic modules are often the easiest to attack, as attackers
can often use cryptographic mechanisms to mask their activities or opportunistically hide their
communications within encrypted tra�c (as in the case of the Heartbleed vulnerability). This has
led to a new direction for cryptographers (often called �post-Snowden cryptography�), which in
our context is summarized by the following (seemingly absurd) question: �How can Alice and Bob
possibly communicate securely when an eavesdropper may have corrupted their computers?!�

Motivated by such concerns, Bellare, Paterson, and Rogaway consider the problem of securely
encrypting a message when the encrypting party might be compromised [BPR14a]. They consider
the case in which the corrupted party's behavior is indistinguishable from that of an honest im-
plementation. Even in this setting, their main result is a strong lower bound, showing that even a
relatively weak adversary can break any scheme that �non-trivially uses randomness.� (They also
provide an elegant deterministic symmetric-key solution, which we use as a subprotocol in the se-
quel.) In particular, it is easy to see that a semantically secure public-key message transmission is
impossible in their framework. (See [BH15] for an analysis of weaker notions of security for public-key
encryption in this setting.)

1.1 Reverse Firewalls

Due to the strong lower bound in [BPR14a], we consider a relaxation of their model in which we
allow for an additional party, a (cryptographic) reverse �rewall (RF) as recently introduced by
Mironov and Stephens-Davidowitz [MS15]. We provide formal de�nitions in Section 2.1, but since
RFs are quite a new concept (and they can be rather confusing at �rst), we now provide a high-level
discussion of some of the salient aspects of the reverse-�rewall framework.

A reverse �rewall for Alice is an autonomous intermediary that modi�es the messages that
Alice's machine sends and receives. The hope is that the protocol equipped with a reverse �rewall
can provide meaningful security guarantees for Alice even if her own machine is compromised. As we
explain in detail below, the �rewall is untrusted in the sense that it shares no secrets with Alice, and
in general we expect Alice to place no more trust in the �rewall than she does in the communication
channel itself.

More concretely, Mironov and Stephens-Davidowitz start by considering an arbitrary crypto-
graphic protocol that satis�es some notions of functionality (i.e., correctness) and security.1 For
example, perhaps the simplest non-trivial case is semantically secure message transmission from
Alice to Bob, which has the functionality requirement that Bob should receive the correct plaintext
message from Alice and the security requirement that a computationally bounded adversary �should
not learn anything about Alice's plaintext message� from the transcript of a run of the protocol.
Formally, we can model this functionality by providing Alice with an input plaintext and requiring
Bob's output to match this, and we can model semantic security by a standard indistinguishability
security game.

A reverse �rewall for Alice in such a protocol is a party that �sits between� Alice and the
outside world and modi�es the messages that Alice sends and receives. Such a �rewall maintains
functionality if the resulting protocol achieves the same functionality as the original. E.g., in the

1 The notion of functionality in [MS15] is quite simple, and it should not be confused with the much more compli-
cated concept of functionality used in the universal composability framework. Formally, Mironov and Stephens-
Davidowitz de�ne a functionality requirement as any condition on the output of the parties that may depend on
the input, and in practice, these requirements are straightforward.

2

case of message transmission, Bob should still receive Alice's message�his output should still match
Alice's input. More interestingly, the �rewall preserves security if the protocol with the �rewall is
secure even when we replace Alice's computer with some arbitrarily corrupted party. For example,
a reverse �rewall for Alice preserves semantic security of message transmission if a computationally
bounded adversary �learns nothing about Alice's plaintext message� from the transcript of messages
sent between the �rewall and Bob, regardless of how Alice behaves. E.g., the �rewall may rerandomize
the messages that Alice sends in a way that makes them indistinguishable from random from the
adversary's perspective, regardless of Alice's original message.

Note that it also makes sense to consider reverse �rewalls for the receiver, Bob. For example,
consider a protocol in which Bob �rst sends his public key to Alice, and Alice responds with an
encryption of her message under this key. Clearly, if Bob's computer is corrupted in such a protocol,
this can compromise security, even if Alice behaves properly. In such a protocol, a �rewall for Bob
might rerandomize his public key. Of course, to maintain correctness, this �rewall must also intercept
Bob's incoming messages and convert ciphertexts under this rerandomized key to encryptions under
Bob's original key. (We analyze such protocols in a stronger setting in Section 3.)

A key feature of protocols with reverse �rewalls, as de�ned in [MS15], is that they should
be functional and secure both with the reverse �rewall and without it. I.e., there should be a
well-de�ned underlying protocol between Alice and Bob that satis�es classical functionality and
security requirements. This is one important di�erence between reverse �rewalls and some similar
models, such as the mediated model [AsV08] and divertible protocols [BD91,OO90,BBS98], and it
comes with a number of bene�ts. ([MS15] contains a thorough comparison of many di�erent related
models.) First, it means that these protocols can be implemented and used without worrying about
whether reverse �rewalls are present�one protocol works regardless; we simply obtain additional
security guarantees with an RF.

Second, and more importantly, this de�nitional choice provides an elegant solution to a natural
concern about reverse �rewalls: What happens when the �rewall itself is corrupted? Of course, if both
Alice's own machine and her �rewall are compromised, then we cannot possibly hope for security.
But, if Alice's own implementation is correct and the �rewall has been corrupted, then we can view
the �rewall as �part of� the adversary in the �rewall-free protocol between Alice and Bob. Since this
underlying protocol must itself be secure, it trivially remains secure in the presence of a corrupted
�rewall.2 This is why we can say that the �rewall is trusted no more than the communication
channel. (In contrast, the divertible protocols framework assumes that the �warden� is trusted, and
the mediated model handles security �against the mediator� separately.)

Of course, the advantage of using a �rewall comes when Alice's machine is corrupted but the
�rewall is implemented correctly, in which case the �rewall provides Alice with a security guarantee
that she could not have had otherwise. In short, the �rewall can only help. In fact, we even require
�rewalls to be �stackable,� so that arbitrarily many �rewalls may be deployed, and security is
guaranteed as long as either (1) Alice's own machine is uncorrupted; or (2) at least one of these
�rewalls is implemented correctly.

Finally, it is convenient to identify a class of functionality-maintaining corruptions: compromised
implementations that are �technically legal� in the sense that they may deviate arbitrarily from the
protocol, as long as they do not break its functionality. Some of our reverse �rewalls are only secure
against this type of corruption. (This model is introduced by [MS15], and the authors call security
against unrestricted compromise strong security.) We emphasize that, while this restricted class
of compromised implementations is not ideal, it is still quite large. In particular, all of the real-
world compromises mentioned above fall into this category [PLS13,BBG13,Gre14,Sup15,LHA+12,

2 Technically, this statement only holds if the underlying protocol is secure against active adversaries.

3

CVE14b, CVE14a, CVE14c, Jun15], as do essentially all other forms of compromise considered in
prior work, such as backdoored PRNGs [DGG+15], Algorithm Substitution Attacks [BPR14a], sub-
liminal channels [Sim84], etc. (We discuss functionality-maintaining corruption in our setting in
Section 2.4. See [MS14] for a detailed comparison of the general reverse �rewall framework with
prior work.)

1.2 Our results

In this section, we walk through the results that we obtain in di�erent settings, starting with simpler
cases and working our way up to our stronger results. In what follows, Alice is always the sender
and Bob is always the receiver of the message. All of our security notions apply to the concurrent
setting, in which the adversary may instantiate many runs of the protocol simultaneously.

The symmetric-key setting. In the �rst and simplest scenario, Alice and Bob have a shared
secret key. (See Appendix A.) Quite naturally, Alice may want to use a symmetric-key encryption
scheme to communicate with Bob. Using a standard scheme (e.g., AES-CBC) would, however,
expose her to a number of �algorithm-substitution attacks� (ASA, i.e., what we call corruption or
compromise) described by Bellare, Paterson, and Rogaway [BPR14a], such as IV-replacement or a
biased-ciphertext attacks. To defend against ASA, Bellare et al. propose using an elegant solution:
a deterministic encryption scheme based on either a counter or a nonce. We brie�y consider this
case, observing that their solution corresponds to a one-round protocol in our model (in which the
�rewall simply lets messages pass unaltered).

Unfortunately, we show that strong security (i.e., security against corrupted implementations
of Alice that are not necessarily functionality-maintaining) is not achievable without using (less
e�cient) public-key primitives, even in the reverse-�rewalls framework. This provides further moti-
vation to study reverse �rewalls in the public-key setting.

Rerandomizable encryption. As we mentioned earlier, the simplest non-trivial reverse �rewall
in the public-key setting uses CPA-secure rerandomizable public-key encryption. In particular, Al-
ice can send her plaintext encrypted under Bob's public key, and Alice's reverse �rewall can simply
rerandomize this ciphertext. We observe that this folklore technique works in our setting. In Sec-
tion 3, we present a generalization of this idea that does not require any public-key infrastructure,
by having Bob send his public key as a �rst message. Following [MS15], we observe that Bob can
have a reverse �rewall for such a protocol that rerandomizes his key (and converts Alice's ciphertext
from an encryption under the rerandomized key to an encryption under Bob's original key). We
therefore show a simple two-round protocol with a reverse �rewall for each party.

While such protocols are simple and elegant, they have two major drawbacks. First, they are only
secure against passive adversaries (an issue to which we will return soon). Second, and arguably
more importantly, such protocols require the computation of public-key operations on the entire
plaintext. Since plaintexts are often quite long and public-key operations tend to be much slower
than symmetric-key operations, it is much faster in practice to use public-key operations to transmit
a (relatively short) key for a symmetric-key encryption scheme and then to send the plaintext
encrypted under this symmetric key. There are two general methods for transmitting this key in the
classical setting: hybrid encryption and key agreement.

Failure of hybrid encryption. Unfortunately, hybrid encryption does not buy us anything in
the reverse-�rewalls framework. Recall that in a hybrid encryption scheme, Alice selects a uniformly
random key rk for a symmetric-key scheme and sends rk encrypted under Bob's public key together
with the encryption of her message under the symmetric-key scheme with key rk. We might naively
hope that we can build a reverse �rewall for such a scheme by simply applying the �rerandomizing

4

�rewall� to the �public-key part� of Alice's ciphertext. But, this does not work because of the attack
in which a corrupted implementation of Alice chooses a �bad key� rk∗ with which to encrypt the
message. The �bad key� rk∗ might be known to an adversary; might be chosen so that the ciphertext
takes a speci�c form that leaks some information; or might otherwise compromise Alice's security.
So, intuitively, a reverse �rewall in such a scheme must be able to rerandomize the key rk, and it
therefore must be able to convert an encryption under some key rk into an encryption of the same
plaintext under some new key rk′. Unfortunately, we show that any such �key-malleable� symmetric-
key encryption scheme implies public-key encryption. Therefore, it cannot be faster than public-key
encryption and is useless for our purposes.

Key agreement. Recall that a key-agreement protocol allows Alice and Bob to jointly select a
secret key over an insecure channel. Security requires that the resulting key is indistinguishable
from random to an eavesdropper. Such a protocol is often used in conjunction with symmetric-key
encryption in the classical setting, where it is justi�ed by composition theorems relating the security
of the message-transmission protocol to the underlying key-agreement protocol. Indeed, we give an
analogous result (Theorem 2) that works in our setting, showing that a carefully designed key-
agreement protocol with su�ciently secure reverse �rewalls can be combined with symmetric-key
encryption to produce an e�cient CPA-secure message-transmission protocol with secure reverse
�rewalls. This motivates the study of key-agreement protocols with secure reverse �rewalls.

As a �rst attempt at constructing such an object, we might try to somehow rerandomize the
messages in the well-known Di�e-Hellman key-agreement protocol, in which Alice �rst sends the
message ga, Bob then sends gb, and the shared key is gab. (See Figure 8.) Here, we run into an
immediate problem. Since the �rewall must maintain correctness, no matter what message A∗ the
�rewall sends to Bob, it must be the case that the �nal key is A∗b, where b is chosen by Bob. But,
this allows a corrupt implementation of Bob to in�uence the key! For example, Bob can repeatedly
resample b until, say, the �rst bit of the key A∗b is zero, thus compromising the security. It is easy
to see that this problem is not unique to Di�e-Hellman and in fact applies to any protocol in which
�a party learns what the key is while sending a message that in�uences the key.�

So, to truly prevent any party from having any control over the �nal key, we use a three-round
protocol in which Bob sends a commitment of gb as his �rst message. Alice then sends ga, and
Bob then opens his commitment.3 Of course, the commitment scheme that Bob uses must itself be
rerandomizable and malleable, so that the �rewall can both rerandomize the commitment itself and
the committed group element. Fortunately, we show that a very simple scheme, a natural variant
of the Pedersen commitment, actually su�ces.

Since this simple protocol is unauthenticated, it cannot be secure against active adversaries (an
important problem that we address next). But, we note that it still has a number of bene�ts. It is
very e�cient (roughly as e�cient as the protocols currently used in practice!), and it does not require
any public-key infrastructure. And, passive security might be su�cient in some settings. For exam-
ple, powerful adversaries are known to passively gather large amounts of web tra�c [Gre14]. Such
adversaries can then later exploit vulnerabilities (whether accidental or planted) in widespread cryp-
tographic software to read the private communications of individuals of interest to them [PLS13].
The key-agreement-based protocol described above (together with its RF) can defend against such
attacks. But, it would be much better to achieve security against active adversaries.

CCA-security from key agreement. Now, we attempt to construct a reverse �rewall that
preserves CCA-security (i.e., security against active adversaries that may �feed� Alice and Bob
arbitrary adversarial messages and read Bob's output). In this setting, we again prove a generic

3 We note that the problem that we face here is very similar to the problem of key control, and our solution is similar
to solutions used in the key-control literature. See, e.g., [DPSW06].

5

composition theorem, which shows that it su�ces to �nd a key-agreement protocol with reverse
�rewalls that satisfy certain security properties. In analogy with the passive setting, after agreeing
to a key with Bob, Alice can use symmetric-key encryption to send the actual plaintext message. The
resulting protocol is CCA-secure, and Alice's reverse �rewall preserves this security. (See Theorem 4.)

To instantiate this scheme, we must construct a key-agreement protocol that is secure against
active adversaries and has a reverse �rewall that preserves this security. Unfortunately, many of
the elegant techniques used in classical key-agreement protocols (or even protocols that are secure
against key control) are useless here. In particular, most key-agreement protocols that achieve
security against active adversaries do so by essentially having both parties sign the transcript at
the end of the protocol. Intuitively, this allows the parties to know if the adversary has tampered
with any messages, so that they will never agree to a key if a man-in-the-middle has modi�ed their
messages. But in our setting, we actually want the �rewall to be able to modify the parties' messages!
We therefore need to somehow �nd some unique information that the parties can use to con�rm
that they have agreed to the same key without preventing the �rewall from modifying the key.
Furthermore, we need the �rewall to be able to check these signatures, so that it can block invalid
messages. Therefore, our primary technical challenge in this context is to �nd a protocol with some
string that (1) uniquely identi�es the key; (2) respects the �rewall's changes to the parties' messages;
and (3) is e�ciently computable from the transcript. And, of course, the protocol must be secure
against active adversaries, even though it is in some sense �designed to help a man-in-the-middle.�

In spite of these challenges, we construct an e�cient protocol with a reverse �rewall for each party
that preserves security against active adversaries. Remarkably, our protocol achieves this extremely
strong notion of security with only four rounds and relatively short messages, and the parties
themselves (including the �rewall) only need to perform a small constant number of operations.
This compares quite favorably with protocols that are currently implemented in practice (which of
course are completely insecure in our setting), and we therefore believe that this protocol can and
should be implemented and used in the real world.

This surprising solution, which we describe in detail in Section 5.1, uses hashed Di�e-Hellman
(similar in spirit to [Kil07]) and bilinear maps. We also use unique signatures to prevent the signa-
tures from becoming a channel themselves.

Rerandomizable encryption and active adversaries. Finally, we return to the question of
protocols based on rerandomizable encryption (despite the fact that we showed that such protocols
cannot be e�cient), but now in the setting of active adversaries. We show how to achieve CCA-
security in a single round using rerandomizable RCCA-secure encryption [BDPR98]. (See Section 6.)
Indeed, we show that such a primitive is actually equivalent to a one-round protocol with a �re-
wall that preserves CCA-security. Such schemes are fairly well-studied, and very elegant solutions
exist [Gro04,PR07]. But, our work leads to an interesting open question. Currently known schemes
are rerandomizable in the sense that the rerandomization of any valid ciphertext is indistinguishable
from a fresh ciphertext, even with access to a decryption oracle. We ask whether these schemes can
be made �strongly rerandomizable,� in the sense that the same is true even for invalid ciphertexts.
(See Section 6 for the formal de�nition.) We show the weaker notion of rerandomizability is equiv-
alent to protocols with �rewalls that are secure against functionality-maintaining corruption, while
strong rerandomizability is equivalent to security against arbitrary corruption.

1.3 Related work

Message transmission in the classical setting (i.e., without reverse �rewalls) is of course extremely
well-studied, and a summary of such work is beyond the scope of this paper. We note, however, that
our security de�nitions for message transmission protocols follow closely Dodis and Fiore [DF14].

6

There have been many di�erent approaches to cryptography in the presence of compromise.
[MS15] contains a thorough discussion of many of these (though they naturally do not men-
tion the many relevant papers that appeared simultaneously with or after their publication, such
as [AMV15,BJK15,RTYZ15,DFP15,BH15,DGG+15, SFKR15]). In particular, [MS15] contains a
detailed comparison of the reverse �rewalls-framework with many prior models, showing that RFs
generalize much of the prior work on insider attacks and various related notions. Here, we focus on
works whose setting or techniques are most similar to our own.

In particular, our work can be viewed as a generalization of Bellare, Paterson, and Rogaway's
work [BPR14a] in a number of directions. We consider multi-round protocols in which the parties
might not share secret keys, and we consider arbitrarily compromised adversaries. In order to get
around the very strong lower bound in [BPR14a], we use the RF framework of [MS15]. While Bellare
et al.'s work stresses the danger of randomness in secure message transmission, our work highlights
the bene�ts of randomness. In particular, our schemes rely heavily on rerandomization by the RF.
However, we do use the elegant deterministic encryption scheme of Bellare et al. as part of two of
our protocols. (See Appendix F.)

Our work is closely related to Mironov and Stephens-Davidowitz [MS15], which introduces the
reverse-�rewalls framework. [MS15] demonstrate feasibility of this framework by constructing reverse
�rewalls for parties participating in Oblivious Transfer and Secure Function Evaluation protocols�
very strong cryptographic primitives. The fact that such strong primitives can be made secure in
this model is quite surprising and bodes well for the reverse-�rewalls framework. However, these
protocols are very ine�cient and therefore mostly of theoretical interest. And, while the primitives
considered in [MS15] have very strong functionality, the security notions that they achieve are rather
weak (e.g., security in the semi-honest model). To ful�ll the promise of reverse �rewalls, we need
to consider protocols of more practical importance. We construct much more e�cient protocols
for widely deployed primitives with strong security guarantees. Naturally, we inherit some of the
techniques of [MS15], but we also develop many new ideas.

Bellare and Hoang [BH15] build on [BPR14a] in a di�erent direction, showing how to build
deterministic and hedged public-key encryption schemes that are secure against randomness sub-
version and algorithm substitution attacks. Essentially, they show public-key encryption schemes
that are secure even when the sender is compromised, provided that (1) the type of compromise is
restricted; and (2) the plaintext itself comes from a high-entropy distribution. These are the �rst
constructions of fully secure hedged public-key encryption in the standard model. These notions of
security are much weaker than those that we achieve, but they achieve them without the use of an
RF.

Recently, Ateniese, Magri, and Venturi studied reverse �rewalls for signature schemes and showed
a number of elegant solutions [AMV15]. Their work can be considered as complementary to ours,
as we are concerned with privacy, while they consider authentication. We also note that our more
advanced key-agreement scheme uses unique signatures, and we implicitly rely on the fact that
unique signatures have a reverse �rewall, as [AMV15] prove. Indeed, the more general primitive of
rerandomizable signatures that they consider would also su�ce for our purposes and might be more
e�cient in practice.

Our frequent use of rerandomization to �sanitize� messages is very similar to much of the
prior work on subliminal channels [Sim84,BD91,Des90,Des94,BBS98], divertible protocols [BD91,
OO90,BBS98], collusion-free protocols [LMs05,AsV08], etc�particularly the elegant work of Blaze,
Bleumer, and Strauss [BBS98] and Alwen, shelat, and Visconti [AsV08]. Again, we refer the reader
to [MS15] for a thorough discussion of these models and their relationship to the reverse-�rewall
framework.

7

Finally, we note that some of our study of key agreement is similar to work on key-agreement
protocols secure against active insiders, and the study of key control (e.g., [PW03,KS05,DPSW06]).
These works consider key-agreement protocols involving at least three parties, in which one or
more of the participants wishes to maliciously �x the key or otherwise subvert the security of the
protocol. Some of the technical challenges that we encounter are similar to those encountered in
the key control literature, and indeed, the simple commitment-based protocol that we present in
Section 4.1 can be viewed as a simple instantiation of some of the known (more sophisticated)
solutions to the key-control problem (e.g., [DPSW06]). However, since prior work approached this
problem from a di�erent perspective�with three or more parties and without reverse �rewalls�our
more technical solutions presented in Section 5.1 are quite di�erent. In particular, almost all prior
work on key agreement focuses on creating protocols that produce �non-malleable� keys, whereas our
protocols need some type of malleability speci�cally to allow the �rewall to maul the keys! Perhaps
surprisingly, we accomplish this without sacri�cing security, and our techniques might therefore be
of independent interest.

2 De�nitions

2.1 Reverse �rewalls

We use the de�nition of reverse �rewalls from [MS15] (and we refer the reader to [MS15] for further
discussion of the reverse-�rewall framework). A reverse �rewallW is a stateful algorithm that maps
messages to messages. For a party A and reverse �rewall W, we de�ne W ◦ A as the �composed�
party in which W is applied to the messages that A receives before A �sees them� and the messages
that A sends before they �leave the local network of A.� W has access to all public parameters, but
not to the private input of A or the output of A. (We can think of W as an �active router� that
sits at the boundary between Alice's private network and the outside world and modi�es Alice's
incoming and outgoing messages.) We repeat all relevant de�nitions from [MS15] below, and we add
two new ones.

As in [MS15], we assume that a cryptographic protocol comes with some functionality or cor-
rectness requirements F and security requirements S. (For example, a functionality requirement
F might require that Alice and Bob output the same thing at the end of the protocol. A security
requirement S might ask that no e�cient adversary can distinguish between the transcript of the
protocol and a uniformly random string.) Throughout, we use Ā to represent arbitrary adversarial
implementations of party A and Ã to represent functionality-maintaining implementations of A (i.e.,
implementations of A that still satisfy the functionality requirements of the protocol). For a protocol
P with party A, we write P

A→Ã
to represent the protocol in which the role of party A is replaced

by party Ã.
We are only interested in �rewalls that themselves maintain functionality. In other words, the

composed party W ◦ A should not break the correctness of the protocol. (Equivalently, PA→W◦A
should satisfy the same functionality requirements as the underlying protocol P.) We follow [MS15]
in requiring something slightly stronger�reverse �rewalls should be �stackable�, so that many reverse
�rewalls composed in series W ◦ · · · ◦ W ◦ A still do not break correctness. All of our �rewalls will
trivially satisfy this notion. (Indeed, the messages sent by our �rewalls will be distributed identically
to those of an honest party.) Note as well that we are not interested in protocols whose functionality
�depends on the presence of the reverse �rewall,� so we require that the protocol without the reverse
�rewall is also functional.

De�nition 1 (Reverse �rewall). A reverse �rewall W maintains functionality F for party A in
protocol P if protocol P satis�es F , the protocol PA→W◦A satis�es F , and the protocol PA→W◦···◦W◦A

8

also satis�es F . (I.e., we can compose arbitrarily many reverse �rewalls without breaking function-
ality.)

Of course, a �rewall is not interesting unless it provides some bene�t. The most natural reason to
deploy a reverse �rewall is to preserve the security of a protocol, even in the presence of compromise.
The below de�nition (which again follows [MS14]) captures this notion by asking that the protocol
obtained by replacing party A with W ◦ Ã for an arbitrary corrupted party Ã still achieves some
notion of security. For example, when we consider message transmission, we will want the �rewall
to guarantee Alice's privacy against some adversary, even when Alice's own computer has been
corrupted. (As before, we are only interested in protocols that are secure without the reverse �rewall
as well.)

De�nition 2 (Security preservation). A reverse �rewall strongly preserves security S for party
A in protocol P if protocol P satis�es S, and for any polynomial-time algorithm Ā, the protocol
PA→W◦Ā satis�es S. (I.e., the �rewall can guarantee security even when an adversary has tampered
with A.)

A reverse �rewall preserves security S for party A in protocol P satisfying functionality re-
quirements F if protocol P satis�es S, and for any polynomial-time algorithm Ã such that P

A→Ã
satis�es F , the protocol P

A→W◦Ã satis�es S. (I.e., the �rewall can guarantee security even when
an adversary has tampered with A, provided that the tampered implementation does not break the
functionality of the protocol.)

For technical reasons, we will also need a new de�nition not present in [MS14]. We wish to show
generic composition theorems, allowing us to construct a message-transmission protocol with secure
reverse �rewall from any key-agreement protocol with its own �rewalls. In order to accomplish
this, we will need the notion of detectable failure. Essentially, a protocol fails detectably if we can
distinguish between transcripts of valid runs of the protocol and invalid transcripts. We will use
this to make sure that a �rewall of a larger protocol can test whether a subprotocol has failed.
We make this precise below. In order to do so, we need to carefully consider what it means for a
transcript to be valid. For simplicity, we assume that honest parties always output ⊥ when they
receive a malformed message (e.g., when a message that should be a pair of group elements is not
a pair of group elements). While the general notion of validity is a bit technical, we will use it in
very straightforward ways. (E.g., transcripts will be valid if and only if a commitment is properly
opened and a certain signature is valid.)

De�nition 3 (Valid transcripts). A sequence of bits r and private input I generate transcript T
in protocol P if a run of the protocol P with input I in which the parties' coin �ips are taken from r
results in the transcript T . A transcript T is a valid transcript for protocol P if there is a sequence
r and private input I generating T such that no party outputs ⊥ at the end of the run. (Here, we
assume that the public input is part of the transcript.) A protocol has unambiguous transcripts if for
any valid transcript T , there is no possible input I and coins r generating T that results in a party
outputting ⊥. (In other words, a valid transcript never results from a failed run of the protocol.)

De�nition 4 (Detectable failure). A reverse �rewall W detects failure for party A in protocol
P if

� if PA→W◦A has unambiguous transcripts;

� the �rewall W outputs the special symbol ⊥ when run on any transcript that is not valid for
PA→W◦A; and

9

� there is a polynomial-time deterministic algorithm that decides whether a transcript T is valid
for PA→W◦A.

We will also need the notion of ex�ltration resistance, introduced in [MS15]. Intuitively, a reverse
�rewall is ex�ltration resistant if �no corrupt implementation of Alice can leak information through
the �rewall.� We say that it is ex�ltration resistant for Alice against Bob if Alice cannot leak infor-
mation to Bob through the �rewall, and we say that it is ex�ltration resistant against eavesdroppers
(or just ex�ltration resistant) if Alice cannot leak information through the �rewall to an adversary
that is only given access to the protocol transcript.

The relationship between security preservation and ex�ltration resistance depends on the security
notion of the cryptographic primitive in question. E.g., in a message-transmission protocol, a reverse
�rewall for Alice resists ex�ltration if and only if it preserves semantic security. However, it is possible
to construct a reverse �rewall for a key-agreement protocol that preserves security but does not resist
ex�ltration (for example, we can add an arbitrary message to the beginning of any key-agreement
protocol without changing its security properties, but clearly such a message can be used to leak
information). It is also possible to construct a �rewall that resists ex�ltration but does not preserve
key-agreement security. The second de�nition below (which uses the notion of valid transcripts) is
new to this paper and is necessary for our composition theorems.

proc. LEAK(P,A,B,W, λ)

(Ā, B̄, I)← E(1λ)

b
$← {0, 1}

IF b = 1, A∗ ←W ◦ Ā
ELSE, A∗ ←W ◦ A
T ∗ ← PA→A∗,B→B̄(I)
b∗ ← E(T ∗, SB̄)
OUTPUT (b = b∗)

Fig. 1: LEAK(P,A,B,W, λ), the ex�ltration resistance security game for a reverse �rewall W for party A in protocol
P against party B with input I. E is the adversary, λ the security parameter, SB̄ the state of B̄ after the run of the
protocol, I valid input for P, and T ∗ is the transcript resulting from a run of the protocol mathcalPA→A∗,B→B̄ with
input I.

De�nition 5 (Ex�ltration resistance). A reverse �rewall is ex�ltration resistant for party A
against party B in protocol P satisfying functionality F if no PPT algorithm E with output circuits
Ã and B̃ such that P

A→Ã
and P

B→B̃
satisfy F has non-negligible advantage in LEAK(P,A,B,W, λ).

If B is empty, then we simply say that the �rewall is ex�ltration resistant.

A reverse �rewall is ex�ltration resistant for party A against party B in protocol P with valid
transcripts if no PPT algorithm E with output circuits Ã and B̃ such that P

A→Ã
and P

B→B̃
produce

valid transcripts for P has non-negligible advantage in LEAK(P,A,B,W, λ). If B is empty, then we
simply say that the �rewall is ex�ltration resistant with valid transcripts.

A reverse �rewall is strongly ex�ltration resistant for party A against party B in protocol P if
no PPT adversary E has non-negligible advantage in LEAK(P,A,B,W, λ). If B is empty, then we
say that the �rewall is strongly ex�ltration resistant.

2.2 Message-transmission protocols

A message-transmission protocol is a two-party protocol in which one party, Alice, is able to commu-
nicate a plaintext message to the other party, Bob. (For simplicity, we only formally model the case
in which Alice wishes to send a single plaintext to Bob per run of the protocol, but this of course

10

naturally extends to a more general case in which Alice and Bob wish to exchange many plaintext
messages.) We consider two notions of security for such messages. First, we consider CPA security,
in which the adversary must distinguish between the transcript of a run of the protocol in which
Alice communicates the plaintext m0 to Bob and the transcript with which Alice communicates
m1 to Bob, where m0 and m1 are adversarially chosen plaintexts. (Even in this setting, we allow
the adversary to start many concurrent runs of the protocol with adaptively chosen plaintexts.)
Our strongest notion of security is CCA security in which the adversary may �feed� the parties
any messages and has access to a decryption oracle. Our security de�nitions are similar in spirit
to [DF14], but adapted for our setting.

Session ids. Throughout this paper, we consider protocols that may be run concurrently many
times between the same two parties. In order to distinguish one run of a protocol from another,
we therefore �label� each run with a unique session id, denoted sid. We view sid as an implicit part
of every message, and we often ignore sid when it is not important. Our parties and �rewalls are
stateful, and we assume that the parties and the �rewall maintain a list of the relevant session ids,
together with any information that is relevant to continue the run of the protocol corresponding
to sid (such as the number of messages sent so far, any values that need to be used later in the
protocol, etc.). We typically suppress explicit reference to these states. In our security games, the
adversary may choose the value sid for each run of the protocol, provided that each party has a
unique run for each session sid. (In fact, it does not even make sense for the adversary to use the
same sid for two di�erent runs of the protocol with the same party, as this party will necessarily
view any calls with the same sid as corresponding to a single run of the protocol. However, as is
clear from our security games, an active adversary may maintain two separate runs of a protocol
with two di�erent parties but the same sid.) In practice, sid can be a simple counter or any other
nonce (perhaps together with any practical information necessary for communication, such as IP
addresses). We note in passing that, in the setting of reverse �rewalls, a counter is preferable to,
e.g., a random nonce to avoid providing a channel through sid, but such concerns are outside of our
model and the scope of this paper.

The de�nition below makes the above formal and provides us with some useful terminology.

De�nition 6 (Message-transmission protocol). A message-transmission protocol is a two-
party protocol in which one party, Alice, receives as input a plaintext m from some plaintext space
M. The protocol is correct if for any input m ∈M, Bob's output is always m.

We represent the protocol by four algorithms P = (setup, nextA, nextB, returnB). setup takes as
input 1λ, where λ is the security parameter, and returns the starting states for each party, SA, SB,
which consist of both private input, σA and σB respectively, and public input π. Each party's next
procedure is a stateful algorithm that takes as input sid and an incoming message, updates the party's
state, and returns an outgoing message. The returnB procedure takes as input Bob's state SB and sid
and returns Bob's �nal output.

We say that a message-transmission protocol is

� unkeyed if setup does not return any private input σA or σB;
� singly keyed if setup returns private input σB for Bob but none for Alice;
� publicly keyed if setup returns private input for both parties σA and σB, but these private inputs

are independently distributed; and
� privately keyed if setup returns private input for both parties whose distributions are dependent.

When we present protocols, we will often omit the formality of de�ning explicit functions P =
(setup, nextA, nextB, returnB) and states for the parties, preferring instead to use diagrams as in
Figure 4. But, this formulation is convenient for our security de�nitions. In particular, we present

11

the relevant subprocedures for our security games in Figure 2. An adversary plays the game depicted
in Figure 2 by �rst calling initialize (receiving as output π) and then making various calls to the
other subprocedures. Each time it calls a subprocedure, it receives any output from the procedure.
The game ends when the adversary calls finalize, and the adversary wins if and only if the output
of finalize is one.

proc. initialize(1λ)

(σA, σB, π)
$← setup(1λ)

SA ← (σA, π); SB ← (σB, π)
sid∗ ← ⊥; compromised← false

b
$← {0, 1}

OUTPUT π

proc. finalize(b∗)
IF b = b∗, RETURN 1
ELSE, RETURN 0

proc. start-run(sid,m)
IF sid /∈ SA, SA.add(sid,m)

proc. start-challenge(sid,m0,m1)
IF sid /∈ SA AND sid∗ = ⊥,

sid∗ ← sid
SA.add(sid,mb)

proc. get-nextA(sid,M)
IF compromised,

OUTPUT ⊥
OUTPUT nextA(SA, sid,M)

proc. get-nextB(sid,M)
IF compromised,

OUTPUT ⊥
OUTPUT nextB(SB, sid,M)

proc. get-outputB(sid)
IF sid = sid∗ OR compromised,

OUTPUT ⊥
OUTPUT returnB(SB, sid)

proc. get-secrets
compromised← true
OUTPUT (σA, σB)

Fig. 2: Procedures used to de�ne security for message-transmission protocol P = (setup, nextA, nextB). An adversary
plays this game by �rst calling initialize and then making various oracle calls. The game ends when the adversary
calls finalize, and the output of finalize is one if the adversary wins and zero otherwise.

The below de�nitions capture formally the intuitive notions of security that we presented above.
In particular, the CPA security de�nition allows the adversary to start arbitrarily many concurrent
runs of the protocol with adversarial input, but it does not allow the adversary to change the
messages sent by the two parties or to send its own messages. We also de�ne forward secrecy, which
requires that security hold even if the parties' secret keys may be leaked to the adversary.

De�nition 7 (Message-transmission security). A message-transmission protocol is called

� chosen-plaintext secure (CPA-secure) if no PPT adversary has non-negligible advantage in the
game presented in Figure 2 when get-nextA(sid,M) and get-nextB(sid,M) output ⊥ unless this
is the �rst get-next call with this sid or M is the output from the previous get-nextA call with the
same sid or the previous get-nextB with the same sid respectively (i.e., the adversary is passive);
and

� chosen-ciphertext secure (CCA-secure) if no PPT adversary has non-negligible advantage in the
game presented in Figure 2 with access to all oracles.

We say that the protocol is chosen-plaintext (resp. chosen-ciphertext) secure without forward secrecy
if the above holds without access to the get-secrets oracle.

We note that it does not make sense to consider chosen-ciphertext security when Bob may
be corrupted. In this case, the output of get-outputB could be arbitrary. (Note that the �rewall
can potentially �sanitize� Bob's messages, but it of course does not have access to his output.) We
therefore only consider �rewalls that preserve CPA security for Bob.

12

2.3 Key agreement

Key-agreement protocols will play a central role in our constructions, so we now provide a de�nition
of key agreement that su�ces for our purposes. Our notion of key agreement closely mirrors the
de�nitions from the previous section.

De�nition 8 (Key agreement). A key-agreement protocol is represented by �ve algorithms, P =
(setup, nextA, nextB, returnA, returnB). setup takes as input 1λ, where λ is the security parameter and
returns the starting states for each party, SA, SB, which consists of public input π and the private
input for each party σA and σB. Each party's next procedure is a stateful algorithm that takes as
input sid and an incoming message, updates the party's state, and returns an outgoing message.
Each party's return procedure takes as input the relevant party's state and sid and returns the party's
�nal output from some key space K or ⊥. We also allow auxiliary input aux to be added to Alice's
state before the �rst message of a protocol is sent.

The protocol is correct if Alice and Bob always output the same thing at the end of the run of a
protocol for any random coins and auxiliary input aux.

We say that a key-agreement protocol is

� unkeyed if setup does not return any private input σA or σB;

� singly keyed if setup returns private input σB for Bob but no private input σA for Alice; and

� publicly keyed if setup returns private input for both parties σA and σB.

proc. initialize(1λ)

(σA, σB, π)
$← setup(1λ)

SA ← (σA, π)
SB ← (σB, π)
sid∗ ← ⊥
compromised← false

b
$← {0, 1}

OUTPUT π

proc. finalize(b∗)
IF b = b∗,

RETURN 1
ELSE, RETURN 0

proc. start-run(sid, aux)
IF sid /∈ SA,
SA.add(sid, aux)

proc. start-challenge(sid, aux)
IF sid∗ = ⊥ AND sid /∈ SA,

sid∗ ← sid

Rsid∗
$← K

SA.add(sid, aux)

proc. get-nextA(sid,M)
IF NOT compromised,

OUTPUT nextA(SA, sid,M)

proc. get-nextB(sid,M)
IF NOT compromised,

OUTPUT nextB(SB, sid,M)

proc. get-outputA(sid)
IF compromised, OUTPUT ⊥
IF sid = sid∗ AND b = 0,

IF returnA(SA, sid) = ⊥, OUTPUT ⊥
ELSE, OUTPUT Rsid

ELSE, OUTPUT returnA(SA, sid)

proc. get-outputB(sid)
IF compromised, OUTPUT ⊥
IF sid = sid∗ AND b = 0,

IF returnB(SB, sid) = ⊥, OUTPUT ⊥
ELSE, OUTPUT Rsid

ELSE, OUTPUT returnB(SB, sid)

proc. get-secrets
compromised← true
OUTPUT (σA, σB)

Fig. 3: Procedures used to de�ne security for key-agreement protocol P = (setup, nextA, nextB, returnA, returnB). An
adversary plays this game by �rst calling initialize and then making various oracle calls. The game ends when the
adversary calls finalize, and the output of finalize is one if the adversary wins and zero otherwise. We suppress the
auxiliary input aux when it is irrelevant.

De�nition 9 (Key-agreement security). A key-agreement protocol is

13

� secure against passive adversaries if no probabilistic polynomial-time adversary has non-negligible
advantage in the game presented in Figure 3 when get-nextA(sid,M) and get-nextB(sid,M) output
⊥ unless this is the �rst get-next call with this sid or M is the output from the previous get-nextB
call with the same sid or the previous get-nextA call with the same sid respectively (i.e., the
adversary is passive);

� secure against active adversaries for Alice if no probabilistic polynomial-time algorithm has non-
negligible advantage in the game presented in Figure 3 without access to the get-outputA oracle;

� secure against active adversaries for Bob if no probabilistic polynomial-time algorithm has non-
negligible advantage in the game presented in Figure 3 without access to the get-outputB oracle;
and

� secure against active adversaries if it is secure against active adversaries for both Bob and Alice;
and

� authenticated for Bob if no probabilistic polynomial-time algorithm playing the game presented in
Figure 3 can output a valid transcript with corresponding session id sid unless returnB(SB, sid) 6=
⊥ or compromised = true. (I.e., it is hard to �nd a valid transcript unless Bob returns a key.) Fur-
thermore, if the transcript is valid and get-outputA(sid) 6= ⊥ then get-outputA(sid) = returnB(sid).
(I.e., if the transcript is valid and Alice outputs a key, then Bob outputs the same key.)

Note that these de�nitions are far from standard. In particular, in the case of active adversaries,
we de�ne security for Alice in terms of the keys that Bob outputs and security for Bob in terms
of the keys that Alice outputs. This may seem quite counterintuitive. But, in our setting, we are
worried that Alice may be corrupted. In this case, we cannot hope to restrict Alice's output after
she receives invalid messages. (The �rewall can modify Alice's messages, but not her output.) So,
the best we can hope for is that the �rewall prevents a tampered implementation of Alice (together
with an active adversary) from �tricking� Bob into returning an insecure key.

2.4 Reverse �rewalls and message transmission

Now that we have formal de�nitions, we discuss the relationship between message-transmission
protocols, reverse �rewalls, and functionality-maintaining adversaries. We start with an obvious
observation: a �rewall cannot allow Alice to non-trivially communicate with Bob while simultane-
ously preventing an arbitrarily corrupted implementation of Alice from communicating something
nefarious to Bob! In the language of [MS15] and Section 2.1, a reverse �rewall for Alice in a message-
transmission protocol cannot strongly resist ex�ltration against Bob. Such basic impossibility results
are bound to arise when we consider notions of security for parties that may be corrupted!

However, if we only consider corrupted implementations of Alice that maintain the function-
ality of this message-transmission protocol, then it is technically possible for a �rewall to resist
ex�ltration against Bob. ([MS15] refer to this as ex�ltration resistance against Bob, but not strong
ex�ltration resistance.) The functionality of a message-transmission protocol requires Bob to output
(i.e., �receive�) the plaintext that Alice is given as input. So, a functionality-maintaining corruption
of Alice must �send� this message. Intuitively, a �rewall that resists ex�ltration against Bob for this
restricted class of corruptions �allows Alice to send her message to Bob, but nothing else.� In other
words, these �rewalls prevent steganography. All of our reverse �rewalls easily achieve this, and in
some sense this is the �best possible� notion of ex�ltration resistance against Bob.

Of course, for message-transmission protocols, we are primarily concerned with security against
a third party adversary. We say that a �rewall preserves security if it protects Alice from such an

14

adversary in some way.4 Ideally, we would like to build reverse �rewalls for Alice that protect her
from such an adversary even if Alice has been arbitrarily corrupted.

In order to do this, we have to worry about an �attack by refusal.� E.g., a corrupted implemen-
tation of Alice might simply refuses to communicate at all (in our model, she can send the special
�abort� symbol ⊥) when the �rst bit of her bank account number is zero and communicates normally
otherwise. Clearly, a �rewall can only protect against such attacks if it can �spoof� messages from
Alice, so that a third party adversary cannot tell the di�erence between a legitimate message sent
from Alice and a �spoofed� message from the �rewall. Now, suppose Alice has a secret key that is
used to publicly sign something at some point in the protocol. It should be clear that the strong
notion of security preservation discussed above (which [MS15] simply call strong security preserva-
tion) is not possible for any such protocols. So, our �rewalls that work in the setting in which Alice
has a public-key/private-key pair preserve Alice's security, but they do not strongly preserve it. (See
Section 5.) In the �mixed� setting in which Bob has a public-key/private-key pair but Alice does not,
we show that strong security preservation is equivalent to a strengthened notion of rerandomizable
RCCA-secure encryption, a primitive that is currently being actively studied. (See Section 6.) In
the unkeyed setting, we do in fact achieve strong security with a simple protocol. (See Section 3.)

Finally, while the barrier discussed above seems inherent, one might hope that this �attack by
refusal� is in some sense the only attack possible. We could try to formalize a security notion that
captures this, but it is clear that our more advanced protocols would not meet it. In particular,
our more advanced protocols use the symmetric-key protocol from [BPR14a] as a subprotocol. The
protocol from [BPR14a] is completely deterministic and su�ers from an attack in which a corrupted
implementation of Alice can simply try to encrypt many di�erent messages until she �nds one whose
corresponding ciphertext has a speci�c form (say, one that starts with many zeros). Obviously, this
channel can be used to communicate with an eavesdropper, and both of our key-agreement-based
protocols inherit this weakness, including our strongest result from Section 5. (We note, however,
that this attack only works against our protocols if the corrupted implementation chooses which
message to send after the key agreement is complete.) We leave it to future work to �nd a stronger
notion of security that is still achievable (but, we stress that we already achieve a remarkably strong
notion of security with surprisingly e�cient protocols). It seems that something might be possible
here, but we might need to sacri�ce e�ciency by applying (typically very slow) public-key operations
to (potentially very long) plaintexts.

3 A two-round protocol from rerandomizable encryption

We �rst consider the simple case of CPA-secure two-round schemes in which the �rst message is a
public key chosen randomly by Bob and the second message is an encryption of Alice's plaintext
under this public key. Figure 4 shows the protocol. (Note that this also captures the case of a one-
round protocol in which Bob has a �xed public key. We consider this slightly stronger setting to kill
two birds with one stone.)

In order to provide a reverse �rewall for Alice in this protocol, the encryption scheme must be
rerandomizable. In order to provide a reverse �rewall for Bob, the scheme must be key malleable.
Intuitively, a scheme is key malleable if a third party can �rerandomize� a public key and map
ciphertexts under the �rerandomized� public key to ciphertexts under the original public key. For
completeness, we include formal de�nitions below.

4 It is easy to see that a �rewall for Alice in a message-transmission protocol is ex�ltration resistant against an
eavesdropper if and only if it preserves semantic security�the weakest notion of security that interests us. So, we
may safely ignore ex�ltration resistance against eavesdroppers in this context.

15

Alice Bob

(pk, sk)
$← KeyGen

pk

C−−−−−−−−−−−−−−−−−−−−−−−−−−
c := Encpk(m)

−−−−−−−−−−−−−−−−−−−−−−−−−−B
OUTPUT Decsk(c)

Fig. 4: Two round message-transmission protocol using the public-key encryption scheme (KeyGen,Enc,Dec).

Alice Firewall for Alice Bob

pk

C−−−−−−−−−−−−−−−
pk

C−−−−−−−−−−−−−−−
c

−−−−−−−−−−−−−−−B

c′
$← Rerandpk(c)

c′

−−−−−−−−−−−−−−−B

Fig. 5: Reverse �rewall for Alice for the protocol shown in Figure 5 that works if the encryption scheme is rerandom-
izable.

Alice Firewall for Bob Bob

pk

C−−−−−−−−−−−−−−−

pk′
$← KeyMaul(pk)

pk′

C−−−−−−−−−−−−−−−
c

−−−−−−−−−−−−−−−B
c′ ← CKeyMaul(c)

c′

−−−−−−−−−−−−−−−B

Fig. 6: Reverse �rewall for Bob for the protocol shown in Figure 4 that works if the encryption scheme is key
malleable. We suppress the randomness r used as input to KeyMaul and CKeyMaul.

16

De�nition 10 (Public-key encryption). A public-key encryption scheme is a triple of e�cient
algorithms (KeyGen,Enc,Dec). KeyGen takes as input 1λ where λ is the security parameter and
outputs a public-key/private-key pair, (pk, sk). Enc takes as input the public key and a plaintext
m from some plaintext space M and outputs a ciphertext c from some ciphertext space C. Dec
takes as input a ciphertext and the private key and outputs a plaintext or the special symbol ⊥. We
sometimes omit the keys from the input to Enc and Dec and the security parameter input to KeyGen.
The scheme is correct if Dec(Enc(m)) = m for all m ∈M. The scheme is semantically secure if for
any adversarially chosen pair of plaintexts (m0,m1), Enc(m0) is computationally indistinguishable
from Enc(m1).

De�nition 11 (Rerandomizable encryption). A semantically secure public-key encryption scheme
is rerandomizable if there is an e�cient algorithm Rerand (with access to the public key) such that for
any ciphertext c such that Dec(c) 6= ⊥, we have Rerand(Dec(c)) = Dec(c), and the pair (c,Rerand(c))
is computationally indistinguishable from (c,Rerand(Enc(0))). We say that it is strongly rerandom-
izable if the previous property holds even when Dec(c) = ⊥.

De�nition 12 (Key malleability). A public-key encryption scheme is key malleable if (1) the
output of KeyGen is distributed uniformly over the space of valid keys; (2) for each public key pk
there is a unique associated private key sk; and (3) there is a pair of e�cient algorithms KeyMaul
and CKeyMaul that behave as follows. KeyMaul is a randomized algorithm that takes as input a public
key pk and returns a new public key pk′ whose distribution is uniformly random over the public key
space and independent of pk. Let (sk, pk) be a private key/public key pair. Let (sk′, pk′) be the unique
pair associated with randomness r such that pk′ = KeyMaul(pk; r). Then, CKeyMaul takes as input
a ciphertext c and randomness r and returns c′ such that Decsk′(c) = Decsk(c

′). We suppress the
input r when it is understood. Furthermore, we require that KeyMaul outputs a uniformly random
key pk′ if called on input that is not in the public-key space.

Example. It is well-known that ElGamal encryption [ElG85] is both key malleable and strongly
rerandomizable. In particular, given an ElGamal public-key (g, h) over a group of order p, a cipher-

text (u, v) can be rerandomized by applying the operation (u, v)→ (gru, hrv) where r
$← Z∗p is chosen

uniformly at random. The public key can be mauled by applying the operation (g, h) → (gα, hβ)

where (α, β)
$← (Z∗p)2 are chosen uniformly and independently at random. Finally, a ciphertext

(u, v) under key (gα, hβ) can be converted into a ciphertext under (g, h) by applying the operation
(u, v)→ (uβ/α, v).

If the underlying encryption scheme in Figure 4 is rerandomizable, then we can build a reverse
�rewall for Alice as in Figure 5. If it is key malleable, then we can build a reverse �rewall for Bob
as in Figure 6. The following theorem shows that this protocol and its reverse �rewalls are secure.

Theorem 1. The unkeyed message-transmission protocol shown in Figure 4 is CPA-secure if the
underlying encryption scheme is semantically secure. If the scheme is also (strongly) rerandomizable,
then the reverse �rewall shown in Figure 5 (strongly) preserves security for Alice and (strongly)
resists ex�ltration for Alice. If the scheme is key malleable, then the reverse �rewall shown in Figure 6
maintains functionality for Bob, strongly preserves Bob's security, and strongly resists ex�ltration
for Bob against Alice.

Proof. It is a common folklore result that the underlying protocol (i.e., the protocol without reverse
�rewalls) is CPA-secure. It is clear that the two �rewalls maintain functionality.

Security and ex�ltration resistance of Bob's �rewall follows from the de�nition of key malleability.
In particular, for any tampered implementation B̄ of Bob, after the post-processing by the reverse

17

�rewall, the key pk′ is uniformly random by the de�nition of key malleability, regardless of the
behavior of B̄. This implies ex�ltration resistance, and security then follows from the fact that the
underlying protocol is secure when the key is chosen legitimately.

Consider a tampered implementation of Alice Ã that maintains functionality, and let c be the
output of Alice. Since Alice maintains functionality, Dec(c) 6= ⊥. So, by the de�nition of rerandom-
izability, the output of Rerand(c) is indistinguishable from Encpk(0). The security preservation and
ex�ltration resistance of Alice's �rewall follows. A similar argument shows that strong rerandomiz-
ability implies strong security preservation and strong ex�ltration resistance.

3.1 Hybrid encryption fails.

A major drawback of the above scheme is that it requires public-key operations of potentially very
long plaintexts, which can be very ine�cient in practice. A common solution in the classical setting
is to use hybrid encryption, in which Encpk(m) is replaced by (Encpk(rk), SEncrk(m)), where SEnc is
some suitable symmetric-key encryption scheme and rk is a freshly chosen uniformly random key for
SEnc. However, if we simply replace the public-key encryption in Figure 4 with the corresponding
hybrid-key encryption scheme, then this fails spectacularly. For example, a tampered version of
Alice Ã can choose some �xed secret key rk∗ and send the message (Encpk(rk

∗), SEncrk∗(m)). If rk∗

is a valid key, then Ã maintains functionality, but an adversary that knows rk∗ can of course read
any messages that Alice sends.

So, in order for such a protocol to have a secure reverse �rewall, the RF must be able to maul
the encrypted key Encpk(rk) into Encpk(rk

′) for some rk′ and then convert the encrypted plain-
text SEncrk(m)) into an encryption under this new key SEncrk′(m)). In particular, the symmetric-
key scheme must be �key malleable.� Unfortunately, such a scheme implies public-key encryption.
Therefore, our supposed �symmetric-key� scheme actually must use public-key primitives. So, hybrid
encryption buys us nothing. Below, we give a proof sketch.

Remark (Informal). Any key-malleable symmetric-key encryption scheme implies public-key en-
cryption.

Proof. Let (SEnc, SDec) be the symmetric-key scheme. We assume that we have some mauling
function Maul that takes as input a ciphertext c and a description of a key-modifying function
σ such that Maul(Encrk(m), σ) = Encσ(rk)(m). (E.g., if the keys form a group, then σ may be a
group element, and we may have Maul(Encrk(m), σ) = Encσ·rk(m).) Then, we construct a public-
key encryption scheme (PEnc,PDec) as follows. The public key is pk := SEncsk(m) for a uniformly
random message m from the message space. To encrypt zero, we sample a random σ and set
the ciphertext to c := (σ,Maul(pk, σ)). To encrypt one, we sample σ, σ′ with σ 6= σ′ and send
c := (σ′,Maul(pk, σ)). I.e., an encryption of zero is an �honest mauling� of the public key, while an
encryption of one is a �dishonest mauling.� It is easy to see that such a scheme is correct and secure,
assuming the appropriate notions of correctness and security for the key-malleable symmetric-key
scheme.

18

4 A solution using key agreement

Alice Bob

m1 := nextA(sid)

−−−−−−−−−−−−−−−−−−−−−−−−−−B

m2 := nextB(sid,m2)

C−−−−−−−−−−−−−−−−−−−−−−−−−−

...

m` := nextB(sid,m`−1)

C−−−−−−−−−−−−−−−−−−−−−−−−−−

skA ← returnA(sid)
c← EncskA(sid,m)

c
−−−−−−−−−−−−−−−−−−−−−−−−−−B

skB ← returnB(sid)
OUTPUT DecskB(sid, c)

Fig. 7: The message-transfer protocol obtained by combining a key-agreement scheme (setup, nextA, nextB, returnA,
returnB) and a nonce-based encryption scheme, (Enc,Dec).

In this section, we remain in the setting in which neither Alice nor Bob has a public key, so we are
still interested in CPA security. (We address CCA security in the next section.) The protocol from
Section 3 works, but it requires a public-key operation on the plaintext, which may be very long.
In practice, this can be very ine�cient. And, we showed in Section 3.1 that one common solution
to this problem in the classical setting, hybrid encryption, seems hopeless with reverse �rewalls
because it allows Alice to choose a key rk that will be used to encrypt the plaintext�thus allowing
a tampered version of Alice to �choose a bad key.�

So, we instead consider an alternative common solution to this e�ciency problem: key agreement
followed by symmetric-key encryption. (See Figure 7.) As in Appendix A, we use a nonce-based
encryption scheme with unique ciphertexts. We can view this as a modi�cation of hybrid encryption
in which �Alice and Bob together choose the key rk� that will be used to encrypt the plaintext.
More importantly from our perspective, the messages that determine the key will go through the
�rewall. As an added bene�t, once a key is established, Alice can use it to e�ciently send multiple
messages, not just one, without any additional public-key operations (though we do not model this
here).5

The composition theorem below shows that this protocol can in fact have a reverse �rewall for
both parties, provided that the key-agreement protocol itself has a reverse �rewall that satis�es some
suitable security requirements. See Appendix C for the proof. In the next section, we construct such
a protocol.

Theorem 2 (Composition theorem for CPA security). Let WA and WB be reverse �rewalls
in the underlying key-agreement protocol in Figure 7 for Alice and Bob respectively. Let W∗A be the
�rewall for Alice in the full protocol in Figure 7 obtained by applying WA to the key-agreement

5 To keep our de�nitions relatively simple, we only formally model the case in which Alice wishes to send a single
message to Bob per key agreement, and we only formally prove security in this model. We note in passing that this
weaker model actually only requires semantically secure symmetric-key encryption. The same is true of Theorem 4.

19

messages and then letting the last message through if WA does not output ⊥ and replacing the last
message by ⊥ otherwise. Let W∗B be the �rewall for Bob in the full protocol in Figure 7 obtained by
applying WB to the key-agreement messages and simply letting the last message through. Then,

1. the protocol in Figure 7 is CPA-secure if the underlying key-agreement protocol is secure against
passive adversaries and the underlying nonce-based encryption scheme is CPA-secure;

2. W∗B preserves CPA security if WB preserves security of the key-agreement protocol; and
3. W∗A preserves CPA security if the encryption scheme has unique ciphertexts and WA preserves

semantic security and is ex�ltration resistant against Bob.

Finally, we note that strong security preservation is not possible for this protocol (at least for
Alice).

Remark 1 (Informal). There is no reverse �rewall for Alice in the protocol illustrated in Figure 7
that maintains functionality and strongly preserves Alice's security.

Proof. Consider the tampered implementation of Alice Ā that goes through the key-agreement
protocol as normal and then sends as its last message c := Encsk′(sid,m) for some �xed key sk′

chosen by the adversary by simulating a run of the key-agreement protocol. Since the �rewall
maintains functionality, it must be the case that the message sent by the �rewall to Bob c′ satis�es
Decsk′(sid, c′) = m. So, the adversary can decrypt the message itself. Clearly, this protocol is not
secure (by any reasonable de�nition).

4.1 Key agreement secure against passive adversaries

Alice Bob

a
$← Z∗p

A := ga

−−−−−−−−−−−−−−−−−−−−−−−−−−B

b
$← Z∗p

B := gb

C−−−−−−−−−−−−−−−−−−−−−−−−−−
OUTPUT Ba OUTPUT Ab

Fig. 8: Di�e-Hellman key agreement over a group G of prime order p with generator g.

Theorem 2 motivates the study of unkeyed key-agreement protocols with reverse �rewalls that
preserve security against passive adversaries. In the classical setting (i.e., without reverse �rewalls),
the canonical example is the elegant key-agreement protocol of Di�e and Hellman [DH06], shown in
Figure 8, whose security follows immediately from the hardness of DDH over the base group G. We
use this as an example to illustrate the basic idea of a reverse �rewall in the key-agreement setting.

Di�e-Hellman key agreement has a simple reverse �rewall for Alice, which raises both messages
to a single random power, α ∈ Z∗p. We present this reverse �rewall in Figure 9. Note that this �rewall
e�ectively replaces Alice's message with a uniformly random message. Security then follows from
the security of the underlying protocol, since the transcript and resulting key in the two cases are
distributed identically. This very simple idea of rerandomizing Di�e-Hellman key agreement is part
of all of our key-agreement protocols.

But, this protocol cannot have a reverse �rewall that maintains correctness and preserves security
for Bob, as we described in the introduction. In particular, we run the risk that one party has the
ability to selectively reject keys.

20

Alice Alice's Firewall Bob

A
−−−−−−−−−−−−−−−B

IF A /∈ G \ {1G},
A

$← Z∗p
α

$← Z∗p
Aα

−−−−−−−−−−−−−−−B
B

C−−−−−−−−−−−−−−−
Bα

C−−−−−−−−−−−−−−−

Fig. 9: Reverse �rewall for Alice in the protocol from Figure 8.

To solve this problem, we add an additional message to the beginning of the protocol in which
Bob commits to the message that he will send later. Of course, in order to permit a secure �rewall,
the commitment scheme itself must be both malleable (so that the �rewall can rerandomize the
underlying message that Bob has committed to, mapping a commitment of B to a commitment
of Bα) and rerandomizable (so that the randomness used by Bob to commit and open will not
leak any information about his message). To achieve our strongest level of security, we also need
the scheme to be statistically hiding and for each commitment to have a unique opening for a
given message. (These requirements are easily met in practice. For example, a simple variant of the
Pedersen commitment su�ces [Ped92]. For completeness, we present such a scheme in Appendix D.)
The protocol is shown in Figure 10. In Figure 11, we present a single reverse �rewall for this protocol
that happens to work for either party. (Each party would need to deploy its own version of this
�rewall to guarantee its own security. It just happens that each party's �rewall would have the same
�code.�)

Alice Bob

b
$← Z∗p; B ← gb

C ← Com(B)
C

C−−−−−−−−−−−−−−−−−−−−−−−−−−

a
$← Z∗p

A := ga

−−−−−−−−−−−−−−−−−−−−−−−−−−B
Open(C)

C−−−−−−−−−−−−−−−−−−−−−−−−−−
IF B = 1G,

OUTPUT ⊥
OUTPUT Ba OUTPUT Ab

Fig. 10: A variant of Di�e-Hellman key agreement over a group G of prime order p with public generator g.
(Com,Open) is a commitment scheme.

Theorem 3. The protocol in Figure 10 is secure against passive adversaries if DDH is hard in
G. The reverse �rewall W in Figure 11 is functionality maintaining. If the commitment scheme is
statistically hiding, then W preserves security for Alice and is strongly ex�ltration resistant against
Bob. If the commitment scheme is computationally binding, then W is ex�ltration resistant for Bob
against Alice and preserves security for Bob. W also detects failure for both parties.

21

Alice Firewall Bob

C
C−−−−−−−−−−−−−−−

α
$← Z∗p

C′ ← Maul(C,α)

C′
$← Rerand(C′)

C′

C−−−−−−−−−−−−−−−
A

−−−−−−−−−−−−−−−B
IF A /∈ G \ {1G},

A
$← Z∗p

Aα

−−−−−−−−−−−−−−−B
x

C−−−−−−−−−−−−−−−
Open(C′)

C−−−−−−−−−−−−−−−

Fig. 11: Reverse �rewall for either Alice or Bob in the protocol from Figure 8. Maul(C,α) takes a commitment
C = Com(B) and converts it into a commitment of Bα. Rerand(C) takes a commitment C = Com(B) and converts
it into a uniformly random commitment of B. We assume that a rerandomized and mauled commitment can be
opened with access to an opening of the original commitment (and the randomness used in the rerandomization and
mauling).

Proof. It is clear that the underlying protocol is secure provided that DDH is hard in G. It is also
clear that W maintains functionality and fails detectably for both parties. (Here, we assume that
the �rewall outputs ⊥ if it ever receives a malformed message.)

Note that, after rerandomization and mauling, the commitment C ′ is a uniformly random com-
mitment of a uniformly random group element, independent of the original commitment C. Since
Bob is functionality maintaining, his second message is �xed unless he can �nd an alternative
opening for the commitment, which by assumption is computationally hard. It follows that W is
ex�ltration resistant for Bob against Alice and preserves security for Bob.

To prove strong ex�ltration resistance for Alice against Bob and security preservation, we again
note that Bob's �rst message is a uniformly random commitment of a uniformly random group
element. Since the commitment is statistically binding, it is statistically close to independent from
α, regardless of Bob's choice of C. Therefore, Alice's message A is statistically close to independent
from α, and Aα is statistically close to uniform. The result follows.

5 CCA-security using key agreement

In the setting of the previous section, with no public-key infrastructure, it is trivially impossible to
achieve CCA-security. (An adversary can simply �pretend to be Bob� and read Alice's plaintext.)
In this section, we show that a CCA-secure message-transmission protocol with reverse �rewalls
does in fact exist in the publicly keyed setting. In particular, below, we give the CCA analogue
of Theorem 2, showing that a key-agreement protocol that is secure against active adversaries and
has su�ciently secure reverse �rewalls together with a symmetric-key encryption scheme su�ces.
As in the previous section, this key-agreement-based protocol has the additional bene�t that it is
e�cient, in the sense that it does not apply public-key operations to the plaintext. In Section 5.1,
we construct a key-agreement protocol that su�ces.

22

We now present our stronger composition theorem. (Recall that Bob's reverse �rewall can only
preserve CPA security. Such a �rewall is already given by Theorem 2, so we do not repeat this here.)
See Appendix E for the proof.

Theorem 4 (Composition theorem for CCA security). De�ne WA and W∗A as in Theorem 2.
Then,

1. the protocol in Figure 7 is CCA-secure if the underlying key-agreement protocol is secure against
active adversaries for Alice and the underlying nonce-based encryption scheme is CCA-secure;
and

2. W∗A preserves CCA-security if the encryption scheme has unique ciphertexts, the key-agreement
protocol is authenticated for Bob, and WA preserves security for Alice, is ex�ltration resistant
against Bob with valid transcripts, and detects failure.

5.1 Key agreement secure against active adversaries

Theorem 4 motivates the study of key-agreement protocols with reverse �rewalls that preserve
security against active adversaries. In the classical setting, the common solution is essentially for
each of the parties to sign the transcript of this run of the protocol. However, this solution does not
work in our setting because it is important for us that messages can be altered without breaking
functionality, so that the �rewall can rerandomize messages when necessary.

Of course, while we want to allow for the possibility that Alice and Bob see a di�erent transcript
but still output a key, we still want them to agree on the key itself. This leads to the idea of signing
some deterministic function of the key, so that the signatures can be used to verify that the parties
share the same key without necessarily requiring them to share the same transcript. This is the
heart of our solution.

We also have to worry that the signatures themselves can provide channels, allowing tampered
versions of the parties to leak some information. We solve this by using a unique signature scheme,
as de�ned by [MRV99]. (See [AMV15] for a thorough analysis of signatures in the context of reverse
�rewalls and corrupted implementations, including alternative ways to implement signatures that
would su�ce for our purposes.)

Furthermore, in order for our �rewall to fail detectably, it has to be able to check the signature
itself�so that it can distinguish a valid transcript from an invalid one. So, we would like the parties
to sign a deterministic function of gab that is e�ciently computable given only access to ga and gb.
This leads naturally to the use of a symmetric bilinear map e : G×G→ GT . The parties then sign
e(ga, gb). Of course, gab is no longer indistinguishable from random in the presence of a bilinear
map. But, it can be hard to compute. So, we apply a cryptographic hash function H to gab in order
to extract the �nal key H(gab).

We now provide two de�nitions to make this precise.

De�nition 13 (Unique Signatures). A unique signature scheme is a triple of algorithms (KeyGen,USig,Ver).
KeyGen takes as input 1λ where λ is the security parameter and outputs a public key pk and a private
key sk. Sig takes as input the secret key sk and a plaintext m and outputs a signature τ . Ver takes as
input the public key pk, a signature τ and a message m and outputs either true or false. A signature
scheme is correct if Verpk(USigsk(m),m) = true. It is unique if for each plaintext m and public key
pk, there is a unique signature τ such that Verpk(τ,m) = true.

A signature scheme is secure against adaptive chosen-message existential-forgery attacks if no
adversary with access to the public key and a signature oracle can produce a valid signature not
returned by the oracle.

23

We will need to use a group with a symmetric bilinear map in which the following variant of the
computational Di�e-Hellman assumption holds.

De�nition 14 (Inverse CDH). For a group G of order p, we say that inverse CDH is hard in G

if no probabilistic polynomial-time adversary taking input (g, ga, gb) where g
$← G and (a, b)

$← Z2
p

has non-negligible probability of returning (h, h1/a, h1/b) for some element h ∈ G \ {1G}.

Note that inverse CDH is stronger than the standard CDH assumption, as (gab, gb, ga) is a
solution to inverse CDH.

We now present our protocol in Figure 12 with a reverse �rewall for both parties in Figure 13.
It requires a unique signature scheme (USig,Ver) with public keys pkA for Alice and pkB for Bob
and corresponding secret keys skA and skB respectively, a base group G with generator g in which
inverse CDH is hard, a target group GT , and a non-trivial bilinear map between the two groups
e : G × G → GT . We also need a function H : G → {0, 1}` for some polynomially large ` that
extracts hardcore bits from CDH. Presumably a standard cryptographic hash function will work.
For simplicity, we model H as a random oracle, but we note that the proof can be modi�ed to
apply to any function H such that (ga, gb, H(gab)) is indistinguishable from random. (See [Kil07]
for a discussion of such functions.) We stress again that this protocol is remarkably e�cient, and
we think that it can and should be used in practice.

Alice Bob

INPUT: skA INPUT: (pkA, pkB, sid) INPUT: skB

a
$← Z∗p; A← ga

C ← Com(A)
C

−−−−−−−−−−−−−−−−−−−−−−−−−−B

b
$← Z∗p

B := gb

C−−−−−−−−−−−−−−−−−−−−−−−−−−
IF B = 1G, OUTPUT ⊥
k ← e(A,B)
τA ← USigskA(k, sid)

(Open(C), τA)

−−−−−−−−−−−−−−−−−−−−−−−−−−B
IF A = 1G, OUTPUT ⊥
k ← e(A,B)
IF NOT Ver(τA, k, sid),

OUTPUT ⊥
τB ← USigskB(k, sid)

τB
C−−−−−−−−−−−−−−−−−−−−−−−−−−

IF NOT Ver(τB, k, sid),
OUTPUT ⊥

OUTPUT H(Ba) OUTPUT H(Ab)

Fig. 12: Authenticated key agreement with a �rewall for both parties. USig is a unique signature.

Theorem 5. The protocol shown in Figure 12 is authenticated for Bob and secure against active
adversaries if the signature scheme is secure and inverse CDH is hard in G. The reverse �rewall W
shown in Figure 13 preserves security against active adversaries for Alice, preserves authenticity,
is ex�ltration resistant for Alice against Bob with valid transcripts, and detects failure for Alice. W

24

Alice Firewall Bob

C
−−−−−−−−−−−−−−−B

α
$← Z∗p

C′
$← Rerand(Maul(C,α))

C′

−−−−−−−−−−−−−−−B
B

C−−−−−−−−−−−−−−−
IF B /∈ G \ {1G},

OUTPUT ⊥
Bα

C−−−−−−−−−−−−−−−
x, τA

−−−−−−−−−−−−−−−B
IF A /∈ G \ {1G},

OUTPUT ⊥
k ← e(A,B)
IF NOT Ver(τA, k

α, sid)
OUTPUT ⊥

Open(C′), τA

−−−−−−−−−−−−−−−B
τB

C−−−−−−−−−−−−−−−
IF NOT Ver(τB, k

α, sid)
OUTPUT ⊥

Fig. 13: Reverse �rewall for either Alice or Bob in the protocol from Figure 12. C is a commitment of the group
element A. Maul(C,α) takes a commitment C = Com(A) and converts it into a commitment of Aα. Rerand(C) takes a
commitment C = Com(A) and converts it into a uniformly random commitment of A. We assume that a rerandomized
and mauled commitment can be opened with access to an opening of the original commitment.

also preserves security against active adversaries for Bob, is ex�ltration resistant for Bob against
Alice with valid transcripts, and detects failure for Bob.

Proof. The fact that the protocol is authenticated for Bob is clear. Informally, any valid transcript
must have a valid signature from Bob. By the security of the signature scheme, except with negligible
probability, the adversary cannot produce a signature with a given sid without Bob returning a key.
The same proof shows that the �rewall preserves authenticity. The fact that the �rewall detects
failure for both parties is also clear.

We prove thatW preserves security against active adversaries for Alice. Let Ã be a functionality-
maintaining tampered implementation of Alice. Consider the following sequence of games.

� Game 1 is the key-agreement security game against active adversaries for Alice in the protocol
shown in Figure 12 with A replaced by W ◦ Ã.

� Game 2 is Game 1 in which the adversary never provides a signature τA or τB unless it came
from a response from Alice or Bob respectively.

� Game 3 is Game 2 in which Alice's commitment C is replaced by A (the value that her
commitment opens to), and the �rewall's commitment C ′ is replaced by Aα in all runs of the
protocol. We also remove Alice's second message is simply removed and join Bob's last two
messages into a single message, (B, τB).

� Game 4 is Game 3 in which Alice's message A is replaced by a uniformly random group
element, and the �rewall takes α := 1 (i.e., the �rewall leaves all messages alone, besides checking
signatures) in all runs of the protocol.

25

The following claim follows from the de�nition of adaptive chosen-message existential-forgery
security.

Claim 5.1. If the signature scheme is secure, then for any PPT adversary E, |AdvGame 1(E) −
AdvGame 2(E)| is negligible.

It is trivial to take any adversary in Game 2 and convert it to an adversary in Game 3 with
the same advantage. Similarly, Game 4 only di�ers from Game 3 syntactically. Indeed, A′ := Aα

is a uniformly random group element independent of everything else, and B′ := Bα is uniformly
random and independent of A′ and everything else. (Recall that Bob is honest.) So, since Alice's
next message is deterministic (because the signature is unique and Alice maintains functionality)
and no output from Alice is given to the adversary other than these two messages (recall that the
get-outputA oracle is not allowed in this game), this is merely a change of variables.

Claim 5.2. No PPT adversary E has non-negligible advantage in Game 4 if inverse CDH is hard
in G.

Proof. We assume without loss of generality that E makes no �trivial� oracle calls, whose output
can be easily predicted based on prior calls, such as calls to get-outputB before the relevant run of
the protocol is �nished. We build an adversary E ′ in the inverse CDH game as follows. On input
(g1, g2, g3), E ′ �rst generates the keys for the signature scheme, (pkA, pkB, skA, skB), and passes
(g1, pkA, pkB) to E . As E ′ will be simulating many runs of the protocol de�ned by Game 4, for
convenience, we assume that E �oracle� calls to the protocol as in the key-agreement security game.
E ′ simply passes the random oracle calls of E to its own random oracle (or simulates a random
oracle), keeping a list of all calls. Finally, E ′ responds to other oracle calls of E as follows.

� When E calls start-run(sid), E ′ calls its own �oracle� start-run(sid).

� When E calls start-challenge(sid∗), E ′ stores sid∗.

� When E calls get-nextA(sid,M), if sid 6= sid∗, E ′ calls its own �oracle� get-nextA(sid,M) and
passes the response to E . Otherwise, it sets h1 ←M and passes (g3, Sigsk(e(h2, g3), sid) to E .

� When E calls get-nextB(sid,M), if sid 6= sid∗, E ′ calls its own �oracle� get-nextB(sid,M) and
passes the response to E . Otherwise, if this is the �rst message of the run, it passes g2 to E .
Otherwise, it sets (τ, h1)←M .

� When E calls get-outputB(sid), if sid 6= sid∗, E ′ calls its own �oracle� get-outputB(sid). If sid = sid∗,
and e(h1, g3) 6= e(g2, h2), then it returns ⊥. Otherwise, E ′ responds with a uniformly random
string.

� When E calls get-secrets, E ′ responds with sk.
� When E calls finalize(b∗), E ′ stops simulating and proceeds as below.

Note that the view of E is identical to its view in Game 4 unless it calls the random oracle on the
actual key, h3 := DH(h1, g3) = DH(g2, h2). Note as well that, because a random oracle is extractable,
if E has non-negligible advantage, it must call the random oracle on the key. Therefore, E ′ can search
through its random oracle queries until it �nds h3 satisfying e(g1, h3) = e(h1, g3). It then returns
(h3, h2, h1). If it �nds nothing, it returns ⊥. The result follows from noting that (h3, h2, h1) is a
valid solution to CDH. (5.2) �

It follows that W preserves security against active adversaries for Alice. The proof for Bob is
essentially identical. And, essentially the same proof shows ex�ltration resistance.

26

6 Less e�cient one-round protocols

Finally, we show one-round protocols in the singly keyed setting, in which Bob has a public-
key/private-key pair, but Alice does not. These are essentially the single-round analogue of the
two-round protocol presented in Figure 4 in Section 3. They can also be thought of as the natural
extension of public-key encryption schemes to the reverse �rewall setting. (In particular, these pro-
tocols are not e�cient, in the sense that they use public-key operations on the plaintext, which may
be very long.) Indeed, we show that the existence of such a protocol is equivalent to the existence of
rerandomizable encryption, and we show how to achieve CCA-security (though not forward secrecy).

6.1 One-round CPA-secure protocols

The next theorem shows that one-round CPA-secure protocols with reverse �rewalls are equivalent
to rerandomizable public-key encryption.

Theorem 6. Any (strongly) rerandomizable semantically secure public-key encryption scheme im-
plies a one-round CPA-secure singly keyed message-transmission protocol without forward secu-
rity with a reverse �rewall that (strongly) preserves security and (strongly) resists ex�ltration.
Conversely, any one-round CPA-secure message-transmission protocol with a reverse �rewall that
(strongly) preserves security implies a (strongly) rerandomizable semantically secure public-key en-
cryption scheme.

Proof. To prove the �rst statement, we consider the protocol in which Alice simply sends Bob an
encryption of the plaintext under Bob's public key. Alice's �rewall applies the Rerand algorithm
to the plaintext. (Bob does not need a �rewall, since he does not send any messages.) Security of
this protocol follows immediately from the security of the encryption scheme, and the fact that the
�rewall preserves security follows immediately from the rerandomizability of the encryption scheme.

To prove the second statement, consider the following encryption scheme. The key generation
algorithm runs the setup algorithm of the underlying MTP protocol, receiving as output σA, σB, and
π. The public key is then π and σA, and the private key is σB. The encryption algorithm �rst uses σA
and an arbitrarily chosen sid to compute Alice's single message in the protocol, given the plaintext.
It then applies the reverse �rewall to this message; the result is the ciphertext. The rerandomization
algorithm simply applies the reverse �rewall to this message. The security and rerandomizability of
the scheme are immediate from the security of the underlying MTP and the security of the �rewall
respectively.

6.2 A one-round CCA-secure protocol

To extend this idea to stronger notions of security, we need the underlying encryption scheme to
satisfy stronger notions of security. A natural candidate is CCA security. However, CCA-secure
encryption schemes cannot be rerandomizable, so we need a slightly weaker notion. RCCA se-
curity, as de�ned by [CKN03], su�ces, and rerandomizable RCCA-secure schemes do exist (see,
e.g., [Gro04,PR07]), though they are relatively ine�cient. (They are not strongly rerandomizable;
their rerandomization procedures do not work on invalid ciphertexts.) We present the RCCA se-
curity game in Figure 14. In addition, we need a rerandomized ciphertext to be indistinguishable
from a valid encryption even with access to a decryption oracle. Figure 15 and the de�nition below
makes this precise.

27

proc. IND-RCCA(λ)

(pk, sk)
$← KeyGen(1λ)

(m0,m1)← EO1(pk)

b
$← {0, 1}; C∗ $← Encpk(mb)

b∗ ← EO2(σ, c∗)
OUTPUT (b = b∗)

proc. O1(c)
OUTPUT Decsk(c)

proc. O2(c)
m← Decsk(c)
IF m = m0 OR m = m1,

OUTPUT Challenge
ELSE,

OUTPUT m

Fig. 14: The RCCA security game.

proc. IND-RCCA(λ)

(pk, sk)
$← KeyGen(1λ)

(c0, c1)← EO1(pk)

b
$← {0, 1}; c∗ $← Rerandpk(cb)

b∗ ← EO2(c∗)
OUTPUT (b = b∗)

proc. O1(c)
OUTPUT Decsk(c)

proc. O2(c)
m← Decsk(c)
IF m = Decsk(c0) OR m = Decsk(c1),

OUTPUT Challenge
ELSE,

OUTPUT m

Fig. 15: The RCCA rerandomization game.

De�nition 15. An encryption scheme is RCCA secure if no probabilistic polynomial-time adver-
sary E has non-negligible advantage in the game presented in Figure 14. It is RCCA rerandomizable
if there exists an algorithm Rerand with access to the public key such that for any ciphertext c with
Dec(c) 6= ⊥, Dec(Rerand(c)) = Dec(c) and no probabilistic polynomial-time adversary E has non-
negligible advantage in the game presented in Figure 15 when we require that Dec(ci) 6= ⊥. It is
strongly RCCA-rerandomizable if the previous statement holds even if Dec(ci) = ⊥.

The below theorem is the CCA analogue of Theorem 6.

Theorem 7. Any (strongly) RCCA-rerandomizable, RCCA-secure encryption scheme implies a
one-round CCA-secure singly keyed message-transmission protocol without forward security with
a reverse �rewall that (strongly) preserves security and (strongly) resists ex�ltration.

Proof. Consider the protocol in which Alice, given as input a plaintextm and a session id sid, simply
sends the message Encpk(sid,m). On input c, Bob's return function computes (sid†,m)← Decsk(c).
If sid† = sid, it outputs m. Otherwise, it outputs ⊥. Alice's �rewall simply applies the Rerand
algorithm to Alice's message.

For any PPT adversary E in the CCA-security game against this message-transmission protocol
(without forward security), we construct E ′ in the RCCA-security game against the underlying
encryption scheme with Adv(E ′) = Adv(E). We assume without loss of generality that E never makes
a �useless� oracle call. I.e., E never calls start-run with an already used sid, never calls get-nextA with
a never used sid, never calls get-output on the challenge sid, etc. The adversary E ′ behaves as follows
in response to the oracle calls of E .

� When E calls the start-run oracle with input (sid,m), E ′ sets csid,A ← Encpk(sid,m).
� When E calls start-challenge(sid,m0,m1), E ′ sets sid∗ ← sid. It then returns (sid∗,m∗0) and

(sid∗,m∗1) as its challenge plaintexts, receiving in response the challenge ciphertext c∗. It sets
csid∗ = c∗.

� When E calls get-nextA(sid), E ′ replies with csid,A.

28

� When E calls get-nextB(sid, c), E ′ sets csid,B ← c.

� When E calls get-outputB(sid), E ′ calls O1(csid,B). If the output is not of the form (sid,m), E ′
responds with ⊥. Otherwise, it responds with m.

� When E calls finalize(b∗), E ′ simply returns b∗.

Note that the view of E is identical to its view in the CCA-security game against the message-
transmission protocol. Furthermore, E ′ wins the RCCA-security game if and only if E wins its
simulated game. The result follows.

It follows that the protocol is CCA secure. The proof that the �rewall preserves security is nearly
identical to the above proof.

6.3 Achieving forward secrecy and e�ciency?

Note that the protocols described above su�er from two problems: they do not have forward secrecy,
and they are ine�cient (i.e., they require public-key operations on the entire plaintext). Ideally, we
would like a composition theorem in the singly keyed setting to match Theorems 2 and 4. Such a
theorem would solve both problems, allowing us to achieve an e�cient CCA-secure and forward-
secret message-transmission protocol in the singly keyed setting. We leave this as an open question.

As a potential alternative direction to achieving forward secrecy, we note that the protocol from
Theorem 7 can be converted into a two-round CCA- secure and forward-secret protocol with a reverse
�rewall for Alice but no reverse �rewall for Bob. In particular, in the �rst round of the protocol,
Bob generates a fresh pair of keys (pk†, sk†) for an RCCA-secure RCCA-rerandomizable encryption
scheme and sends Alice pk† together with a signature τ of (sid, pk†), where the signature is under
Bob's signature key. Alice checks the signature and, if it is valid, sends Bob an encryption of her
plaintext under the secret key. This is essentially the CCA analogue of the protocol in Section 3. As
in that case, Alice's reverse �rewall can simply check the signature and rerandomize the ciphertext.
This protocol is in fact CCA secure, and Alice's �rewall does preserve this security. However, we
do not know how to construct a reverse �rewall for Bob in this setting. In analogy with Section 3,
a possible method would be to �nd an RCCA-rerandomizable encryption scheme that is also key
malleable. We know of no such scheme, but even if such a scheme were constructed, the signature
scheme would have to be similarly malleable, while still achieving an appropriate notion of security.
So, we also leave this as an open question.

7 Conclusion and open questions

We consider the problem of message-transmission protocols in the cryptographic reverse �rewalls
framework of [MS15]. We show that this problem has a rich structure, in analogy with the classical
setting, with a variety of solutions that require di�erent setup assumptions, achieve di�erent levels of
security, and provide di�erent levels of e�ciency. Perhaps surprisingly, we show that it is possible to
achieve concurrent, interactive CCA security in the presence of compromise against functionality-
maintaining adversaries and CPA security against arbitrary adversaries. Many of our protocols
(including those that provide the strongest notions of security) are very e�cient and relatively
simple, so that they can (and should) be implemented in practice.

Therefore, the most important work that we leave open is the implementation of our protocols.
The most important theoretical question that we leave open is whether there is a non-trivial compo-
sition theorem in the singly keyed case, in analogy with Theorem 4. Note that Theorem 2 naturally
extends to the singly keyed case, but we see no inherent reason why CCA-security should not be
achievable from key agreement followed by symmetric-key encryption in this setting.

29

In addition, our work brings new attention to the question of rerandomizable RCCA-secure
schemes. In particular, in Section 6, we show that such schemes give a one-round CCA-secure
message-transmission protocol with a reverse �rewall (without forward security). However, we do
not know of such schemes that are �strongly rerandomizable� (as de�ned in Section 6). If such
schemes existed, then we show that they would immediately imply one-round CCA-secure message
transmission with a reverse �rewall that strongly preserves security, a very powerful primitive. (Even
just more e�cient versions of current schemes would be quite interesting.)

References

[AMV15] Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi. Subversion-resilient signature schemes. In CCS,
2015.

[AsV08] Joël Alwen, abhi shelat, and Ivan Visconti. Collusion-free protocols in the mediated model. In CRYPTO,
2008.

[BBG13] James Ball, Julian Borger, and Glenn Greenwald. Revealed: how US and UK spy agencies defeat internet
privacy and security. Guardian Weekly, September 2013.

[BBS98] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic proxy cryptography. In
EUROCRYPT, 1998.

[BD91] Mike Burmester and Yvo Desmedt. All languages in NP have divertible zero-knowledge proofs and argu-
ments under cryptographic assumptions. In EUROCRYPT, 1991.

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations among notions of security
for public-key encryption schemes. In CRYPTO, 1998.

[BH15] Mihir Bellare and Viet Tung Hoang. Resisting randomness subversion: Fast deterministic and hedged
public-key encryption in the standard model. In CRYPTO, 2015.

[BJK15] Mihir Bellare, Joseph Jaeger, and Daniel Kane. Mass-surveillance without the state: Strongly undetectable
algorithm-substitution attacks. In CCS, 2015.

[BPR14a] Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. Security of symmetric encryption against mass
surveillance. In CRYPTO, 2014. Full version: [BPR14b].

[BPR14b] Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. Security of symmetric encryption against mass
surveillance. Cryptology ePrint Archive, Report 2014/438, 2014. http://eprint.iacr.org/.

[CKN03] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-ciphertext security. In CRYPTO,
2003.

[CVE14a] Vulnerability summary for CVE-2014-1260 (`Heartbleed'). http://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2014-1260, April 2014.
[CVE14b] Vulnerability summary for CVE-2014-1266 (`goto fail'). http://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2014-1266, February 2014.
[CVE14c] Vulnerability summary for CVE-2014-6271 (`Shellshock'). http://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2014-6271, September 2014.
[Des90] Yvo Desmedt. Abuses in cryptography and how to �ght them. In CRYPTO, 1990.
[Des94] Y. Desmedt. Subliminal-free sharing schemes. In Information Theory, 1994.
[DF14] Yevgeniy Dodis and Dario Fiore. Interactive encryption and message authentication. In Security and

Cryptography for Networks, 2014.
[DFP15] Jean Paul Degabriele, Pooya Farshim, and Bertram Poettering. A more cautious approach to security

against mass surveillance. In Fast Software Encryption, 2015.
[DGG+15] Yevgeniy Dodis, Chaya Ganesh, Alexander Golovnev, Ari Juels, and Thomas Ristenpart. A formal

treatment of backdoored pseudorandom generators. In EUROCRYPT, 2015.
[DH06] W. Di�e and M. Hellman. New directions in cryptography. IEEE Trans. Inf. Theor., 22(6):644�654,

September 2006.
[DPSW06] Yvo Desmedt, Josef Pieprzyk, Ron Steinfeld, and Huaxiong Wang. A non-malleable group key exchange

protocol robust against active insiders. In Information Security, 2006.
[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In

CRYPTO, 1985.
[Gre14] Glenn Greenwald. No Place to Hide: Edward Snowden, the NSA, and the U.S. Surveillance State.

Metropolitan Books, May 2014.
[Gro04] Jens Groth. Rerandomizable and replayable adaptive chosen ciphertext attack secure cryptosystems. In

TCC, 2004.
[Jun15] Juniper vulnerability. https://kb.juniper.net/InfoCenter/index?page=content&id=JSA10713, 2015.

30

[Kil07] Eike Kiltz. Chosen-ciphertext secure key-encapsulation based on Gap Hashed Di�e-Hellman. In PKC,
2007.

[KS05] Jonathan Katz and Ji Sun Shin. Modeling insider attacks on group key-exchange protocols. In CCS, 2005.
[LHA+12] Arjen K. Lenstra, James P. Hughes, Maxime Augier, Joppe W. Bos, Thorsten Kleinjung, and Christophe

Wachter. Public keys. In CRYPTO, 2012.
[LMs05] Matt Lepinksi, Silvio Micali, and abhi shelat. Collusion-free protocols. In STOC, 2005.
[MRV99] Silvio Micali, Michael Rabin, and Salil Vadhan. Veri�able random functions. In FOCS, 1999.
[MS14] Ilya Mironov and Noah Stephens-Davidowitz. Cryptographic reverse �rewalls. Cryptology ePrint Archive,

Report 2014/758, 2014. http://eprint.iacr.org/2014/758.
[MS15] Ilya Mironov and Noah Stephens-Davidowitz. Cryptographic reverse �rewalls. In EUROCRYPT, 2015.

Available from [MS14].
[OO90] Tatsuaki Okamoto and Kazuo Ohta. Divertible zero knowledge interactive proofs and commutative random

self-reducibility. In EUROCRYPT, 1990.
[Ped92] TorbenPryds Pedersen. Non-interactive and information-theoretic secure veri�able secret sharing. In

CRYPTO, 1992.
[PLS13] Nicole Perlroth, Je� Larson, and Scott Shane. N.S.A. able to foil basic safeguards of privacy on Web. The

New York Times, September 2013.
[PR07] Manoj Prabhakaran and Mike Rosulek. Rerandomizable RCCA encryption. In CRYPTO, 2007.
[PW03] Josef Pieprzyk and Huaxiong Wang. Key control in multi-party key agreement protocols. Workshop on

Coding, Cryptography and Combinatorics, 2003.
[RTYZ15] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Cliptography: Clipping the power of

kleptographic attacks. Cryptology ePrint Archive, Report 2015/695, 2015. https://eprint.iacr.org/

2015/695.
[SFKR15] Bruce Schneier, Matthew Fredrikson, Tadayoshi Kohno, and Thomas Ristenpart. Surreptitiously weak-

ening cryptographic systems. Technical report, IACR Cryptology ePrint Archive, 2015: 97, 2015.
http://eprint.iacr.org/2015/97.

[Sim84] Gustavus Simmons. The prisoners' problem and the subliminal channel. In David Chaum, editor,
CRYPTO, 1984.

[Sup15] https://www.us-cert.gov/ncas/alerts/TA15-051A, February 2015.

A The symmetric-key setting

As a warmup, we �rst consider the setting in which Alice and Bob share a private key. We observe
that an elegant one-round protocol due to Bellare, Paterson, and Rogaway provides a solution that
does not even need a reverse �rewall [BPR14a]. We will also use this scheme in the sequel to build
protocols that do not rely on shared private keys. We �rst de�ne nonce-based encryption.

De�nition 16 (Nonce-based encryption). A nonce-based symmetric-key encryption scheme is
a pair of deterministic algorithms (Enc,Dec). Enc takes as input a key from a key space K, a nonce
from a nonce space N , and a plaintext from a plaintext space M and outputs a ciphertext from
a ciphertext space C. Dec takes as input a key, a nonce, and a ciphertext and returns a plain-
text or the special symbol ⊥. The scheme is correct if for any key sk, nonce r, and plaintext m,
Dec(r,Encsk(r,m)) = m.

Such a scheme is CPA secure if no probabilistic polynomial-time adversary can distinguish be-
tween Encsk(r

∗,m0) and Encsk(r
∗,m1) with non-negligible advantage where r∗, m0, and m1 are

adversarially chosen when given access to an encryption oracle that outputs ⊥ unless given a unique
nonce r. It is CCA-secure if no probabilistic polynomial-time has non-negligible advantage when also
given access to a decryption oracle that outputs ⊥ if r = r∗.

Such a scheme scheme (Enc,Dec) has unique ciphertexts if for any key sk, message m, and
nonce r, there is exactly one ciphertext c such that Dec(r, c) = m.

Theorem 8. Let (Enc,Dec) be a nonce-based symmetric-key encryption scheme. Then, if the en-
cryption scheme is CPA-secure (resp. CCA-secure) the one-round protocol in which Alice sends

31

Encsk(sid,m) and Bob returns Decsk(sid,m) is a CPA-secure (resp. CCA-secure) one-round pri-
vately keyed message-transmission protocol without forward secrecy. If the encryption scheme has
unique ciphertexts, then the �trivial� reverse �rewall that simply passes Alice's messages to Bob
unchanged preserves security and is ex�ltration resistant against Bob.

See, e.g., [BPR14a] for formal analysis and the construction of such a scheme. The key thing
to note from our perspective is that, as Bellare et al. observe, the fact that the encryption scheme
has unique ciphertexts implies that any tampered version of Alice that maintains functionality
necessarily behaves identically to honest Alice. The next theorem shows that we essentially cannot do
any better for a one-round protocol without using public-key primitives. The proof is in appendix F.

Theorem 9. There is a black-box reduction from semantically secure public-key encryption to CPA-
secure symmetric-key encryption with at least four possible plaintexts and a reverse �rewall that
strongly preserves CPA security.

Of course, the primary drawbacks of this approach are that it requires Alice and Bob to share
a secret key and that it does not o�er forward secrecy.

B Rerandomizable and key-malleable public-key encryption

De�nition 17 (Public-key encryption). A public-key encryption scheme is a triple of e�cient
algorithms (KeyGen,Enc,Dec). KeyGen takes as input 1λ where λ is the security parameter and
outputs a public-key/private-key pair, (pk, sk). Enc takes as input the public key and a plaintext
m from some plaintext space M and outputs a ciphertext c from some ciphertext space C. Dec
takes as input a ciphertext and the private key and outputs a plaintext or the special symbol ⊥. We
sometimes omit the keys from the input to Enc and Dec and the security parameter input to KeyGen.
The scheme is correct if Dec(Enc(m)) = m for all m ∈M. The scheme is semantically secure if for
any adversarially chosen pair of plaintexts (m0,m1), Enc(m0) is computationally indistinguishable
from Enc(m1).

De�nition 18 (Rerandomizable encryption). A semantically secure public-key encryption scheme
is rerandomizable if there is an e�cient algorithm Rerand (with access to the public key) such that for
any ciphertext c such that Dec(c) 6= ⊥, we have Rerand(Dec(c)) = Dec(c), and the pair (c,Rerand(c))
is computationally indistinguishable from (c,Rerand(Enc(0))). We say that it is strongly rerandom-
izable if the previous property holds even when Dec(c) = ⊥.

De�nition 19 (Key malleability). A public-key encryption scheme is key malleable if (1) the
output of KeyGen is distributed uniformly over the space of valid keys; (2) for each public key pk
there is a unique associated private key sk; and (3) there is a pair of e�cient algorithms KeyMaul
and CKeyMaul that behave as follows. KeyMaul is a randomized algorithm that takes as input a public
key pk and returns a new public key pk′ whose distribution is uniformly random over the public key
space and independent of pk. Let (sk, pk) be a private key/public key pair. Let (sk′, pk′) be the unique
pair associated with randomness r such that pk′ = KeyMaul(pk; r). Then, CKeyMaul takes as input
a ciphertext c and randomness r and returns c′ such that Decsk′(c) = Decsk(c

′). We suppress the
input r when it is understood. Furthermore, we require that KeyMaul outputs a uniformly random
key pk′ if called on input that is not in the public-key space.

Example. It is well-known that ElGamal encryption [ElG85] is both key malleable and strongly
rerandomizable. In particular, given an ElGamal public-key (g, h) over a group of order p, a cipher-

text (u, v) can be rerandomized by applying the operation (u, v)→ (gru, hrv) where r
$← Z∗p is chosen

32

uniformly at random. The public key can be mauled by applying the operation (g, h) → (gα, hβ)

where (α, β)
$← (Z∗p)2 are chosen uniformly and independently at random. Finally, a ciphertext

(u, v) under key (gα, hβ) can be converted into a ciphertext under (g, h) by applying the operation
(u, v)→ (uβ/α, v).

C Proof of Theorem 2

Proof. The security of the underlying protocol (i.e., without �rewalls) follows by a folklore com-
position theorem. We assume that the last message of the key-agreement protocol is sent by Bob.
(This is without loss of generality, as we can always add an empty message from Bob at the end of
the protocol.) We prove Item 2. The proof of Item 3 is a simpli�ed version of the proof of Theorem 4.

Let B̃ be some functionality-maintaining tampered implementation of Bob. Let B̃∗ be the tam-
pered implementation of Bob in the key-agreement protocol obtained by simply �truncating� B̃.
(This is merely a syntactic change.) We assume without loss of generality that the adversary makes
no �trivial� calls whose output can be trivially predicted from its previous oracle calls. E.g., it makes
no calls to get-output (which always either returns ⊥ or the plaintext that the adversary provided
for the corresponding sid in the CPA-security game), no get-next calls with modi�ed messages, etc.
Consider the following sequence of games.

� Game 1 is the CPA-security game against the message-transfer protocol with Bob replaced by
W∗B ◦ B̃.

� Game 2 is Game 1 in which the �nal message of the challenge run of the protocol is replaced
by an encryption of the challenge plaintext mb under a uniformly random key sk.

� Game 3 is Game 2 in which the �nal message of the challenge run is replaced by an encryption
of 0 under a uniformly random key.

Note that no adversary can have non-zero advantage in the last game, as none of the messages
depend on the challenge bit.

Claim 2.1. If the encryption scheme has unique ciphertexts, the key-agreement protocol is se-
cure against passive adversaries, and WB preserves this security, then for any PPT adversary E,
|AdvGame 1(E)− AdvGame 2(E)| is negligible.

Proof. We construct a passive adversary E ′ in the security game against the key-agreement protocol
with Bob replaced by WB ◦ B̃∗ as follows. E ′ receives as input the public parameters π and passes

them to E . E ′ then selects b†
$← {0, 1} uniformly at random and sets S†A ← ∅. It responds to the

(non-trivial) oracle calls of E as follows.

� When E calls start-run(sid,m), E ′ adds (sid,m) to S†A and calls its own oracle start-run(sid).

� When E calls start-challenge(sid∗,m0,m1), E ′ adds (sid∗,mb†) to S†A and calls its own oracle
start-challenge(sid∗).

� When E calls get-nextA(sid,M), E ′ calls its own oracle get-nextA(sid,M). If this is not the last
message of the protocol, E ′ then simply passes the resulting message to E . If it is the last
message, it E ′ calls its own oracle get-outputA(sid), receiving as output some key sk. It responds

with Encsk(sid,m) where m is the unique plaintext such that (sid,m) ∈ S†A. (Note that since
the oracle calls of E are non-trivial, it must have made a unique call to either start-run or
start-challenge with this sid.)

� When E calls get-nextB(sid,M), if this is not the last message of the protocol, E ′ calls its own
oracle get-nextB(sid,M) and passes the resulting message to E . Otherwise, E ′ does nothing.

33

� When E calls get-secrets, E ′ calls its own oracle get-secrets and passes the result to E .
� When E calls finalize(b∗), E ′ returns 1 if b† = b∗ and 0 otherwise.

Suppose the challenge bit b in the key-agreement security game is 0, so that the challenge key sk∗

corresponding to the challenge session id sid∗ was selected uniformly at random. Then, clearly the
view of E is identical to its view in Game 2, and E ′ correctly outputs 0 if and only if E �loses� its
simulated game by returning b† = b∗. If, on the other hand, the challenge bit b is 1, then the view of
E is identical to its view in Game 1, and E ′ correctly outputs 1 if and only if E �wins� its simulated
game. The result follows. (2.1) �

Claim 2.2. If the encryption scheme is CPA-secure, then for any PPT adversary E, |AdvGame 2(E)−
AdvGame 3(E)| is negligible.

Proof. We construct an adversary E ′ in the CPA-security game against the encryption scheme as
follows. E ′ �rst runs the setup procedure of the key-agreement protocol, receiving as output σA, σB,
and π. E ′ will simulate many runs of the key-agreement protocol with Bob replaced by WB ◦ B̃∗

and input (σA, σB, π). For convenience, we give E ′ an �oracle interface� to these simulated runs with
�oracle� calls start-run, get-nextA, get-nextB, and get-outputA as in the key-agreement security game

(Figure 3). E′ sends π to E , selects b† $← {0, 1} uniformly at random, and sets S†A ← ∅. It then
responds to the oracle queries of E as follows.

� When E calls start-run(sid,m), E ′ adds (sid,m) to S†A. It calls its own �oracle� start-run(sid).
� When E calls start-challenge(sid∗,m0,m1), E ′, if b† = 0, it sends the challenge (sid∗,m0, 0) to
its challenger. Otherwise, it sends the challenge (sid∗, 0,m1). It stores the resulting challenge
ciphertext c∗ and calls its �oracle� start-run(sid).

� When E calls get-nextA(sid,M), E ′ calls its own �oracle� get-nextA(sid,M). If this call does not
correspond to the last message of the relevant run of the message-transfer protocol, E ′ simply
passes the response to E . If this is the last message and sid = sid∗, E ′ sends c∗ to E . Otherwise, E ′
sets sk ← get-outputA(sid), �nds the unique m such that (sid,m) ∈ S†A, and sends Encsk(sid,m)
to E .

� When E calls get-nextB(sid,M), if this is not the last message of the protocol, E ′ calls its own
�oracle� get-nextB(sid,M) and passes the response to E . If this is the last message, E ′ does
nothing.

� When E calls get-secrets, E ′ responds with (σA, σB).
� When E calls finalize(b∗), E ′ returns b∗.

Let b be the challenge bit of the CPA-security game. If b = b†, then the challenge ciphertext is
an encryption of mb, as in Game 2 and E ′ correctly outputs b if and only if E �wins� and b∗ = b†.
Otherwise, the challenge ciphertext is an encryption of 0 as in Game 3 and E ′ correctly outputs b
if and only if E �loses.� The result follows. (2.2) �

The result follows.

D A suitable malleable commitment scheme

We brie�y describe a simple commitment scheme that is statistically hiding, computationally bind-
ing, and malleable in the way that we need. It is a basic variant of the Pedersen commitment [Ped92].
We �rst provide the relevant de�nitions. For our application, we require that the committed plain-
text is a group element and that the commitment can be mauled in such a way that a commitment

34

to group element B can be converted into a commitment to group element Bα. As such, we de�ne
a malleable commitment scheme in this speci�c setting.

De�nition 20 (Commitment scheme). A commitment scheme is a collection of four e�cient
algorithms (KeyGen,Com,Open,Ver). KeyGen takes as input 1λ, where λ is the security parameter,
and outputs public parameters ρ. Com takes as input the public parameters ρ, a plaintext m, and
randomness r, and outputs a commitment C. Open takes as input the public parameters ρ, a com-
mitment C, and randomness r and outputs an opening x. Finally, Ver takes as input a commitment
C and opening x and outputs either a plaintext m or the special symbol ⊥. For simplicity, we often
omit references to the public parameters and the randomness.

The scheme is correct if a commitment opens to the committed message, i.e., Ver(C, x) = m
whenever C = Com(m) and x = Open(C). The scheme is perfectly hiding if for any two plaintexts
m1,m2, the distribution of Com(m1) is identical to that of Com(m2). The scheme is computationally
binding if no e�cient adversary can produce a commitment C and two openings x, x′ that verify to
di�erent plaintexts (and not ⊥).

De�nition 21 (Additional commitment properties). A commitment scheme is tight if for
each commitment C and plaintext m, there is a unique opening x such that Ver(C, x) = m.

A commitment scheme is rerandomizable if there exists a pair of e�cient algorithms (Rerand,OpenRerand)
such that

1. for any commitment C and uniformly random r, Rerand(C, r) is uniformly random over the
commitment space; and

2. for any commitment C and opening x, Ver(C, x) = Ver(C ′, x′), where C ′ = Rerand(C, r) and
x′ = OpenRerand(x′, r).

Similarly, a commitment scheme is malleable if the plaintext space is a group of order p (writ-
ten multiplicatively) and there exists a pair of e�cient algorithms (Maul,OpenMaul) such that
for any commitment C and opening x, Ver(C, x)α = Ver(C ′, x′), where C ′ = Maul(C,α) and
x′ = OpenMaul(x′, α) for α ∈ Zp. In the main body, we omit explicit reference to the functions
OpenRerand and OpenMaul.

We now describe a commitment scheme that su�ces for our purposes.

� KeyGen takes as input a group G of order p and returns two uniformly random non-identity
group elements g, h.

� Com takes as input a group element m ∈ G and randomness (r, s) ∈ Z2
p and returns C :=

(grhs, hsm).

� Open simply outputs the randomness (r, s).

� Ver takes as input C = (c1, c2) and (r, s). It �rst checks that c1 = grhs. If so, it returns h−sc2.

� Rerand takes as input C = (c1, c2) and randomness (r′, s′) and returns C ′ := (gr
′
hs
′
c1, h

s′c2).

� OpenRerand takes as input an opening (r, s) and randomness (r′, s′) and returns (r+ r′, s+ s′).

� Maul takes as input C = (c1, c2) and α ∈ Zp and returns C ′ := (cα1 , c
α
2).

� OpenMaul takes as input (r, s) and α and returns (αr, αs).

The following proposition is immediate from inspection and the security of the standard Pedersen
commitment scheme [Ped92].

Proposition 1. The above commitment scheme is correct, statistically hiding, tight, rerandomiz-
able, and malleable. If the discrete log is hard over G, it is also computationally binding.

35

E Proof of Theorem 4

Proof. Item 1 (the security of the underlying protocol without reverse �rewalls) follows by a folklore
composition theorem. We assume that the last message of the key-agreement protocol is sent by
Bob. (This is without loss of generality, as we can always add an empty message from Bob at the
end of the protocol.)

Let Ã be some functionality-maintaining tampered implementation of Alice in the protocol from
Figure 7. Let Ã∗ be the �truncation� of Ã to the key-agreement protocol. Note that Ã∗ produces
valid transcripts (though it may not preserve functionality). Let q be some polynomial bound on the
number of oracle calls made by the adversary in the CCA-security game. We assume without loss of
generality that the adversary makes no �trivial� calls whose output can be trivially predicted from
its previous oracle calls. E.g., it makes no calls to get-outputB(sid) where sid does not correspond
to a completed run of the protocol, no get-nextA(sid, ·) without �rst calling start-run(sid,m) or
start-challenge(sid,m0,m1), etc. Consider the following sequence of games.

� Game 1 is the CCA-security game against the message-transmission protocol with Alice replaced
by W∗A ◦ Ã.

� Game 2 is Game 1 in which Alice never sends the �nal message in a run of the protocol
unless Bob's key skB is well-de�ned. (I.e., a call to the returnB(sid) procedure of the underlying
key-agreement protocol for the relevant sid does not return ⊥.)

� For i = 1, . . . , q, Game i + 2 is Game i + 1 in which the �nal message of the ith run of the
protocol is replaced by an encryption of the relevant plaintext m under a uniformly random key.

� Game q + 3 is Game q + 2 in which the �nal message of the challenge run is replaced by an
encryption of 0 under a uniformly random key.

� Game q+ 4 is Game q+ 3 in which the �nal message is removed from each run of the protocol
and the oracle get-outputB is removed.

� For i = 1, . . . , q, Game q+ 4 + i is Game q+ 3 + i in which W∗A ◦ Ã is replaced by W∗A ◦A (the
honest implementation of Alice composed with the �rewall) in the ith run of the protocol.

Note that no adversary can have any advantage in the last game because none of the responses
to any of the adversary's queries depend on the challenge bit.

Claim 4.1. If the encryption scheme has unique ciphertexts, the key-agreement protocol is authen-
ticated for Bob, and WA fails detectably and preserves authenticity, then for any PPT adversary E,
|AdvGame 1(E)− AdvGame 2(E)| is negligible.

Proof. We construct an adversary E ′ in the authentication game against the key-agreement protocol
with Alice replaced by WA ◦ Ã∗ as follows. E ′ receives as input the public parameters π and passes

them to E . E ′ then selects b†
$← {0, 1} uniformly at random and sets S†A, S

†
B, keys ← ∅. E ′ then

responds to oracle calls as follows.

� When E calls start-run(sid,m), E ′ adds (sid,m) to S†A and calls its own oracle start-run(sid,m).

� When E calls start-challenge(sid,m0,m1), E ′ adds (sid,mb†) to S†A and calls its own oracle
start-run(sid,mb†).

� When E calls get-nextA(sid,M), E ′ calls its own oracle get-nextA(sid,M). If this is not the last
message of this run of the protocol, E ′ then simply passes the resulting message to E . If it is
the last message, it checks if the transcript of the underlying key-agreement protocol is valid
for WA ◦ A (using the e�cient algorithm guaranteed by detectable failure). If it is invalid, E ′
responds to E with the special symbol ⊥. If it is valid, let m be the unique plaintext and index

36

such that (sid,m) ∈ S†A and let sk ← get-outputB(sid). If sk = ⊥, then E ′ returns the transcript
of this run of the key-agreement protocol (and wins the authentication game). Otherwise, it
adds (sid, sk) to keys and responds with Encsk(sid,m).

� When E calls get-nextB(sid,M), if this is not the last message of the protocol, E ′ calls its own
oracle get-nextB(sid,M) and passes the resulting message to E . If this is the last message of the

protocol, it adds (sid,M) to S†B and sends nothing to E .
� When E calls get-outputB(sid), E ′ �nds the unique M and sk such that (sid,M) ∈ SB and

(sid, sk) ∈ keys. It computes Decsk(sid,M) and responds with the result.
� When E calls get-secrets, E ′ calls its own oracle get-secrets and passes the result to E .
� When E calls finalize(b∗), E ′ simply terminates.

Note that the view of E is identical to its view in both Game 1 and Game 2 unless at some point it
constructs a valid transcript such that skB is not well-de�ned. If it does construct such a transcript,
then E ′ wins the authentication game. The result follows. (4.1) �

Claim 4.2. If the key-agreement protocol is secure against active adversaries for Alice, the encryp-
tion scheme has unique ciphertexts, and WA preserves Alice's security and fails detectably, then for
any PPT adversary E, |AdvGame i+ 1(E)− AdvGame i+ 2(E)| is negligible.

Proof. We construct an adversary E ′ in the security game against the key-agreement protocol with
Alice replaced by WA ◦ Ã∗ as follows. E ′ receives as input the public parameters π and passes them

to E . E ′ then selects b†
$← {0, 1} uniformly at random and sets S†A, S

†
B, keys ← ∅ and j ← 0. It

responds to the oracle calls of E as follows.

� When E calls start-run(sid,m), E ′ adds (sid, j,m) to S†A. If j = i, it calls its own oracle start-challenge(sid∗,m);
otherwise it calls start-run(sid,m). Finally, it increments j.

� When E calls start-challenge(sid,m0,m1), E ′ adds (sid,mb†) to S†A and (sid, j) to S†B. If j = i,
it calls its own oracle start-challenge(sid∗,mb†); otherwise it calls start-run(sid,mb†). Finally, it
increments j.

� When E calls get-nextA(sid,M), E ′ calls its own oracle get-nextA(sid,M). if this is not the last
message of this run of the protocol, E ′ then simply passes the resulting message to E . If it is
the last message, it checks if the transcript of the underlying key-agreement protocol is valid
for WA ◦ A (using the e�cient algorithm guaranteed by detectable failure). If it is invalid, E ′
responds to E with the special symbol ⊥. If it is valid, let m, k be the unique plaintext and index

such that (sid, k,m) ∈ S†A. If k < i, E ′ selects sk $← K. If k ≥ i, E ′ sets sk ← get-outputB(sid).
Finally, it responds to E with the message Encsk(sid,m).

� When E calls get-nextB(sid,M), E ′ calls its own oracle get-nextB(sid,M) and passes the resulting

message to E . If this is the last message of the protocol, it also adds (sid,M) to S†B.

� When E calls get-outputB(sid), E ′ �nds the unique M and sk such that (sid,M) ∈ S†B and
(sid, sk) ∈ keys. It computes Decsk(sid,M) and responds with the result.

� When E calls get-secrets, E ′ calls its own oracle get-secrets and passes the result to E .
� When E calls finalize(b∗), E ′ returns 1 if b† = b∗ and 0 otherwise.

Suppose the challenge bit b in the key-agreement security game is 0 so that the challenge key sk∗

corresponding to the ith run of the protocol was selected uniformly at random or is the special
symbol ⊥. Then, clearly the view of E is identical to its view in Game i + 2, and E ′ correctly
outputs 0 if and only if E �loses� its simulated game by returning b† = b∗. If, on the other hand,
the challenge bit b is 1, then the view of E is identical to its view in Game i+ 1, and E ′ correctly
outputs 1 if and only if E �wins� its simulated game. The result follows.

(4.2) �

37

Claim 4.3. If the encryption scheme is CCA-secure, then for any PPT adversary E, |AdvGame q + 2(E)−
AdvGame q + 3(E)| is negligible.

Proof. We construct an adversary E ′ in the CCA-security game against the encryption scheme as
follows. E ′ �rst runs the setup procedure of the key-agreement protocol, receiving as output σA, σB,
and π. E ′ will simulate many runs of the key-agreement protocol with Alice replaced by WA ◦ Ã∗

and input (σA, σB, π). For convenience, we give E ′ an �oracle interface� to these simulated runs with
�oracle� calls start-run, get-nextA, and get-nextB as in the key-agreement security game (Figure 3). E ′

sends π to E , selects b† $← {0, 1} uniformly at random, and sets SA, SB, keys← ∅. It then responds
to the oracle queries of E as follows.

� When E calls start-run(sid,m), E ′ adds (sid,m) to SA. It calls its own �oracle� start-run(sid,m).

� When E calls start-challenge(sid∗,m0,m1), if b† = 0, it E ′ sends the challenge (sid∗,m0, 0) to
its challenger. Otherwise, it sends the challenge (sid∗, 0,m1). It stores the resulting challenge
ciphertext c∗. and calls its �oracle� start-run(sid,mb†).

� When E calls get-nextA(sid,M), if this call does not correspond to the last message of the relevant
run of the message-transmission protocol, E ′ calls its own �oracle� get-nextA(sid,M) and passes
the response to E . If the transcript of the underlying key-agreement protocol is invalid, then E ′

sends ⊥ to E . If it is valid and sid = sid∗, it sends c∗ to E . Otherwise, E ′ selects a key sk
$← K

uniformly at random, adds (sid, sk) to keys, �nds the unique m such that (sid,m) ∈ SA, and
sends Encsk(sid,m) to E .

� When E calls get-nextB(sid,M), if this is not the last message of the protocol E ′ calls its own
�oracle� get-nextB(sid,M) and passes the response to E . If this is the last message of the protocol,
it adds (sid,M) to SB.

� When E calls get-outputB(sid), E ′ �nds the unique M and sk such that (sid,M) ∈ SB and
(sid, sk) ∈ keys. It computes Decsk(sid,M) and responds with the result.

� When E calls get-secrets, E ′ responds with (σA, σB).

� When E calls finalize(b∗), E ′ returns b∗.

Let b be the challenge bit in the CPA-security game against E ′. If b† = b, the view of E is
identical to its view in Game 2. In this case, E ′ wins if and only if E wins the simulated Game 2.
If b† 6= b, the view of E is identical to its view in Game 3 and E ′ wins if and only if E loses the
simulated game. The result follows. (4.3) �

It should be clear that any adversary in game Game q + 3 can be easily converted into an
adversary in Game q + 4 with same advantage.

Claim 4.4. If WA is ex�ltration resistant against B with valid transcripts then for any PPT adver-
sary E, |AdvGame q + 3 + i(E)− AdvGame q + 4 + i(E)| is negligible.

Proof. Let Ã(m) be Ã∗ with input plaintext �xed to m.

We construct an adversary E ′ in LEAK (Figure 1) as follows. E ′ �rst runs the setup procedure
of the key-agreement protocol, receiving as output σA, σB, and π. As above, E ′ will simulate many
runs of the key-agreement protocol with Alice replaced by WA ◦ A and input (σA, σB, π). So, for
convenience, we give E ′ an �oracle interface� to these simulated runs with �oracle� calls start-run,

get-nextA and get-nextB as in the key-agreement security game (Figure 3). E ′ selects b† $← {0, 1}
uniformly at random, sets j ← 1 and ids← ∅ , and simulates a run of E , responding to oracle calls
as follows.

38

� When E calls start-run(sid,m), E ′ adds (sid, j) to ids. If j 6= i, it calls its own �oracle� start-run(sid,m)
and increments j. If j = i, E ′ increments j and constructs the circuit B̃ described below with
sid∗, (σA, σB, π), b†, j, ids, the state of E , and the state of the various �oracles� hard-coded into
it. It then returns (Ã(m

b†), B̃, (σA, σB, π)).
� When E calls get-nextA(sid,M), E ′ calls its own �oracle� get-nextA(sid,M) and passes the response
to E .

� When E calls get-nextB(sid,M), E ′ calls its own �oracle� get-nextB(sid,M) and passes the response
to E .

� When E calls start-challenge(sid∗,m0,m1),
� When E calls get-secrets, E ′ responds with (σA, σB).

B̃ will play the role of Bob in the key-agreement protocol, and it has the state of E and the �oracles�
hard-coded into it. It can make �oracle� calls to simulated protocols with Alice replaced by WA ◦A.
It also starts its own �oracle� simulations with Alice replaced by WA ◦ Ã∗ instead. To distinguish
these oracles, we write, e.g., get-nextWA◦Ã∗

and get-nextWA◦A. Note that B̃ is itself playing a game in

which it exchanges its own messages with the challenge party A∗ in LEAK (Figure 1). B̃ continues
to simulate E from its current state, responding to oracle calls as follows.

� When E calls start-run(sid,m), B̃ adds (sid, j) to ids, increments j, and calls its own �oracle�
start-run(sid,m).

� When E calls get-nextA(sid,M), B̃ �nds the unique k such that (sid, k) ∈ ids. If k < i, B̃ calls its
�oracle� get-nextWA◦A(sid,M) and passes the response to E . If k = i, then B̃ sends the message

M to the challenge party A∗ and passes the response to E . If k > i, then B̃ calls its �oracle�
get-nextWA◦Ã∗

(sid,M) and passes the response to E .
� When E calls get-nextB(sid,M), B̃ calls its own �oracle� get-nextB(sid,M) and passes the response
to E .

� When E calls finalize(b∗), B̃ sets its state to 0 if b∗ = b† and to 1 otherwise.
� When E calls get-secrets, B̃ responds with (σA, σB).

Finally, E ′ receives the state of B̃ and simply returns its value.
Let b be the challenge bit in LEAK. Then, if b = 0 so that the challenge party is honest, the

view of E is identical to its view in Game q + 5. Then, the �nal state of B̃ matches b if and only if
E wins this simulated game. If, on the other hand, b = 1, then the view of E is identical to its view
in Game q + 4, and the �nal state of B̃ matches b if and only if E loses this simulated game. The
result follows. (4.4) �

F Proof of Theorem 9

Proof of Theorem 9. Let (KeyGen,Enc,Dec) be a CPA-secure encryption scheme with some reverse
�rewall W. Note that we can view W as a map between ciphertexts.

We present a one-bit PKE scheme as follows. Let m0,m1 be distinct plaintexts. The public
key is then (e0 = W(Encsk(m0)), e1 = W(Encsk(m1))), and the secret key is just the secret key of
the underlying scheme. To encrypt a bit b, we compute W(eb). The decryption algorithm of the
public-key scheme runs the decryption algorithm of the symmetric-key scheme Dec and outputs 0
if the result is m0, 1 if it is m1, and ⊥ otherwise.

Let E be a PPT adversary in the semantic-security game against the above scheme. We assume
without loss of generality that E never outputs a pair of identical challenge plaintexts. We construct

39

an e�cient tampered encryption algorithm ¯Enc and an e�cient adversary E ′ in the CPA-security
game against W ◦ ¯Enc. Choose m†0 and m†1 uniformly at random from the plaintext space. Simulate
E polynomially many times and let i such in at least polynomial many of these runs, the challenge
plaintexts chosen by E di�er in the ith bit. Fix c0 = Encsk(m0) and c1 = Encsk(m1). Then, we

de�ne ¯Encsk(m
†
b) = cb and for all other plaintexts m, ¯Enc(m) = W(cb) where b is the ith bit of m.

Then, E ′ behaves as follows.

� It calls the encryption oracle on input m†0 and m†1. Call the results e0 and e1.
� It runs E with input pk = (e0, e1), receiving as output two challenge plaintexts, (m∗0,m

∗
1). E ′

then outputs these as its own challenge plaintexts.
� On input c∗, a challenge ciphertext, E ′ passes c∗ to E , receiving as output a bit b.
� Ifm∗0 andm

∗
1 di�er in their ith bit and are distinct fromm†0 andm

†
1, output the bit corresponding

to the plaintext whose ith bit is b. Otherwise, return a uniformly random bit.

Note that the view of E is identical to its view in the semantic security game against the public-
key scheme. Furthermore, with non-negligible probability, we have that m†0, m

†
1, m

∗
0, and m∗1 are

distinct and m∗0 and m
∗
1 di�er in their ith bit. When both of these conditions are satis�ed, E ′ guesses

correctly if and only if E guesses correctly. The result follows.

40

